
Dina Goldin · Scott A. Smolka · Peter Wegner (Eds.)

Dina Goldin
Scott A. Smolka
Peter Wegner (Eds.)

Interactive
Computation
The New Paradigm

With 84 Figures

123

Editors

Dina Goldin

Brown University
Computer Science Department
Providence, RI 02912
USA
dqg@cs.brown.edu

Peter Wegner

Brown University
Computer Science Department
Providence, RI 02912
USA
pw@cs.brown.edu

Scott A. Smolka

State University of New York at Stony Brook
Department of Computer Science
Stony Brook, NY 11794-4400
USA
sas@cs.sunysb.edu

Cover illustration: M.C. Escher’s „Whirlpools“
© 2006 The M.C. Escher Company-Holland. All rights reserved. www.mcescher.com

Library of Congress Control Number: 2006932390

ACM Computing Classification (1998): F, D.1, H.1, H.5.2

ISBN-10 3-540-34666-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-34666-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use.

Typeset by the authors
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Cover design: KünkelLopka Werbeagentur, Heidelberg

Printed on acid-free paper 45/3100/YL - 5 4 3 2 1 0

This book is dedicated to our families, and to the memory of our
former colleague and advisor Paris Kanellakis.

Preface

Interaction is an emerging paradigm of models of computation that reflects
the shift in technology from mainframes to networks of intelligent agents,
from number-crunching to embedded systems to graphical user interfaces,
and from procedure-oriented to object-based distributed systems. Interaction-
based models differ from the Turing-machine-based algorithmic models of the
1960s in interesting and useful ways:

Problem Solving: Models of interaction capture the notion of performing a
task or providing a service, rather than algorithmically producing outputs
from inputs.

Observable Behavior: In models of interaction, a computing component
is modeled not as a functional transformation from input to output, but
rather in terms of observable behavior consisting of interaction steps. For
example, interactions may consist of interleaved inputs and outputs mod-
eled by dynamic streams; future input values can depend on past output
values.

Environments: In models of interaction, the world or environment of the
computation is part of the model and plays an active part in the computa-
tion by dynamically supplying the computational system, or agent, with
inputs, and consuming the output values the system produces. The envi-
ronment cannot be assumed to be static or even effectively computable;
for example, it may include humans or other real-world elements.

Concurrency: In models of interaction, computation may be concurrent; a
computing agent can compute in parallel with its environment and with
other agents.

The interaction paradigm provides a new conceptualization of computa-
tional phenomena that emphasizes interaction rather than algorithms. Con-
current, distributed, reactive, embedded, component-oriented, agent-oriented
and service-oriented systems all exploit interaction as a fundamental paradigm.

This book thus challenges traditional answers to fundamental questions
relating to problem solving or the scope of computation. It aims to increase

VIII Preface

the awareness of interaction paradigms among the wider computer-science
community and to stimulate practice and theoretical research in interactive
computation.

This book consists of 18 chapters that are divided into four sections: (I) in-
troduction, (II) theory, (III) applications, and (III) new directions. The three
chapters in Sect. I introduce interactive computation and explore its funda-
mental principles. The six chapters in Sect. II discuss the formalization of
different aspects of interaction. The five chapters in Sect. III present some
applications of interactive computation within various subdisciplines of com-
puter science. Finally, the four chapters in Sect. IV move beyond computer
science to consider the multidisciplinary implications of this new paradigm.

Each chapter makes a different contribution to the study of interactive
computing, collectively providing a broad overview of the field that will help
in the evolution of this increasingly important discipline. A brief overview of
each chapter follows.

I. Introduction

1. Robin Milner, Turing, Computing, and Communication
In this chapter, Milner discusses how computer science has changed substan-
tially since Turing’s founding ideas, advancing from prescription to descrip-
tion, from hierarchical to heterarchical design, from determinism to nondeter-
minism, and from end results to interaction. The evolution of computer science
to include interaction would have excited and been approved by Turing.
2. Farhad Arbab, Computing and Interaction
This chapter offers a rough sketch of the landscape of computing with the
specific aim of interrelating well established topics such as computability and
concurrency to newer areas such as interaction and composition of behavior.
3. Peter Wegner and Dina Goldin, Principles of Interactive Computation
This chapter explores Wegner and Goldin’s contributions to interactive com-
puting, with special emphasis on the philosophical question of how truth has
been used (and misused) in computing and other disciplines. They suggest
that interaction provides an empiricist model of computation that differs from
rationalist mathematical algorithms models proposed in the 1960s by theoret-
ical computer scientists, and point out that the Strong Church–Turing thesis,
which reinterprets the Church–Turing thesis by applying it to all computation,
contradicts the original thesis and is technically incorrect.

II. Theory
4. Manfred Broy, A Theory of System Interaction: Components, Interfaces,
and Services
This chapter studies models, specification, and refinement techniques for dis-
tributed interactive software systems composed of interfaces and components.
A theory for the interaction between such systems is given which refers to the
interaction among systems and their environments, as well as the interaction
among the components of systems. Interfaces and interactions are modeled by

Preface IX

logical formulas in the style of design by contract, by state machines, and by
streams of messages and signals. This leads to a theory of interface abstraction
of systems that is essential for an interaction view. In particular, this theory
treats interaction refinement and introduces a service concept based purely
on interaction.
5. Orna Kupferman and Moshe Vardi, Verification of Open Systems
This chapter considers the verification of interactive systems. In formal veri-
fication, one verifies that a system meets a desired property by checking that
a mathematical system model satisfies a formal specification of the property.
Since assumptions about the environment and its interaction a system are a
natural part of the specification in robust model checking, the model stud-
ied in this chapter subsumes extensions that can be expressed in terms of
properties of the environment and its interaction with the system.
6. Jan van Leeuwen and Jǐŕı Wiedermann, A Theory of Interactive Computa-
tion
This chapter asks what a computational theory of interactive, evolving pro-
grams should look like. The authors point out that a theory of interactive
computation must necessarily lead beyond the classical, finitary models of
computation. A simple model of interactive computing is presented consisting
of one component C and an environment E, interacting using single streams
of input and output signals. This model elegantly characterizes interactive
computation in a stream setting and enables the authors to study the com-
putational implications of interaction, building on the theory of ω-automata.
Viewing components as interactive transducers, they obtain several interesting
theoretical results.
7. Susanne Albers, Online Algorithms
Online algorithms are a theoretical framework for studying problems in inter-
active computing. They model the situation in which the input to an interac-
tive system arrives not as a batch but as a sequence of input portions, and in
which at any point in time the future input is unknown. This chapter explores
online algorithms for diverse applications, including resource management in
operating systems, data structuring, scheduling, networks, and computational
finance.
8. Yuri Gurevich, Interactive Algorithms 2005
In this chapter, Gurevich asserts that computer science is largely about algo-
rithms, and broadens the notion of algorithms to include interaction by allow-
ing intrastep interaction of an algorithm with its environment. This chapter
discusses various forms of intrastep interaction and shows that numerous dis-
parate phenomena are best understood as special cases of it. A survey of
recent work on interactive algorithms follows.
9. Giorgi Japaridze, Computability Logic: A Formal Theory of Interaction
This chapter presents an introduction to computability logic, which is a formal
theory of interactive computability in the same sense as classical logic is a
formal theory of truth. It views computational problems as games played by a

X Preface

machine against the environment: if there exists a machine that always wins
the game, then the problem is computable.

III. Applications

10. Michel Beaudouin-Lafon, Human–Computer Interaction
Human–computer systems are systems with a human user in the loop; to
give the user a sense of control, they must be prepared to receive virtually
any input at any moment and react to it in a way the user can understand.
In this chapter, Beaudouin-Lafon evaluates some unique aspects of human–
computer systems with respect to these characteristics. The chapter covers a
wide range of user-interface styles and techniques, from traditional graphical
user interfaces to advanced research, and considers the full life-cycle of human–
computer systems from design to evaluation.
11. Shriram Krishnamurthi, Robert Findler, Paul Graunke and Matthias
Felleisen, Modeling Web Interactions and Errors
Interactive web programs permit consumers to navigate at whim among the
various stages of a dialogue, leading to unexpected outcomes. In this chapter,
the authors develop a model of web interactions that reduces the panoply of
browser-supported user interactions to three fundamental ones. The model is
used to formally describe two classes of errors in Web programs and to suggest
techniques for detecting and eliminating these errors.
12. Farhad Arbab, Coordination of Interacting Computations
Coordination models and languages are a recent approach to design and devel-
opment of concurrent systems. In this chapter, Arbab presents a brief overview
of coordination models and languages and a framework for their classification.
He then focuses on a specific coordination language, called Reo, that serves as
a good example of a constructive model of computation in which interaction is
treated as a first-class concept, and demonstrates that it provides a powerful
and expressive model for flexible composition of behavior through interaction.
13. Rahul Singh and Ramesh Jain, From Information-Centric to Experiential
Environments
User expectations of information-management systems are changing: rather
than providing answers in response to queries, users want the system to let
them interact with the data so that they can gain insights about it. In this
chapter, the authors explore the paradigm of experiential computing for de-
signing information-management systems.
14. Chris Barrett, Stephen Eubank, and Madhav Marathe, Modeling and
Simulation of Large Biological, Information and Socio-Technical Systems: An
Interaction-Based Approach
In this chapter, the authors describe an interaction-based approach to com-
puter modeling and simulation systems composed of a large number of inter-
acting components—be they biological, physical, or informational. Examples
of such systems are transportation systems, electric power grids, gene regula-
tory networks, and the Internet. Their approach allows the authors to specify,

Preface XI

design, and analyze simulations of extremely large systems, and implement
them on massively parallel architectures.

IV. New Directions
15. Andrea Omicini, Alessandro Ricci, and Mirko Miroli, The Multidisci-
plinary Patterns of Interaction from Sciences to Computer Science
In this chapter, Omicini et al. take a multidisciplinary view of interaction by
drawing parallels between research outside and within computer science. They
point out some of the basic patterns of interaction emerging from a number
of heterogeneous research fields, and show how they can be brought to com-
puter science to provide new insights on interaction in complex computational
systems.
16. Peter Denning and Thomas Malone, Coordination
This chapter discusses coordination, an area of computing concerned with
managing the interactions among multiple activities so that they achieve a
single, collective result. Principles of coordination have been employed for
many years by those who design, build, and evaluate interactive systems.
Coordination plays a similarly fundamental role in management science. The
chapter presents two complementary views of coordination in human–machine
systems, in the belief that coordination principles will play a central role in
the new theoretical paradigms of interactive computation.
17. Eric Pacuit and Rohit Parikh, Social Interaction, Knowledge, and Social
Software
Social procedures are interactions in which humans must engage to reach some
goal, whether to build a house or take a train. The authors ask whether it
is possible to create a theory of how social procedures work, with a view to
creating better ones and ensuring the correctness of the ones we have. This
chapter surveys some of the logical and mathematical tools that address this
question.
18. Lynn Stein, Interaction, Computation, and Education
This volume as a whole documents a fundamental shift in the culture of com-
putation from a focus on algorithmic problem solving to a perspective in which
interaction plays a central role. In this chapter, Stein points out that such a
shift must be accompanied by a corresponding shift in computer science edu-
cation, in the fundamental “story” we tell our students in their introductory
courses.

We are proud that such distinguished authors have written about this
area, and we hope this book will encourage the evolution of interaction as a
fundamental principle of computing.

Newton, MA; Port Jefferson, NY; Providence, RI Dina Goldin
March 2006 Scott Smolka

Peter Wegner

Supported by NSF award 0545489.

Contents

Part I Introduction

Turing, Computing and Communication
Robin Milner . 1

Computing and Interaction
Farhad Arbab . 9

Principles of Interactive Computation
Dina Goldin, Peter Wegner . 25

Part II Theory

A Theory of System Interaction: Components, Interfaces,
and Services
Manfred Broy . 41

Verification of Open Systems
Orna Kupferman, Moshe Y. Vardi . 97

A Theory of Interactive Computation
Jan van Leeuwen, Jǐŕı Wiedermann . 119

Online Algorithms
Susanne Albers . 143

Interactive Algorithms 2005 with Added Appendix
Yuri Gurevich . 165

Computability Logic: A Formal Theory of Interaction
Giorgi Japaridze . 183

XIV Contents

Part III Applications

Human–Computer Interaction
Michel Beaudouin-Lafon . 227

Modeling Web Interactions and Errors
Shriram Krishnamurthi, Robert Bruce Findler, Paul Graunke,
Matthias Felleisen . 255

Composition of Interacting Computations
Farhad Arbab . 277

From Information-Centric to Experiential Environments
Rahul Singh, Ramesh Jain . 323

Modeling and Simulation of Large Biological, Information
and Socio-Technical Systems: An Interaction Based Approach
Chris Barrett, Stephen Eubank, Madhav Marathe . 353

Part IV New Directions

The Multidisciplinary Patterns of Interaction from Sciences
to Computer Science
Andrea Omicini, Alessandro Ricci, Mirko Viroli . 395

Coordination
Peter J. Denning, Thomas W. Malone . 415

Social Interaction, Knowledge, and Social Software
Eric Pacuit, Rohit Parikh . 441

Interaction, Computation, and Education
Lynn Andrea Stein . 463

List of Contributors . 485

Part I

Introduction

Turing, Computing and Communication

Robin Milner

Cambridge University, Cambridge, United Kingdom

Summary. This essay is a slightly edited transcription of a lecture given in 1997 in
King’s College, Cambridge, where Alan Turing had been a Fellow. The lecture was
part of a meeting to celebrate the 60th anniversary of the publication of Turing’s
paper On computable numbers, with an application to the Entscheidungsproblem,
published in the Proceedings of the London Mathematical Society in 1937.

1 Introduction

How has computer science developed since Turing’s founding ideas? His think-
ing bore strongly both upon the possibility of mechanical intelligence and
upon logical foundations. One cannot do justice to both in a short lecture,
and I shall continue the discussion of logical foundations begun in the previous
lecture.

Physical stored-program computers came to exist some ten years after
Turing’s paper on the entscheidungsproblem, notably with the EDSAC in the
Cambridge Mathematical Laboratory in 1949, under the leadership of Maurice
Wilkes; a great engineering achievement. Thus logic and engineering are the
two foundation stones of computer science; our constructions rest firmly on
both foundations, and thereby strengthen both. I shall discuss how the logical
foundation has developed through practical experience.

My thesis is that this logical foundation has changed a lot since Turing,
but harks back to him. To be more precise:

THESIS:

1 Computing has grown into informatics,
the science of interactive systems.

2 Turing’s logical computing machines are matched
by a logic of interaction.

2 R. Milner

My message is that we must develop this logical theory, partly because other-
wise the interactive systems which we build, or which just happen, will escape
our understanding and the consequences may be serious, and partly because
it is a new scientific challenge. Besides, it has all the charm of inventing the
science of navigation while already onboard ship.

2 Concepts in Computer Science

In natural science, concepts arise from the urge to understand observed phe-
nomena. But in computer science, concepts arise as distillations of our design
of systems. This is immediately evident in Turing’s work, most strikingly with
the concept of a universal logical computing machine.

By 1937 there was already a rich repertoire of computational procedures.
Typically they involved a hand calculating machine and a schematic use of
paper in solving, say, a type of differential equation following a specific al-
gorithm. Turing’s class of logical computing machines—which he also called
“paper machines”—was surely distilled from this repertoire of procedures.
But he distilled more, namely the idea of a universal paper machine which
can analyse and manipulate descriptions of members of the class, even of
itself. This demonstrated the logical possibility of the general-purpose stored-
program computer.

Turing also, among others, distilled the idea of the subroutine in comput-
ing. The distillation of this idea was a continuing affair, and didn’t happen
all at once. Turing’s term for subroutine was “subsidiary operation”; anyone
familiar with numerical methods must have known exactly what that meant
when referring to humanly performed operations.

A concept rarely stands clear unless it has been reached from different an-
gles. The gene is a prime example; it was seen first logically, then physically.
So each computer design, whether logical or—like the EDSAC—physical, was
a step in the distillation of the notion of subroutine. The distillation continued
with the notion of parametric procedure in high-level programming languages
such as ALGOL, where the humble subroutine was endowed with a rich tax-
onomy which might have surprised Turing himself. Each high-level language
is, at least, a universal paper machine; but each one also expresses higher-level
concepts distilled from practice.

In modern computing we build and analyse huge systems, equal in com-
plexity to many systems found in nature—e.g., an ecology. So in computing,
as in natural science, there must be many levels of description. Computer sci-
ence has its organisms, its molecules and its elementary particles—its biology,
chemistry and physics:

Turing, Computing and Communication 3

Levels of Description

Natural Science Computer Science
Biology organisms Databases, networks, . . .
Chemistry molecules Metaphors of programming
Physics particles Primitives of programming

(elements)

At the level of organism we find, for example, species of database and net-
work, each with a conceptual armoury. At the level of molecule we find the
metaphors, like parametric procedure, provided by programming languages.
At the particle level we find—as it were—the most basic parts of speech. (I
make no apology for talking so much in terms of language. Computers like
screwdrivers are prosthetic devices, but the means to control them is linguis-
tic, not muscular.) The best of these parts of speech and the best of the
metaphors become accepted modes of thought; that is, they become concepts.

3 From Metaphor to Concept

I shall now discuss a couple of molecular concepts or metaphors, distilled over
the last thirty years, in which the notion of interaction is prominent.

There is a Babel of programming languages. This is not surprising; much
of the world we live in can be modelled, analysed or controlled by program,
and each application domain has its own structure. But sometimes a central
idea finds its first clear expression in a language designed for a particular
problem domain. Such was the case with the problem domain of simulation.

In the 1960s there was a great vogue in simulation languages. New ones
kept emerging. They all gave you ways of making queues of things (in the
process which you wished to simulate), giving objects attributes which would
determine how long it took to process them, giving agents attributes to de-
termine what things they could process, tossing coins to make it random, and
recording what happened in a histogram. These languages usually did not
last; one can simulate so many real-world processes that no single genre of
language can cover them all. So simulation languages merged into the general
stream.

But not without effect. One of them highlighted a new metaphor: the
notion of a community of agents all doing things to each other, each persisting
in time but changing state. This is the notion known to programmers as an
object, possessing its own state and its repertoire of activities, or so-called
methods ; it is now so famous that even non-programmers have heard of it.
It originated in the simulation language known as Simula, invented by Ole-
Johann Dahl and Kristen Nygaard. Object-oriented programming is now a
widely accepted metaphor used in applications which have nothing to do with
simulation. So the abstract notion of agent or active object, from being a

4 R. Milner

convenient metaphor, is graduating to the status of a concept in computer
science.

Even more fundamental to computing, at the molecular level, is the time-
honoured concept of algorithm. Until quite recently it could be defined no
better than “the kind of process enacted by a computer program”, which is
no help at all if we are trying to understand what computational processes
are! But recently algorithms have come to be characterized precisely as game-
theoretic interactions. We could hardly wish for better evidence that the notion
of interaction is basic to computer science.

4 Concurrent Processes

The notion of agent or active object brings programming ontology—if you like,
the metaphors programmers use in design—much closer to the real world. So
why, you may ask, did we not always write programs in terms of interactive
agents? The answer lies partly in von Neumann’s so-called bottleneck, and I
want to describe this before I talk about new parts of speech, or elements.

The early computers all followed the model of John von Neumann, in
which—as far as the programmer was concerned—only one thing could hap-
pen at once; at any given time only one agent could be active. So the possi-
bility of concurrent activity or even co-existence of such agents could not be
expressed in a program—even though underneath, as it were in the machine’s
subconscious, many wheels would whirr and circuits cycle simultaneously. One
can speculate why this sequential discipline was adopted. The familiar calcu-
lational procedures, which computers were designed to relieve us of, were all
inherently sequential; not at all like cooking recipes which ask you to conduct
several processes at once—for example, to slice the beans while the water is
coming to the boil. This in turn may be because our conscious thought process
is sequential; we have so little short term memory that we can’t easily think
of more than one thing at once.

The bursting of von Neumann’s bottleneck is due in part to the premature
birth and later triumph of the metaphor of object-oriented programming. But
a river never breaks its banks in one place. In the 1960s and 1970s the de-
signers of computer operating systems, people like Edsgar Dijkstra and Tony
Hoare, were ill-content with sequential programming metaphors. Program-
ming in the von Neumann model was too much like a child’s construction
kit; you can build the lorry but you can’t build the engine. Consider several
programs running simultaneously inside a computer. They may only appear to
run simultaneously, by virtue of time-slicing, but in any case you need to write
the master program—the so-called operating system—which controls them all
by interacting with them. This is not sequential but concurrent activity; you
need new language to express concurrent activity, and new theory for it. You
cannot decently express it as a metaphor in a sequential language.

Turing, Computing and Communication 5

Indeed, in the same period, Carl-Adam Petri developed a new model of
concurrent processes not only to describe computational behaviour, but also
to model office information systems. He was among the first to point out that
concurrency is the norm, not the exception.

What this amounts to is that computer scientists began to invent new
parts of speech, new elements, to express the metaphors suitable for interactive
concurrent systems.

5 The Old and the New Computer Science

The first part of my thesis was that the river of computer science has indeed
burst its von Neumann banks, and has become a structural theory of interac-
tion. I call it informatics here; I don’t know a better word which is as free of
misleading connotation. It goes far beyond describing what programs do; it
claims that the kind of interactions which go on under the bonnet of a sequen-
tial program are no different from those which occur —even involving human
components— in the world outside. For example, we have no need to describe
these two systems in different terms, if we are thinking of information-flow:

INSIDE OUTSIDE

Processor —— Memory Cashpoint —– Bank
\ / \ /

Screen Person

Thus software, from being a prescription for how to do something —in
Turing’s terms a “list of instructions”— becomes much more akin to a de-
scription of behaviour, not only programmed on a computer, but occurring
by hap or design inside or outside it. Here is a set of contrasts, distinguishing
the old computer science as a limiting case of the new:

Old Computing New Computing
Prescription · · · Description
Hierarchical design · · · Heterarchical phenomena
Determinism · · · Nondeterminism
End-result · · · Continuing interaction

(Extension) (Intension)

Take the first line: Software no longer just prescribes behaviour to take
place inside a computer; instead, it describes information flow in wider sys-
tems.

Take the second line: We can no longer confine ourselves to systems which
are neatly organised, like an army with colonels and platoons. Consider the
Internet; it is a linkage of autonomous agents, more of an informatic rab-
ble than an army. Of course we built many of its parts; but the whole is a
heterarchical assembly—something of a natural phenomenon.

6 R. Milner

Take the third line: We can never know enough about an assembly of au-
tonomous agents to predict each twist in its behaviour. We have to take non-
determinism as elementary, not just temporary laziness which we can amend
later by supplying values for all the hidden variables.

Take the fourth line: The meaning of a conventional computer program, as
far as a user is concerned, is just the mathematical function it evaluates. But
we users are inside our interactive systems; we care about what continually
goes on. The meaning surely lies in the whole conversation, not just its end-
result. (Indeed there may be no end-result, since there may have been no
goal.)

Now, here are some sharper contrasts which hint at what might be the
elements of a mathematical theory of interactive systems:

Computation Interaction
active entity P : program active object, agent
its meaning: function process
statics (combination): sequential composition parallel composition

P1; P2 P1 ‖ P2

dynamics (action): operate on datum send/receive message

In the first line, note especially that all programs are prescriptive—they
are designed with a purpose; agents need be neither designed nor purposeful.
As for meanings, there is a big knowledge gap; we have an impressive mathe-
matical theory of functions, but we still have no consensus on a corresponding
theory of discrete processes. (Of course we are working on it.) The composi-
tion of programs emphasizes the sequentiality imposed by the designer; but in
interactive systems everything can happen as soon as the interactions which
trigger it have occurred. Finally, concerning action, note the asymmetry in
computation between an active operator and a passive operand; in an inter-
active system, messages pass between active peers.

6 Elements of Interaction

Now, what are the new particles —parts of speech, or elements— which al-
low one to express interaction? They lie at the same elementary level as the
operation of a Turing machine on its tape, but they differ. For much longer
than the reign of modern computers, the basic idiom of algorithm has been
the asymmetric, hierarchical notion of operator acting on operand. But this
does not suffice to express interaction between agents as peers; worse, it locks
the mind away from the proper mode of thought.

So we must find an elementary model which does for interaction what
Turing’s logical machines do for computation. The second part of my thesis
was that there is a logic of informatic action, and in my view it is based upon
two fundamental elements:

Turing, Computing and Communication 7

Logical Elements of Interaction
Synchronized action

Channel, or vocative name

These two fit together perfectly; indeed, like quarks, they hardly exist
apart. Synchronization is between an action—the vocative use of a name—by
one agent, and a reaction by another. At this level, names and channels are the
same thing; in fact, they are the essence of several superficially different things
which computer scientists have called links , pointers , references, identifiers,
addresses , . . . , and so on. These elements seem slight in themselves, but they
serve to unify our theory; they can form the basis of a logical calculus not only
for traditional computation but for the wider range of interactive systems.

There are many systems of increasing importance in our lives which show
the pervasive role played by naming and synchronized action. We don’t have
to look far for an example; consider simply a document—not a paper copy,
but the virtual kind that exists on the Internet:

• A piece of hypertext representing a document exists nowhere in linear
form. It’s a mass of pointers, or names, which link its parts in a tree-like
way.

• But it does not stop at tree-like structures. Parts of the document will be
links into other structures; many links to one structure, for economy.

• When you “click” on such a link, you synchronize your action with an
action by the document.

• It does not stop at static structures; some links may command a translation
or even a summarization of the text-agent which they call.

• Not all parts reside at one site; some parts may lie across the Atlantic.
• It does not stop at textual structures. Some links will call up animated

pictures, others will provide exercises for the reader, games to play, and
so on.

All this, just starting from the notion of a document! The web will be
much more tangled for other applications. But the point is that you don’t
just read a document like this—you interact with it.

I ask you to think of the term “information” actively, as the activity of
informing. An atomic message, then, is not a passive datum but an action
which synchronizes two agents. Our example of active documents has shown
that the active/passive polarization between operator and operand, between
process and data, is no longer realistic—and we have removed this limitation.

7 Reflection: Back to Turing

We have briefly explored what computer science has become, having been
launched logically by Turing, and physically by the earliest computers. The
technological story is of course a marvel, and has been a prerequisite for the

8 R. Milner

informatic story, which is what concerns us here. To summarize: Turing’s
paper machines have evolved into the kind of informatic web in which we now
live. They are truly virtual, not physical; they are webs of naming, calling,
migrating in a sense which has little to do with where they reside, or with
how they are physically represented.

Can we ask about these webs the kind of question Turing asked about
his paper machines? Both Turing machines and informatic webs are what
Herbert Simon and Allen Newell have called symbol systems. In each class of
symbol systems, one can ask whether a member of the class can represent
and manipulate some property of the class itself. Such a phenomenon is called
reflection. In particular, consider the following:

• A computing entity can compute a means of computing (consider the uni-
versal Turing machine).

• Can a cognitive entity know about knowing?
• Can a learning entity learn how to learn?

. . . and so on. If the answer is “yes”, we are inclined to think that the class
of entities is properly adult, has come of age. Consider then:

• Can a communicating entity communicate a means of communicating?

This question differs intriguingly from the one about computing entities,
because it concerns systems of agents in a heterarchy. In a heterarchy you
cannot manipulate another agent, in the sense that a universal Turing machine
interprets another. The concept of a universal Turing machine relies on a
sharp distinction between passive data (e.g., the description of a machine)
and active agent (e.g., the machine itself), and I have made a case for eroding
this distinction. But in an interactive system you can, by communicating with
your neighbour, acquire new links and relinquish old ones. So distributed
computing is also adult, in the above sense. In our informatic webs, agents
can acquire new contacts by link-manipulation, and so realize new forms of
behaviour. That is, a web can spin itself.

To conclude: I believe that computing has evolved in a direction which
would excite Alan Turing. His search for primitives continues to inspire our
search. He would surely agree that these primitives must relate to computing
practice, since he himself spent much effort on plans to build a physical com-
puter, the ACE, not just logical ones. In the same way, but in a wider sense,
our primitives relate to informatic practice. So I shall be sorry if computer
science ever flies apart into two disciplines, one theoretical and one technolog-
ical. We are back to our two foundation stones, logic and engineering; among
all his other legacies, Turing embodies the wisdom of arching between them.

Computing and Interaction

Farhad Arbab1,2

1 Center for Mathematics and Computer Science (CWI), Amsterdam, The
Netherlands

2 Leiden University, Leiden, The Netherlands

Summary. This chapter offers a rough sketch of the landscape of computing with
the specific aim of identifying and interrelating well-established topics such as com-
putability and concurrency to newer areas such as interaction and composition of
behavior.

1 Introduction

The size, speed, capacity, and price of computers have all dramatically changed
in the last half-century. Still more dramatic are the subtle changes in society’s
perception of what computers can, should, and are expected to do. Clearly,
this change of perception would not have been possible without the technolog-
ical advances that reduced the size and price of computers, while increasing
their speed and capacity. Nevertheless, the social impact of this change of
perception and its feedback influence on the advancement of computer sci-
ence and technology, are too significant to be regarded as mere by-products
of those technological advances.

The term computer today has a very different meaning than it did in the
early part of the twentieth century. Even after such novelties as mechanical
and electromechanical calculators had become commonplace in the 1960s,
the arithmetic involved in engineering calculations and book-keeping was a
time consuming and labor intensive endeavor for businesses and government
agencies alike. Analogous to typist pools that lingered on until much later,
enterprises from engineering and accountant firms to banks and insurance
companies employed armies of people to process, record, and extract the large
volumes of essentially numerical data that were relevant for their business.
Since in the early part of the twentieth century, computer was the term that
designated these professionals, the machine that could clearly magnify their

10 F. Arbab

effectiveness and held the promise of replacing them altogether became known
as the electronic computer1.

The social perception of what computers are (to be used for) has evolved
through three phases:

1. computers as fast number crunchers;
2. computers as symbol manipulators;
3. computers as mediators and facilitators of interaction.

Two specific transformations marked the above phase transitions. The
advent of fast, large main memory and mass-storage devices suitable to store
and access the significantly more voluminous amounts of data required for non-
numerical symbol manipulation made symbolic computation possible. The
watershed that set forth the second transition was the availability of affordable
personal computers and digital telecommunication that together fueled the
explosion of the Internet.

In spite of the fact that from the beginning, symbol manipulation was
as much an inherent ability of electronic computers the juggling of numbers,
the perception that computers are really tools for performing fast numerical
computations was prevalent. Problems such as information retrieval that did
not involve a respectable amount of number crunching were either rejected
outright as non-problems, or were considered as problems not worthy of at-
tempts to apply computers and computing to. Subscribers to such views were
not all naive outsiders, many an insider considered such areas as business
and management, databases, and graphics, to be not only on the fringes of
computer applications, but also on the fringes of legitimacy. As late as 1970,
James E. Thornton, vice president of Advanced Design Laboratory of Control
Data Corporation, who was personally responsible for most of the detailed
design of the landmark CDC 6600 computer system, wrote [1]:

There is, of course, a class of problems which is essentially noncompu-
tational but which requires a massive and sophisticated storage sys-
tem. Such uses as inventory control, production control, and the gen-
eral category of information retrieval would qualify. Frankly, these do
not need a computer. There are, however, legitimate justifications for
a large computer system as a “partner” with the computational usage.
[Emphasis added.]

1 As of the date of this writing, on the etymology of the word “computer” the free
encyclopedia Wikipedia (http://en.wikipedia.org/) says: “The word was origi-
nally used to describe a person who performed arithmetic calculations and this
usage is still valid. The OED2 lists the year 1897 as the first year the word was
used to refer to a mechanical calculating device. By 1946 several qualifiers were
introduced by the OED2 to differentiate between the different types of machine.
These qualifiers included analogue, digital and electronic.” According to the free
English dictionary Wiktionary (http://en.wiktionary.org), however, the usage of
the word “computer” as “a person employed to perform computations” is obso-
lete.

Computing and Interaction 11

Of course, by that time many people were not only convinced that legit-
imate computational applications need not involve heavy number crunching,
but were already actively working to bring about the changes that turned
fringe activities such as databases and graphics into the core of computing,
and reshaped it both as science as well as by expanding its domain of applica-
tions. Nevertheless, Thornton’s statement at the time represented the views
of a non-negligible minority that has only gradually diminished since. While
the numerical applications of computing have steadily grown in number, size,
and significance, its non-numerical applications have simply grown even faster
and vaster.

We are still at the tail-end of the second transition (from symbolic com-
putation to interaction) and trying come to terms with its full implications
on computer science and technology. This involves revisiting some established
areas, such as concurrency and software composition, from a new perspective,
and leads to a specific field of study concerned with theories and models for co-
ordination of interactive concurrent computations. Pragmatic concerns in soft-
ware engineering have often driven the advancement of computer science. The
transition from symbolic computation to interaction involves, among others,
coarse-grain reuse in component based software and (third-party) composition
of the behavior of services while their actual software cannot be composed.

Already, a growing number of vendors offer an increasing number of useful
computations and services packaged in various forms as specialized hardware
and/or software. Together with advanced communication networks, this sets
the stage to realize all sorts of new complex applications, from embedded
systems with demanding timing requirements to geographically distributed,
always-on, dynamically evolving cooperation networks of mobile autonomous
agents. Tackling the architectures of complex systems whose organization
and composition must dynamically change, e.g., to accommodate mobility,
or evolve and be reconfigured to adapt to short- as well as long-term changes
in their environment, presents new challenges in software engineering.

Two key concepts emerge as core concerns: (1) interaction, and (2) compo-
sitionality. While researchers have worked on both individually in the past, we
propose that their combination deserves still more serious systematic study
because it offers insight into new approaches to coordination of cooperating
interacting components that comprise such complex systems.

2 Computing

The formal notions of computing and computability were introduced by Alonzo
Church (1903–1995), in terms of λ-calculus, and Alan Turing (1912–1954), in
terms of Turing machines. Both Church and Turing were inspired by David
Hilbert’s (1862–1943) challenge proposed in his 1900 lecture delivered be-
fore the International Congress of Mathematics at Paris, to define a solid
foundation for (mechanical) effective methods of finding mathematical truth.

12 F. Arbab

Hilbert’s program consisted of finding a set of axioms as the unassailable foun-
dation of mathematics, such that only mathematical truths could be derived
from them by the application of any (truth preserving) mechanical operation,
and that all mathematical truths could be derived that way.

But, what exactly is a mechanical operation? This was what Church, Tur-
ing, and others were to define. Turing himself also intended for his abstract
machine to formalize the workings of the human mind. Ironically, his own
reasoning on the famous halting problem can be used to show that Turing
machines cannot find all mathematical truths, let alone model the workings
of the human mind2. Kurt Godel’s (1906–1978) incompleteness theorem of
1931, which brought the premature end of Hilbert’s program for mathemat-
ics, clearly shows the limits of formal systems and mechanical truth derivation
methods. By his halting problem, Turing intended to provide a constructive
proof of Godel’s incompleteness theorem: they both show that there are (even
mathematical) truths that cannot be derived mechanically, and interestingly
in both cases, the crucial step in the proof is a variation of the diagonalization
technique first used by Georg Cantor (1845–1918) to show that the infinity of
real numbers between any two numbers is greater than the infinity of natural
numbers.

It is far from obvious why Turing’s simple abstract machine, or Church’s
λ-calculus, is a reasonable formalization of what we intuitively mean by any
mechanical operation. However, all extensions of the Turing machine that
have been considered, are shown to be mathematically equivalent to, and no
more powerful than, the basic Turing machine. Turing and Church showed the
equivalence of Turing machines and λ-calculus. This, plus the fact that other
formalizations, e.g., Emil Post’s (1897–1954), have all turned out to be equiva-
lent, has increased the credibility of the conjecture that a Turing machine can
actually be made to perform any mechanical operation whatsoever. Indeed,
it has become reasonable to mathematically define a mechanical operation as
any operation that can be performed by a Turing machine, and to accept the
view known as the Church–Turing thesis: that the notion of Turing machines
(or λ-calculus, or other equivalents) mathematically defines the concept of an
algorithm (or an effective, or recursive, or mechanical procedure).

2 Intuitively, human beings believe that the human mind can perceive truths beyond
mathematics. If so, the working of the human mind is likely beyond the scope of
our formal systems. This may be because as Penrose argues [2], what goes on in
the human mind is substantially different than what our formal systems express.
He proposes that to comprehend the human mind, we require a hitherto lacking,
fundamentally important insight into physics, which is also a prerequisite for a
unified theory of everything.

Computing and Interaction 13

3 Interaction

The Church–Turing thesis can simply be considered as a mathematical defi-
nition of what computing is in a strictly technical sense; it reflects the notion
of computing of functions. Real computers, on the other hand, do much more
than mere computing in this restrictive sense. Among other things, they are
sources of heat and noise, and have always been revered (and despised) as
(dis)tasteful architectural artifacts, or pieces of furniture. More interestingly,
computers also interact: they can act as facilitators, mediators, and coordina-
tors that enable the collaboration of other agents. These other agents may in
turn be other computers (or computer programs), sensors and actuators that
involve their real world environment, or human beings. The role of a com-
puter as an agent that performs computing, in the strict technical sense of
the word, should not be confused with its role as a mediator agent that, e.g.,
empowers its human users to collaborate with one another (including, for in-
stance, word-processing, where a single user engages in self-collaboration over
a span of time). The fact that the computer, in this case, may perform some
computation in order to enable the collaboration of other agents, is ancillary
to the fact that it needs to interact with these agents to enable their collab-
oration. To emphasize this distinction, Wegner proposes the concept of an
interaction machine [3, 4, 5]. Some of the formal aspects of interaction ma-
chines are discussed in [6, 7, 8, 9]. Here we focus on the essential difference
between interaction machines and Turing machines.

A Turing machine operates as a closed system: it receives its input tape,
starts computing, and (hopefully) halts, at which point its output tape con-
tains the result of its computation. In every step of a computation, the symbol
written by a Turing machine on its tape depends only on its internal state
and the current symbol it reads from the tape. An interaction machine is
an extension of a Turing machine that can interact with its environment with
new input and output primitive actions. Unlike other extensions of the Turing
machine (such as more tapes, more controls, etc.) this one actually changes
the essence of the behavior of the machine. This extension makes interaction
machines open systems.

Consider an interaction machine I operating in an environment described
as a dynamical system E. The symbol that I writes on its tape at a given
step, not only depends on its internal state and the current symbol it reads
from the tape, but can also depend on the input it obtains directly from E.
Because the behavior of E cannot be described by a computable function,
I cannot be replaced by a Turing machine. The best approximation of I by
a Turing machine, T, would require an encoding of the actual input that I
obtains from E, which can be known only after the start of the computation.
The computation that T performs, in this case, is the same as that of I, but I
does more than T because it interacts with its environment E. What T does,
in a sense, is analogous to predicting yesterday’s weather: it is interesting
that it can be done (assuming that it can be done), but it doesn’t quite pass

14 F. Arbab

muster! To emphasize the distinction, we can imagine that the interaction of
I with E is not limited to just one input: suppose I also does a direct output
to E, followed by another direct input from E. Now, because as a dynamical
system, E is non-computable, and the value of the second input from E to I
depends on the earlier interaction of E and I, no input tape can encode this
“computation” for any Turing machine.

It is the ability of computers (as interaction machines) to interact with
the real world, rather than their ability (as mere Turing machines) to carry
on ever-more-sophisticated computations, that is having the most dramatic
impact on our society. In the traditional models of human–computer inter-
action, users prepare and consume the information needed and produced by
their applications, or select from the alternatives allowed by a rigid struc-
ture of computation. In contrast to these models, the emerging models of
human–computer interaction remove the barriers between users and their ap-
plications. The role of a user is no longer limited to that of an observer or an
operator: increasingly, users become active components of their running ap-
plications, where they examine, alter, and steer on-going computations. This
form of cooperation between humans and computers, and among humans via
computers, is a vital necessity in many contemporary applications, where re-
alistic results can be achieved only if human intuition and common-sense is
combined with formal reasoning and computation.

For example, computational steering allows human experts to intervene
and guide an on-going computation with which they interact through visu-
alizations of various scalar, vector, and tensor fields. Construction and ma-
nipulation of complex simulation models that use numerical approximation
and solutions of partial differential equations, e.g., in computational fluid dy-
namics and biology, already benefit from such techniques. The applications of
computer facilitated collaborative work are among the increasingly important
areas of activity in the foreseeable future. They can be regarded as natural
extensions of systems where several users simultaneously examine, alter, in-
teract, and steer on-going computations. The promise of ubiquitous computing
requires the full harnessing of the potential of these combinations. Interaction
machines are suitable conceptual models for describing such applications.

Interaction machines suggest a new perspective on composition. Tradition-
ally, software composition has focused on composition of algorithms, where
(the designer of) one algorithm, as part of its own internal logic, decides to
engage another algorithm, e.g., through a function call or a method invoca-
tion. Composed behavior ensues as a consequence of composing algorithms
and its implied flow of control. Interaction machines are self-contained enti-
ties that directly neither offer nor engage algorithms. They can be arranged
by third parties to engage one another only through their mutual interactions,
which involve no flow of control. This leads to composition of behavior where
the algorithms (embedded in the individual interaction machines) involved in
a composed system do not directly engage each other and (their designers)
remain oblivious to their composition.

Computing and Interaction 15

Van Leeuwen and Wiedermann offer a formal treatment of some of the
implications of interactive computing and its relationship with the more tra-
ditional views of computability in [10]. Goldin et al. [11] propose persistent
Turing machines (PTMs) as a stream-based extension to the Turing machine
model with persistence and the same notion of interaction as in interaction ma-
chines. They investigate the “minimal” changes to the Turing machine model
necessary for capturing the extra expressive power conjectured by Wegner for
interaction machines over Turing machines, using a general kind of transition
system called interactive transition systems (ITSs) as reference. They show
an isomorphism that implies every equivalence result over PTMs carries over
to ITSs, and vice versa.

Interaction machines have unpredictable input from their external environ-
ment, and can directly affect their environment, unpredictably, due to such
input. Because of this property, interaction machines may seem too open for
formal studies: the unpredictable way that the environment can affect their
behavior can make their behavior underspecified, or even ill-defined. But, this
view is misleading. Interaction machines are both useful and interesting for
formal studies.

On the one hand, the openness of interaction machines and their conse-
quent underspecified behavior is a valuable true-to-life property. Real systems
are composed of components that interact with one another, where each is an
open system. Typically, the behavior of each of these components is ill-defined,
except within the confines of a set of constraints on its interactions with its
environment. When a number of such open systems come together as com-
ponents to comprise a larger system, the topology of their interactions forms
a context that constrains their mutual interactions and yields well-defined
behavior.

On the other hand, the concept of interaction machines suggests a clear
separation of concerns for the formal study of their behavior, both as compo-
nents in a larger system, as well as in isolation. Just like a Turing machine, the
behavior of an interaction machine can be studied as a computation (in the
sense of the Church–Turing thesis) between each pair of its successive interac-
tions. More interestingly, one can abstract away from all such computations,
regarding them as internal details of individual components, and embark on a
formal study of the constraints, contexts, and conditions on the interactions
among the components in a system (as well as between the system and its
environment) that ensure and preserve well-behavedness.

Consider, for example, constructing a simple system using three black-
box components: a clock, a thermometer, and a display. The clock has an
output port through which it periodically produces a string of characters that
represents the current time. Similarly, the thermometer has an output port
through which it periodically produces a string of characters that represents
the current temperature. The display has an input port through which it
periodically consumes a string of characters and displays it. Our goal is to
build a system—similar to what one finds on top of some tall bank buildings—

16 F. Arbab

that alternately displays the current time and current temperature. It is the
constraints on the periods and the relative order of exchanges between these
three components that together shape the desired alternating behavior in
our composed system. It is at least as essential to study and express these
intercomponent constraints that define the behavior of a composed system, as
it is to study and specify the computation carried out by each of its individual
components. It is even more sensible to focus on such protocols and constraints
in isolation from intracomponent computation concerns. And this material is
the thread that weaves the fabric of coordination.

4 Concurrency

The concept of interaction is closely related to concurrency. Concurrency
means that different computations in a system overlap in time. The com-
putations in a concurrent system may be interleaved with one another on a
single processor or actually run in parallel (i.e., use more than one physical
processor at a time). Parallelism introduces extra concerns (over monopro-
cessor computing) such as interprocessor communication, the links that carry
this communication, synchronization, exclusion, consensus, and graceful re-
covery or termination in case of partial failures. The parallel computations in
a system may or may not be geographically distributed. Geographic distribu-
tion escalates the significance of the extra concerns in parallel computing by
increasing communication link delays, potential for partial failures, and the
difficulty of maintaining consistency, which together make schemes based on
central control and global views less tenable in practice.

Nevertheless, concurrency in itself does not change the essence of com-
puting. Clearly, interleaving is but one specific regiment for programming
a Turing machine. Parallelism, on the other hand, involves multiple Turing
machines. Although not obvious at the outset, it turns out that involving
multiple Turing machines does not increase their expressiveness: parallel sys-
tems are mathematically equivalent to a single Turing machine. This is not so
for interactive systems. What distinguishes an interactive system from other
concurrent systems is the fact that an interactive system has unpredictable
input from an external environment that it does not control.

The theoretical equivalence of (closed) concurrent systems and a Turing
machine is of little practical use. It is far more difficult to consider, design, and
reason with a set of concurrent activities than it is to do so with individual
sequential activities; the whole, in this case, is considerably more (complex)
than the sum of its parts.

The study and the application of concurrency in computer science have
a long history. The study of deadlocks, the dining philosophers problem, and
the definition of semaphores and monitors were all well established by the
early 1970s. Theoretical work on concurrency, e.g., CSP [12, 13], CCS [14],
process algebra [15], and π-calculus [16], has helped to show the difficulty of

Computing and Interaction 17

dealing with concurrency, especially when the number of concurrent activities
becomes large. Most of these models are more effective for describing closed
systems. A number of programming languages have been based upon some of
these theoretical models, e.g., Occam [17] uses CSP and LOTOS [18] uses CCS.
However, it is illuminating to note that the original context for the interest in
concurrency was somewhat different than the demands of the applications of
today in two respects:

• In the early days of computing, hardware resources were prohibitively ex-
pensive and had to be shared among several programs that had nothing
to do with each other, except for the fact that they were unlucky enough
to have to compete with each other for a share of the same resources.
This was concurrency of competition. Today, it is quite feasible to allocate
tens, hundreds, and thousands of processors to the same task (if only we
could do it right). This is concurrency of cooperation. The distinction is
that whereas it is sufficient to keep independent competing entities from
trampling on each other over shared resources, cooperating entities also
depend on the (partial) results they produce for each other. Proper passing
and sharing of these results require more complex protocols, which become
even more complex as the number of cooperating entities and the degree
of their cooperation increase.

• It was only in the 1990s that the falling costs of processor and commu-
nication hardware dropped below the threshold where having very large
numbers of “active entities” in an application makes pragmatic sense. Mas-
sively parallel systems with thousands of processors are a reality today.
Current trends in processor hardware and operating system kernel support
for threads make it possible to efficiently have in the order of hundreds of
active entities running in a process on each processor. Thus, it is not un-
realistic to think that a single application can be composed of hundreds of
thousands of active entities. Compared to classical uses of concurrency, this
is a jump of several orders of magnitude in numbers. When a phenomenon
is scaled up by several orders of magnitude, originally insignificant details
and concerns often add up to the extent that they can no longer be ig-
nored; we have not just a quantitative change (i.e., more of the same thing),
but rather a qualitative change (i.e., involving new properties, or even a
whole new phenomenon). In our view, grappling with massive concurrency
requires a qualitative change in (classical) models of concurrency.

The primary concern in the design of a concurrent application must be
its model of cooperation: how the various active entities comprising the ap-
plication are to cooperate with each other. Eventually, a set of communica-
tion primitives must be used to implement whatever model of cooperation
application-designers opt for; the concerns for performance may indirectly
affect their design.

It is important to realize that the conceptual gap between the system sup-
ported communication primitives and a concurrent application must often be

18 F. Arbab

filled with a nontrivial model of cooperation. Ideally, one should be able to
design and understand a concurrent system by separately understanding its
individual active entities, and how they cooperate. Precise description of how
this cooperation is to materialize has a shorter history than models, methods,
and languages for precise descriptions of individual active entities. Various
ad hoc libraries of functions (e.g., PVM [19], MPI [20], and CORBA [21])
have emerged as the so-called middle-ware layer of software to fill this con-
ceptual gap by providing higher-level support for developing concurrent (and
especially distributed) applications on top of the lower-level communication
models offered by operating system platforms.

The two classical approaches to construction of concurrent systems are
shared memory and message passing. In the shared memory model, a piece of
real, virtual, or conceptual memory is simultaneously made available to more
than one entity, which share accessing and modifying its contents through
atomic read/write or store/load operations. In the message-passing model,
entities communicate and synchronize by explicit exchange of messages.

In the shared memory model, communication is only a side effect of the
timing of the memory access operations that its subscribing entities perform,
and of the delay patterns induced by the inherent synchronization imposed
by their atomicity. Participation of an entity in any specific exchange, and
the whole communication protocol, are strongly influenced by ephemeral tim-
ing dependencies. These dependencies are equally likely to arise out of er-
rors, (lucky or unfortunate) coincidences, or subtle implicit ordering and data
dependencies that emerge from the global semantics of an application. The
shared memory model inherently supports indirect, anonymous communica-
tion among participating entities whose activities are decoupled from one
another in the temporal domain. But communication is not always explicitly
obvious in shared memory models.

Communication is the primary concern in message passing models, and
the synchronization involved, if any, is only a side effect of what it takes to
realize communication. There are indeed many substantially different variants
of message passing. Messages can be targeted or untargeted and the exchange
of a message may or may not involve a synchronizing rendezvous between
its sender and receiver. Object oriented programming ties the semantics of
message passing together with method invocation. This further complicates
the semantics of message passing by implicating the semantics of the invoked
method and the states of the entities involved in its execution. For instance,
when an object invokes a method m of another object, o, it expects o to
perform something “meaningful” as suggested by the name of the method m.
The (future) state of the calling object may depend on the fulfillment of this
expectation, which itself involves assumptions about the actual semantics of
the method m, as well as the state of the object o.

While each of the variants of shared memory and message passing commu-
nication models is useful for construction of concurrent systems, composition
of systems involving many active entities raises a number of issues that go

Computing and Interaction 19

beyond concerns for communication of their constituent entities. We address
this in the next section.

5 Composition

From houses and bridges to cars, aircraft, and electronic devices, complex
systems are routinely constructed by putting simpler pieces together. This
holds for software construction as well. We call a software construction com-
positional (with respect to a set of properties) only if the properties of the
resulting system can be defined as a composition of the properties of its con-
stituent parts. For instance, given the memory requirements Mp and Mq of
two programs p and q, the memory requirement of a system constructed by
composing p and q can be computed as a composition of Mp and Mq (e.g.,
Mp + Mq, max(Mp, Mq), etc., depending on how they are composed). On the
other hand, the deadlock-freedom property of a system composed out of p
and q cannot always be derived as a composition of the deadlock-freedom
properties of p and q.

According to one trivial interpretation of this definition, all software con-
struction is compositional: every complex piece of software eventually consists
of some composition of a set of primitive instructions, and in principle, its
properties can always be derived by applying its relevant rules of composition
to the properties of those primitives. This is precisely how one formally de-
rives the semantic properties of relatively simple programs from those of their
primitive instructions. However, this trivial interpretation of compositionality
quickly becomes uninteresting and useless for complex concurrent systems,
for the same reason that deriving interesting properties of a complex piece
of mechanical machinery from those of its constituent atoms is intractable.
With only a smidgen of exaggeration, one can say that attempting to derive
the dynamic run-time behavior of such software in this way is as hopelessly
misguided as trying to derive the properties of a running internal combustion
engine from an atomic particle model of the engine, its fuel, air, and electricity.

To be useful, our definition of compositionality must be augmented with
appropriate definitions of “its constituent parts” and “the properties” that
we are interested in. Both of these notions are manifestations of abstraction.
Instead of considering individual primitive instructions as the constituents of
a complex system, we must identify parts of the system such that each part
consists of a (large) collection of such primitives whose precise number and
composition we wish to abstract away as internal details of that part. The
properties of a collection of primitive instructions that are abstracted away
as internal details of a part, versus those that are exposed as the properties
of the part, play a crucial role in defining the effectiveness of an abstraction
and the flexibility of a composition. The more properties we hide, the more
effective an abstraction we have, allowing more freedom of choice in selecting
the precise collection or sequence of instructions that comprise an implemen-

20 F. Arbab

tation of a part. On the other hand, the less properties we expose, the less
of an opportunity we leave for individual parts to affect and be affected by
the exposed properties of other parts. This, in turn, restricts the possibility
of influencing the role that a given part can play in different compositions.

To identify the exposed properties of a part that can and cannot be in-
fluenced through its composition with other parts, we distinguish between
its behavior versus its semantics. To show the usefulness of this distinction,
consider a simple adder as a (software) part (for instance, consider this adder
as a process, an agent, an object, a component, etc.). This adder takes two
input values, x and y, and produces a result, z, which is the sum of x and y.
For this adder to be useful, it must expose its property of how it relates the
values x, y, and z, that is z = x + y. We call this the semantics of the adder
because it reflects the meaning of what it does. In addition to this semantics,
successful composition of this adder as a part in any larger system requires the
knowledge of certain other properties of the adder that must also be exposed.
For instance, we need clear answers to the following questions:

• Does the adder consume x and y in a specific order, or does it consume
whichever arrives first?

• Does it consume x and y only when both are available?
• Does it consume x and y atomically, or in separate steps that can poten-

tially be interleaved with other events?
• Does it produce z in a separate step, with possible interleaving of other

events, or does it compute and produce z atomically together with:
– the atomic consumption of both x and y, or
– the consumption of x or y, whichever is consumed last?

The answers to such questions define the (externally observable) behavior
of the adder, above and beyond its mere semantics. It is clear that even in
the simple case of our trivial adder, different alternative answers to the above
questions are possible, which means we can have different adders, each with its
own different (externally observable) behavior, all sharing (or implementing)
the same semantics, i.e., z = x + y.

The distinction between behavior and semantics is important in compo-
sition of all concurrent systems. However, it becomes essential in concurrent
systems where autonomy, anonymity, and reuse of parts comprise a primary
concern. Such is the case for a system composed of interacting machines,
which we contend serves as the best model for component-based concurrent
software. Components are expected to be independent commodities, viable
in their binary forms in the (not necessarily commercial) marketplace, devel-
oped, offered, deployed, integrated, and maintained, by separate autonomous
organizations in mutually unknown and unknowable contexts, over long spans
of time. It is impossible to determine the properties of a system composed out
of a set of components without explicit knowledge of both (1) the relevant
behavioral properties of the components, and (2) the composition scheme’s
rules that affect those properties.

Computing and Interaction 21

Traditional schemes for composition of software parts into more complex
systems rely on variants of procedure call (including method invocation of
object oriented models). Typically, each such scheme specifies much of the
extra-semantic properties of the behavior of the composed system by pre-
defining aspects of composition such as the (non)atomicity of the call and its
return result, synchronization points, permissible concurrency, etc. This lim-
its composition alternatives and restricts the possible behavior that can be
obtained by composing a given set of software part to the choices prescribed
in that scheme. Moreover, composition through procedure calls requires an in-
timate familiarity of the caller with the semantics of the called procedure (or
method), which creates an asymmetric semantic dependency between the two.
This semantic dependency, together with the unavailability of (or stringent
restrictions on) the means to control the extra-semantic behavioral properties
of a software composition at its composition time, severely limit the range
of possible variations that can be composed out of the same set of software
parts, which in turn limits the reusability of those software parts.

Component composition is expected to be more flexible than other forms
of software composition, such as module interconnections, method invoca-
tions, or procedure calls. It is expected to allow the same components to
play different roles in different compositions. This flexibility requires the abil-
ity to influence the behavior of components at the time of their composition
and places the emphasis in composition on interaction. Coordination models
and languages [22] address precisely the issues involved in managing the in-
teractions among the constituents of a concurrent system into a coherently
coordinated cooperation. However, the different mechanisms that various co-
ordination models offer to manage interaction do not all equally support the
increased level of flexibility required in component composition.

In the chapter “Composition of Interacting Computations” in this book,
we present a brief overview of coordination models and languages and offer
a framework for their classification. We then describe a specific model, called
Reo [23], that uniquely uses interaction as its only primitive concept for com-
positional construction of component coordination protocols.

6 Discussion

The classical notion of computing was forged to formalize and study the al-
gorithmic aspects of computing mathematical functions. Real computers do
more than compute mathematical functions; they also interact. Interaction is
an increasingly important aspect of the behavior of our modern (hardware
and software) computing devices, which often act as agents that engage and
communicate with other agents in the real world. Interaction is also the key
concern in the composition of complex computing systems out of independent
building block components that often run concurrently with one another. The
model of interaction machines extends the notion of computing, as what real

22 F. Arbab

computing devices do, beyond the classical notion of computing, as algorith-
mic evaluation of mathematical functions.

Our society increasingly relies on computing devices not only as number
crunchers and symbol manipulators, but more importantly, as mediators and
facilitators of interaction. Models of computation that incorporate interaction
as a primitive concept on a par with that of algorithmic computing form
the foundation for study, understanding, and reliable construction of modern
computing.

References

1. Thornton, J.: Design of a Computer: The Control Data 6600. Scott, Foresman
and Company, 1970.

2. Penrose, R.: The Emperor’s New Mind. Oxford University Press, 1990.
3. Wegner, P.: Interaction as a basis for empirical computer science. ACM Com-

puting Surveys 27, 1995, pp. 45–48.
4. Wegner, P.: Interactive foundations of computing. Theoretical Computer Sci-

ence 192, 1998, pp. 315–351.
5. Wegner, P., Goldin, D.: Computation beyond Turing machines. Communica-

tions of the ACM 46, 2003.
6. Wegner, P., Goldin, D.: Coinductive models of finite computing agents. In: Proc.

Coalgebraic Methods in Computer Science (CMCS). Volume 19 of Electronic
Notes in Theoretical Computer Science (ENTCS), Elsevier, 1999.

7. van Leeuwen, J., Wiedermann, J.: On the power of interactive computing. In van
Leeuwen, J., Watanabe, O., Hagiya, M., Mosses, P.D., Ito, T., eds.: Proceedings
of the 1st International Conference on Theoretical Computer Science — Explor-
ing New Frontiers of Theoretical Informatics, IFIP TCS’2000 (Sendai, Japan,
August 17-19, 2000. Volume 1872 of LNCS. Springer-Verlag, Berlin-Heidelberg-
New York-Barcelona-Hong Kong-London-Milan-Paris-Singapore-Tokyo, 2000,
pp. 619–623.

8. van Leeuwen, J., Wiedermann, J.: Beyond the turing limit: Evolving interactive
systems. In Pacholski, L., Ruicka, P., eds.: SOFSEM 2001: Theory and Practice
of Informatics: 28th Conference on Current Trends in Theory and Practice of
Informatics. Volume 2234 of Lecture Notes in Computer Science. Springer-
Verlag, 2001, pp. 90–109.

9. Wegner, P., Goldin, D.: Interaction, computability, and church’s thesis. British
Computer Journal, 2005 (to appear).

10. van Leeuwen, J., Wiedermann, J.: A Theory of Interactive Computation. In:
[24], 2006.

11. Goldin, D., Smolka, S., Attie, P., Sonderegger, E.: Turing machines, transition
systems, and interaction. Information and Computation Journal 194, 2004, pp.
101–128.

12. Hoare, C.: Communicating Sequential Processes. Communications of the ACM
21, 1978.

13. Hoare, C.: Communicating Sequential Processes. Prentice Hall International
Series in Computer Science. Prentice-Hall, 1985.

Computing and Interaction 23

14. Milner, R.: Communication and Concurrency. Prentice Hall International Series
in Computer Science. Prentice Hall, 1989.

15. Bergstra, J., Klop, J.: Process algebra for synchronous communication. Infor-
mation and Control 60, 1984, pp. 109–137.

16. Milner, R.: Elements of interaction. Communications of the ACM 36, 1993, pp.
78–89.

17. INMOS Ltd.: OCCAM 2, Reference Manual. Series in Computer Science.
Prentice-Hall, 1988.

18. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language
LOTOS. Computer Networds and ISDN Systems 14, 1986, pp. 25–59.

19. (PVM) http://www.csm.ornl.gov/pvm.
20. (MPI) http://www-unix.mcs.anl.gov/mpi/.
21. (CORBA) http://www.omg.org.
22. Papadopoulos, G., Arbab, F.: Coordination models and languages. In Zelkowitz,

M., ed.: Advances in Computers – The Engineering of Large Systems. Volume 46.
Academic Press, 1998, pp. 329–400.

23. Arbab, F.: Reo: A channel-based coordination model for component composi-
tion. Mathematical Structures in Computer Science 14, 2004, pp. 329–366.

24. Goldin, D., Smolka, S., Wegner, P., eds.: Interactive Computation: The New
Paradigm. Springer-Verlag, 2006 (this volume).

Principles of Interactive Computation

Dina Goldin and Peter Wegner

Brown University, Providence, RI, USA

Summary. This chapter explores the authors’ 10-year contributions to interactive
computing, with special emphasis on the philosophical question of how truth has
been used and misused in computing and other disciplines. We explore the role of
rationalism and empiricism in formulating true principles of computer science, pol-
itics, and religion. We show that interaction is an empiricist rather than rationalist
principle, and that rationalist proponents of computing have been the strongest op-
ponents of our belief that interaction provides an empirical foundation for both com-
puter problem solving and human behavior. The rationalist position was adopted
by Pythagoras, Descartes, Kant, and many modern philosophers; our interactive
approach to computing suggests that empiricism provides a better framework for
understanding principles of computing.

We provide an empirical analysis of questions like “can machines think”, and
“why interaction is more powerful than algorithms”. We discuss persistent Tur-
ing machines as a model of sequential interaction that formally proves the greater
power of interaction over algorithms and Turing machines. We explain that the
Strong Church–Turing Thesis, formulated by theorists in the 1960s, violates Tur-
ing’s original thesis about unsolvability of the decision problem and is a myth, in
the sense that it departs from the principles of Turing’s unsolvability result in his
1936 paper. Our analysis contributes to the book’s goals towards the acceptance
of interactive computing as a principle that goes beyond Turing machine models of
computer problem solving.

1 Scientific, Political, and Religious Truth

Alan Turing’s 1936 paper “On computable numbers with an application to
the Entscheidungsproblem (decision problem)” [12] played a central role in the
1960s in establishing a mathematical paradigm of computation. Turing’s goal
was to show that Hilbert’s decision problem was unsolvable in the sense that
computers could not prove the truth or falsity of mathematical theorems. His
paper strengthened Godel’s earlier proof that mathematical theorems were
not provable by logic, and weakened the belief in strong mental mathematical

26 D. Goldin and P. Wegner

ability, showing that human mathematical theorem proving through logic or
computing was mentally incomplete.

However, such weakness in modeling mathematics was unwelcome to math-
ematical thinkers who believed that human reasoning could completely express
mathematical ideas about the world. They believed that mathematics was a
widespread scientific method for reasoning about physics and computation
and that human thought provided a basis for scientific, philosophical, polit-
ical, and religious understanding. They reinterpreted Turing’s paper proving
that computers could not solve all mathematical theorems, wrongly assert-
ing that computers could in fact solve all computable problems (including
mathematical problems), and that all computation could be done by Tur-
ing machines through algorithmic solution methods. Though Turing clearly
showed this to be untrue, the desire to believe that computers and rationalist
humans could solve a complete range of problems was so strong that Turing’s
counterarguments could easily be brushed aside and ignored.

There are many applications where humans consider it more important
to adopt and justify principles rather than to prove them true. This is so
in politics, where politicians have tenaciously preserved dubious principles in
order to consolidate their power, regardless of whether the principles are true
or ethical. This occurred in Germany under Hitler’s Nazi principles, which he
retained as a justification for dominating Germany and Europe until he was
defeated in a costly war. It occurred under Stalin, who used Communist prin-
ciples to eliminate his adversaries until he was himself eliminated, and more
recently under Saddam Hussein and other democratically elected dictators. It
has led to a decline of European scientific principles about the world in favor
of extraneous political ideas.

Religions also seek to retain strongly established a priori beliefs indepen-
dently of their truth. Christianity, Judaism, and Islam preserve their belief in
God and in the validity of biblical texts that distinguish their religion from
other religions, and can eliminate and kill nonbelievers simply because their
beliefs differ, independently of their truth. Truth is adjusted so that religious
belief is inherently true and is used to destroy alternative ideas about society
independently of the truth or falsity of religious or secular ideas. For exam-
ple it is appropriate to discredit Darwin’s evolution theory because it negates
the biblical account of creation in spite of its experimental validity, just as
Copernican and Galilean models were discredited three hundred years earlier.

The questionable manipulation of truth in politics and religion is widely
acknowledged, but is nevertheless accepted and practiced by particular polit-
ical and religious organizations. Scientists have assumed that truth is more
often falsified by philosophical experts than by scientific researchers, but care-
ful analysis shows that this is not always the case and that truth claims among
scientists like Newton and Einstein, or mathematicians like Hilbert, can be as
false as the truth claims of political and religious experts. Newtonian physics
was assumed indubitably true for 200 years until modified by Einstein’s the-
ory of relativity, while Descartes philosophical assumption that “Cogito Ergo

Principles of Interactive Computation 27

Sum” is indubitably true is seen in retrospect as a questionable assumption
that has been used to support many untrue beliefs on the basis of rationalist
principles that can be easily disproved by empiricism.

2 Rationalism Versus Empiricism

Rationalism holds that truth is determined by the human mind in terms of
“a priori” (predetermined) insight about knowledge, while empiricism holds
that knowledge is confirmed only by experience of actual perceptions that
determine knowledge. Rationalism implies that people can strongly advocate
scientific, political, or religious knowledge through “a priori” mental properties
of the brain that are inherently true and cannot be changed by experiments,
while empiricism implies that experiments are more effective than predeter-
mined a priori properties of the brain in determining scientific, political, or
religious knowledge. Since rationalists believe humans have smarter forms of
understanding than do empiricists, and can ignore empirical forms of knowl-
edge, rationalism is often adopted as a broader and more complete form of
knowledge, even though it can support wrong and sometimes disastrous prin-
ciples.

The adoption of rationalism by Pythagoras as an a priori basis for math-
ematical truth led to its adoption by Plato, who focused on geometry as a
central rationalist discipline whose a priori truth implied that a priori prin-
ciples were a central justification of human knowledge. Aristotle accepted
Plato’s rationalist view of truth, though his idea of the syllogism was in part
empiricist (Socrates mortality was due to the empirical fact that all men are
mortal). Though some scientists and philosophers accepted empiricism, the
much greater practical power of rationalism helped to establish its role as a
primary basis for knowledge about the world and society. This was strength-
ened by the choice of rationalism as a primary basis for religious beliefs like
the existence of God, and the truth of biblical narrative (which could not be
proved by empiricism though easily acceptable through rationalism).

St. Augustine (fifth century) and St. Thomas Aquinas (thirteenth century)
developed rationalist philosophical models of religion that redefined Christian
beliefs in ways that are still accepted today. Descartes is considered the world’s
greatest modern philosopher primarily because his Jesuit upbringing allowed
him to define philosophy in terms of rationalist religious principles at a time
when it was being questioned both by scientists like Galileo and by religious
dissenters like Martin Luther. Newton solidified scientific principles of Galileo,
but spent the last 30 years of his life studying religion. Detailed analysis
of philosophers like Descartes and Kant makes it clear that the basis for
acceptance of philosophical ideas had more to do with their contributions
to religious thought than with their inherent truth or the strength of their
arguments.

28 D. Goldin and P. Wegner

Locke, Berkeley, and Hume are among the few widely studied empiricist
philosophers who contributed substantially to human and political thought.
All three were strongly challenged by rationalist opponents, but contributed
to the strength of British and US politics though not to European politics.
Locke had to flee to Holland during the short Catholic reign of James II
(1685–88) to avoid imprisonment and potential death in the Tower of London
as a Protestant dissenter. His ideas contributed to the power of the British
Parliament, to the Bank of England, and to the US Constitution. His essay
on religious toleration, written while in exile in Holland to support toleration
between Protestants and Catholics, was used in the US Constitution to sup-
port separation of church and state. Locke’s contributions to both the growth
and power of the British empire and the rise of US democracy suggests that
empiricism properly applied can contribute to both the quality and the per-
sistence of political democracies.

Though empiricism has enhanced both scientific research and political
democracy, it could not displace rationalism in European politics or in
widespread religious beliefs. Kant’s early work was influenced by Hume’s em-
piricism, but his later written Critique of Pure Reason was strongly rationalist,
advocating a priori knowledge over experiment as a basis for acceptance of
reason and truth. Kant’s model led to the rationalist philosophy of Hegel,
which in turn influenced the communist rationalism of Marx and the Nazi
rationalism of Hitler. Contemporary politicians like US president Bush are
strongly rationalist, using a priori political and religious certainty to support
principles like the war in Iraq or the sanctity of marriage in contradicting
empiricist assertions about human nature raised by their opponents.

Mathematicians have traditionally believed that mathematics is justified
by rationalist rather than empiricist principles because properties of numbers,
geometry, and equations are a priori and therefore rational. Hilbert’s assump-
tion that all mathematical assertions could be logically proved was considered
an a priori idea, and its empirical disproof by Godel and Turing was con-
sidered suspect because empiricism should not intrude on a priori inherently
rationalist principles. Turing’s proof that computers could not automatically
decide all mathematical theorems was likewise an empiricist disproof of an
a priori rationalist idea, and the fast and loose idea that Turing machines
can solve all computable problems was a return from empiricist to previously
accepted rationalist a priori results.

The choice of interaction as a computational extension of Turing machines
can be viewed as an empiricist model of computing associated with Turing’s
original empiricist assertion. The strong resistance to this view is in part due
to the idea that empiricist models should not intrude on a priori rationalist
assumptions about the nature of computation. It is for this reason that we have
begun this chapter with a philosophical discussion of the role of empiricism
and rationalism in processes of computation and human thought.

Principles of Interactive Computation 29

3 Turing’s 90th Birthday

Turing was born in 1912 and died tragically in 1954 around his 42nd birthday,
committing suicide because he was being prosecuted by the police as a homo-
sexual. His 90th birthday conference in Lausanne in 2002 yielded a book about
his life and legacy [11] with articles by Andrew Hodges, Martin Davis, Daniel
Dennett, Jack Kopeland, Ray Kurzweil, and many other writers including the
editor Christof Teuscher and the authors of this chapter.

Andrew Hodges, author of a comprehensive book on Turing, reviews his
life and examines what Turing might have contributed had he lived longer.
Copeland explores Turing’s contributions to artificial intelligence, artificial
life, and the Turing Test of whether machines can think. Teuscher explores
his contributions to neural networks and unorganized machines. The authors
show that Turing’s contributions are much broader than Turing machines, and
include interaction as a super-Turing model that Turing had already examined
through choice machines, oracles, and unorganized machines.

Several writers used this opportunity to explore the pros and cons of hyper-
computation as an extension of Turing machines. Martin Davis claimed that
hypercomputation simply shows that noncomputable inputs may yield non-
computable outputs and that all computable problems can in fact be solved by
Turing machines. We show that algorithms can express only a subset of com-
putable problems and that interaction provides a framework for expressing
non-algorithmic problems and extending Turing machine models.

Turing machines and algorithms must completely specify all inputs be-
fore they start computing, while interaction machines [17] can add actions
occurring during the course of the computation. Driving home from work is
an example of a computation where actions observed during the course of
driving must be included in deciding how to drive and is therefore an exam-
ple of an interactive non-algorithmic computation. Drivers must observe the
road conditions, the cars in front of them, the traffic lights, and pedestrians
crossing the street in order to decide how to drive and whether to change
the speed or the direction of driving. This eliminates a predefined algorithmic
specification of exactly how and where to drive and shows that interaction is
more expressive than algorithms in the context of driving home.

Other similar extensions of interactive over algorithmic specification in-
clude operating systems, managing a company, fighting opponents in a war,
or even aiding one’s partner in a marriage. Interactive computations are more
powerful than algorithmic computations of Turing machines in many practical
situations that occur frequently in computing. Their power does not depend
on the quality of prior inputs as suggested by Martin Davis, but it does de-
pend on the degree to which the environment can be observed and acted upon
during the course of the computation.

30 D. Goldin and P. Wegner

4 Can Machines Think?

Turing in his 1950 paper “Machinery and intelligence” [14] suggests that intel-
ligence should be defined by the ability of machines to respond to questions
exactly like humans, so that their ability to think and understand cannot
be distinguished from that of humans. Turing not unexpectedly equated “ma-
chines” with “Turing machines”. He permitted machines to delay their answer
to mimic the slower response time of humans in games or mathematical com-
puting, but did not consider that machines can sometimes be inherently slower
than humans, or require hidden interfaces from agents or oracles when they
answer questions.

Skeptics who believe that machines cannot think can be divided into two
classes:

- intentional skeptics who believe that that machines that simulate
thinking cannot think, because their behavior does not completely
capture inner (intentional) awareness or understanding;
- extensional skeptics who believe that machines have inherently
weaker extensional behavior than humans, because they cannot com-
pletely model physics or consciousness.

Searle is an intentional skeptic who argues that passing the test intentionally
did not constitute thinking because competence did not constitute inner un-
derstanding, while Penrose [7] asserts that machines are not extensionally as
expressive as physical or human mental models.

We agree with Penrose that Turing machines cannot model the real world,
but disagree that this implies extensional skepticism because interaction ma-
chines can model physical behavior of the real world and mental behavior of
the brain. Our assertion that interaction is more powerful than algorithms
implies not only greater computing power but also greater thinking power of
interactive machines.

Penrose builds an elaborate house of cards on the noncomputability of
physics by Turing machines. However, this house of cards collapses if we ac-
cept that Turing machines do not model all of computation. Penrose’s argu-
ment that physical systems are subject to elusive noncomputable laws yet to
be discovered is wrong, since interaction is sufficiently expressive to describe
physical phenomena like action at a distance, nondeterminism, and chaos,
which Penrose cites as examples of physical behavior not expressible by com-
puters. Penrose’s error in equating Turing machines with the intuitive notion
of computing is similar to Plato’s identification of reflections on the walls of
a cave with the intuitive richness of the real world. Penrose is s self-described
Platonic rationalist whose arguments based on the acceptance of Church’s the-
sis are disguised forms of rationalism, denying first-class status to empirical
models of interactive computation.

Penrose’s dichotomy between computing on the one hand and physics and
cognition on the other is based on a misconception concerning the nature of

Principles of Interactive Computation 31

computing that was shared by the theorists of the 1960s and has its roots in the
rationalism of Plato and Descartes. The insight that the rationalist/empiricist
dichotomy corresponds to algorithms and interaction and that “machines”
can model physics and cognition through interaction, allows computing to
be classified as empirical along with physics and cognition. By identifying
interaction as an ingredient that distinguishes empiricism from rationalism
and showing that interaction machines express empirical computer science,
we can show that the arguments of Plato, Penrose, and rationalist computer
scientists of the 1960s are rooted in a common fallacy concerning the role of
noninteractive algorithmic abstractions in modeling computation in the real
world.

5 Why Interaction is More Powerful than Algorithms

The paper by this title [16] was a primary early attempt to explore the distinc-
tion between algorithms and interaction. It was widely praised by practical
programmers but criticized by mathematical rationalists who believed that
Turing machines express all forms of problem solving and computation. How-
ever, algorithms yield outputs completely expressible by memoriless, history-
independent inputs, while interactive systems like personal computers, airline
reservation systems, and robots provide history-dependent services over time
that can learn from and adapt to experience.

Algorithms are “sales contracts” that deliver outputs in exchange for an
input, while interactive system specifications are “marriage contracts” that
specify their behavior for all contingencies (in sickness and in health) over the
lifetime of the object (till death do us part). The folk wisdom that marriage
contracts cannot be reduced to sales contracts is made precise by showing
that interaction cannot be reduced to algorithms.

Interaction provides a better model than Turing machines for object-
oriented programming. Objects are interactive agents that can remember their
past and provide time-varying services to their clients not expressible by al-
gorithms. It is fashionable to say that everyone talks about object-oriented
programming but no one knows what it is. But knowing what it is has proved
elusive because of the implicit assumption that explanations must specify
what it is by algorithms, that excludes specifyng what it is through interac-
tion. The better explanation of computational behaviors through interaction
is similar to that used in better expressing the notion “can machines think”,
and occurs also in many other descriptions of computing.

Interactive extensions of Turing machines through dynamic external envi-
ronments can be called interaction machines. Interaction machines may have
single or multiple input streams, synchronous or asynchronous actions, and
can differ along many other dimensions. Interaction machines transform closed
to open systems and express behavior beyond that computable by algorithms
in the following ways:

32 D. Goldin and P. Wegner

Claim: Interaction machine behavior is not expressible by Turing machine
behavior.

Informal evidence of richer behavior: Turing machines cannot handle the pas-
sage of time or interactive events that occur during computation.

Formal evidence of irreducibility: Input streams of interaction machines are
not expressible by finite inputs, since any finite representation can be
dynamically extended by uncontrollable adversaries.

The radical view that Turing machines are not the most powerful comput-
ing mechanism has a distinguished pedigree. It was accepted by Turing who
assumed in 1936 that choice machines were not expressible by Turing machines
and showed in 1939 that oracles for predicting noncomputable functions were
not Turing machines. Milner noticed as early as 1975 that concurrent pro-
cesses cannot be expressed as algorithms, while Manna and Pnueli showed in
1980 that nonterminating reactive processes like operating systems cannot be
modeled by algorithms.

Input and output actions of processes and objects are performed with
logical sensors and effectors that change external data. Objects and robots
have very similar interactive models of computation: robots differ from objects
only in that their sensors and effectors have physical rather than logical effects.
Interaction machines can model objects, software engineering applications,
robots, intelligent agents, distributed systems, and networks like the Internet
and the World-Wide Web.

6 Theory of Sequential Interaction

The hypothesis that interactive computing agents are more expressive than
algorithms requires fundamental assumptions about models of computation
to be reexamined. What are the minimal extensions necessary to Turing ma-
chines to capture the salient aspects of interactive computing? This question
serves as a motivation for a new model of computation called persistent Turing
machines (PTMs), introduced by Goldin et al. [3]; van Leeuwen and Wieder-
mann’s chapter in this book provides a related model, with similar motiva-
tions [15]. PTMs allow us to formally prove Wegner’s hypothesis regarding
the greater expressiveness of interaction.

PTMs are interaction machines that extend Turing machine semantics in
two different ways, with dynamic streams and persistence, capturing sequen-
tial interactive computations. A PTM is a nondeterministic three-tape Turing
machine (N3TM) with a read-only input tape, a read/write work tape, and
a write-only output tape. Its input is a stream of tokens (strings) that are
generated dynamically by the PTM’s environment during the computation.

A PTM computation is an infinite sequence of macrosteps; the i’th
macrostep consumes the i’th input token ai from the input stream, and pro-
duces the i’th output token for the output stream. Each macrostep is an

Principles of Interactive Computation 33

N3TM computation consisting of multiple N3TM transitions (microsteps),
just as each input and output token is a string consisting of multiple charac-
ters. The input and output tokens are temporally interleaved, resulting in the
interaction stream {(a1, o1), (a2, o2), ...}. This stream represents the observed
behavior of the PTM during the computation.

PTM computations are persistent in the sense that a notion of “memory”
(work-tape contents) is maintained from one macrostep to the next. Thus
the output of each macrostep oi depends both on the input ai and on the
work tape contents at the beginning of the macrostep. However, the contents
of the worktape is hidden internally, and is not considered observable. Thus
this contents is not part of interaction streams, which only reflect input and
output (observable) values.

Persistence extends the effect of inputs. An input token affects the com-
putation of its corresponding macrostep, including the work tape. The work
tape in turn affects subsequent computation steps. If the work tape were
erased, then the input token could not affect subsequent macrosteps, but only
“its own” macrostep. With persistence, a macrostep can be affected by all
preceeding input tokens; this property is known as history dependence.

Three results concerning the expressiveness of PTMs are discussed below.
The first result is that the class of PTMs is isomorphic to interactive tran-
sition systems (ITSs), which are effective transition systems whose actions
consist of input/output pairs, thereby allowing one to view PTMs as ITSs “in
disguise”. This result addresses an open question concerning the relative ex-
pressive power of Turing machines and transition systems. It has been known
that transition systems are capable of simulating Turing machines. The other
direction, namely “What extensions are required of Turing machines so they
can simulate transitions systems?”, is solved by PTMs.

The second result is the greater expressiveness of PTMs over amnesic
Turing machines (ATMs), which are a subclass of PTMs that do not have
persistence, in effect by erasing their work tape. ATMs extend Turing ma-
chines with dynamic streams but without memory. An example is a squaring
machine, whose input and output are streams of numbers; at i’th macrostep,
if the input number is ai, the output is its square a2

i . While some have found
it tempting to think that only dynamic streams are needed to model interac-
tion, such as [9], our results show that persistence (memory) is also necessary.
Furthermore, since ATMS are an extension of Turing machines, the strictly
greater expressiveness of PTMs over ATMs also implies that PTMs are more
expressive than Turing machines.

The third result proves the existence of a universal PTM; similarly to a
universal Turing machine, a universal PTM can simulate the behavior of any
arbitrary PTM.

PTMs perform sequential interactive computations, defined as follows:

Sequential Interactive Computation: A sequential interactive computation
continuously interacts with its environment by alternately accepting an

34 D. Goldin and P. Wegner

input string and computing a corresponding output string. Each output-
string computation may be both nondeterministic and history-dependent,
with the resultant output string depending not only on the current input
string, but also on all previous input strings.

PTMs do not capture all forms of interactive computation. Interaction
encompasses nonsequential computation as well, specifically multistream, or
multiagent, computation [17]. However, examples of sequential interactive
computation abound, including Java objects, static C routines, single-user
databases, and network protocols. A “simulator PTM” can be constructed for
each of these examples, similarly to the construction of the universal PTM.
The result is a sequential interactive analogue to the Church–Turing thesis,
stating that PTMs capture all sequential interaction:

Sequential Interaction Thesis: Any sequential interactive computation can be
performed by a persistent Turing machine.

This hypothesis establishes the foundation of the theory of sequential in-
teraction, with PTMs and ITSs as its alternative canonical models of com-
putation. Since PTMs are more expressive than amnesic TMs and Turing
machines, this theory represents a more powerful problem-solving paradigm
than the traditional theory of computation (TOC), confirming the conjecture
that “interaction is more powerful than algorithms”. We also expect that this
theory will prove as robust as TOC, with appropriate analogues to fundamen-
tal TOC concepts such as logic and complexity.

7 The Church–Turing Thesis Myth

The greater expressiveness of interaction over Turing machines is often viewed
as violating the Church–Turing thesis (CTT). This is a misconception, due to
the fact that the Church–Turing thesis has been commonly reinterpreted;
we call this reinterpretation the Strong Church–Turing thesis (SCT). In this
section, we show that the equivalence of the two theses is a myth; a longer
discussion can be found in [4]. Our work disproves SCT, without challenging
the original Church–Turing thesis.

The Church–Turing thesis, developed when Turing visited Church in
Princeton in 1937–38 and included in the opening section of [13], asserted
that Turing machines and the lambda calculus could compute all algorithms
for effectively computable, recursive, mathematical functions.

Church–Turing thesis (CTT): Whenever there is an effective algorithm for
computing a mathematical function it can be computed by a Turing ma-
chine or by the lambda calculus.

While effectiveness was a common notion among mathematicians and lo-
gicians of early twentieth century, it lacked a formal definition. By identifying

Principles of Interactive Computation 35

the notion of effective function computability with the computation of Tur-
ing machines (as well as the lambda calculus and recursive functions), the
Church–Turing thesis serves to provide a formal definition in the case of effec-
tive computation of functions, based on transformations of inputs to outputs.
However this thesis was extended in the 1960s to a broader notion of com-
putability, which we call the Strong Church–Turing thesis.

Strong Church–Turing thesis (SCT): A Turing machine can compute any-
thing that any computer can compute. It can solve all problems that
are expressible as computations (well beyond computable functions).

While the Church–Turing thesis is correct, this later version is not equiv-
alent to it; in fact, PTMs prove it wrong. Since they are inequivalent, a proof
that SCT is wrong does not challenge the original thesis. However, the Strong
Church–Turing thesis is still widely accepted as an axiom that underlies the-
oretical computer science, and establishes a mathematical principle for com-
puting analogous to those underlying physics and other sciences.

The equivalence of the Strong Church–Turing thesis to the original is a
myth, clearly refuted by interactive models of computation. The widespread
acceptance of this myth rests on the following beliefs:

1. All computable problems are mathematical problems expressible by func-
tions from integers to integers, and therefore captured by Turing machines.

2. All computable problems can be described by algorithms (the primary
form of all computation).

3. Algorithms are what computers do.

The first of these beliefs views computer science as a mathematical dis-
cipline. According to this world-view, mathematics strengthens the form of
computing just as it has strengthened scientific models of physics and other
disciplines. Though Turing was educated as a mathematician, he did not share
the mathematical world-view [1]. However, mathematicians like Martin Davis,
Von Neumann, Karp, Rabin, Scott, and Knuth accepted the mathematical
ideas of Pythagoras, Descartes, Hilbert, and others that mathematics was an
a priori rationalist principle that lay at the root of philosophy and science.
They ignored Godel and Turing’s proofs that mathematics was too week to
be a universal problem solving principle in favor of the old a priori belief that
mathematics was at the foundation of science in general and computer science
in particular.

The second of these beliefs positions algorithms at the center of computer
science; it ties the first and the third beliefs together, resulting in the Strong
Church–Turing thesis. This central position of algorithms was a deliberate
historical development of the 1960s, when the discipline of computer science
was still in its formative stages. While there was an agreement on the strong
role of algorithms, there was no agreement on their definition; two distinct and
incompatible interpretations can be identified. The first interpretation, found
in Knuth [5], defines algorithms as function-based transformations of inputs

36 D. Goldin and P. Wegner

to outputs; the second, found in less theoretical textbooks such as [8], defines
them as abstract descriptions of the behavior of a program. Yuri Gurevich’s
chapter in this book [2] also reflects this second view of algorithms.

While the former interpretation of the notion of algorithm is consistent
with the rationalist approach of the first belief, the latter interpretation is
consistent with the empiricist approach of the third belief. The incompatibility
of these interpretations pulls apart the three beliefs, bringing down the Strong
Church–Turing thesis.

Hoare, Milner, and other Turing award winners realized in the 1970s that
Turing machines do not model all problem solving, but believed it was not
yet appropriate to challenge TMs as a complete model of computation. They
separated interaction from computation, thereby avoiding the view that inter-
action was an expanded form of computation, raised by Wegner in 1997 [16].

The interactive view of computation is now widely accepted by many pro-
grammers, but is strongly disputed by adherents of the Turing machine model
who regard the interaction model as an unnecessary and unproven paradigm
shift. We believe it is now appropriate to accept the legitimacy of interactive
models of computation, since new applications of agents, embedded systems,
and the Internet expand the role of interaction as a fundamental part of com-
putation.

8 Conclusion

Interaction provides an expanded model of computing that extends the class
of computable problems from algorithms computable by Turing machines to
interactive adaptive behavior of airline reservation systems or automatic cars.
The paradigm shift from algorithms to interaction requires a change in modes
of thought from a priori rationalism to empiricist testing that impacts scien-
tific models of physics, mathematics, or computing, political models of human
behavior, and religious models of belief. The substantive shift in modes of
thought has led in the past to strong criticism by rationalist critics of em-
piricist models of Darwinian evolution or Galilean astronomy. Our chapter
goes beyond the establishment of interaction as an extension of algorithms
computable by Turing machines to the question of empiricist over rationalist
modes of thought.

This chapter contributes to goals of this book by establishing interaction as
an expanded form of computational problem solving, and to the exploration
of principles that should underlie our acceptance of new modes of thought
and behavior. Our section on persistent Turing machines (PTMs) examines
the proof that sequential interaction is more expressive than Turing machine
computation, while our section on the Church–Turing thesis shows that the
Strong version of this thesis, with its assumption that Turing machines com-
pletely express computation, is both inaccurate and a denial of Turing’s 1936
paper.

Principles of Interactive Computation 37

Our chapter has been influenced by Russell’s History of Western Philos-
ophy [10], whose articles on Descartes, Kant, and other philosophers support
our philosophical arguments, and by Kuhn, whose book on scientific revolu-
tions [6] supports the view that paradigm changes in scientific disciplines may
require changes in modes of thought about the nature of truth.

References

1. E. Eberbach, D. Goldin, P. Wegner. Turing’s Ideas and Models of Computation.
In Alan Turing: Life and Legacy of a Great Thinker, ed. Christof Teuscher.
Springer 2004.

2. Y. Gurevich. Interactive Algorithms 2005. In current book.
3. D. Goldin, S. Smolka, P. Attie, E. Sonderegger. Turing Machines, Transition

Systems, and Interaction. Information & Computation J., Nov. 2004.
4. D. Goldin, P. Wegner. The Church-Turing Thesis: Breaking the Myth. LNCS

3526, Springer, June 2005, pp. 152-168.
5. D. Knuth. The Art of Computer Programming, Vol. 1: Fundamental Algorithms.

Addison-Wesley, 1968.
6. T. S. Kuhn. The Structure of Scientific Revolutions. University of Chicago

Press, 1962.
7. R. Penrose. The Emperor’s New Mind, Oxford, 1989.
8. J. K. Rice, J. N. Rice. Computer Science: Problems, Algorithms, Languages,

Information and Computers. Holt, Rinehart and Winston, 1969.
9. M. Prasse, P. Rittgen. Why Church’s Thesis Still Holds - Some Notes on Peter

Wegner’s Tracts on Interaction and Computability, Computer Journal 41:6,
1998, pp. 357–362.

10. B. Russell. History of Western Philosophy. Simon and Schuster, 1945.
11. C. Teuscher, editor. Alan Turing: Life and Legacy of a Great Thinker. Springer

2004
12. A. Turing. On Computable Numbers, with an Application to the Entschei-

dungsproblem, Proc. London Math. Soc., 42:2, 1936, pp. 230-265; A correction,
ibid, 43, 1937, 544–546.

13. A. Turing. Systems of logic based on ordinals, Proc. London Math. Soc., 45:2,
1939, 161–228.

14. A. Turing. Computing Machinery and Intelligence, Mind, 1950.
15. J. van Leeuwen, J. Wiedermann. A Theory of Interactive Computation. In

current book.
16. P. Wegner. Why Interaction is More Powerful Than Algorithms. Comm. ACM,

May 1997.
17. P. Wegner. Interactive Foundations of Computing. Theoretical Computer Sci-

ence 192, Feb. 1998.

Part II

Theory

A Theory of System Interaction: Components,
Interfaces, and Services

Manfred Broy

Institut für Informatik, München, Germany

Summary. We study models, specification, and refinement techniques of dis-
tributed interactive software systems composed of interfaces and components. A
theory for the interaction between such systems is given. We concentrate on the in-
teraction between systems and their environments as well as the interaction between
the components of systems. We show how to model interfaces and interactions by
logical formulas in the style of design by contract, by state machines, and streams of
messages and signals. This leads to a theory interface abstraction of systems, which
is essential for an interaction view. In particular, we treat interaction refinement.
We introduce a service concept that is purely based on interaction.

1 Introduction: Basics of a Theory of Interaction

Today’s systems are distributed and connected by networks. Typically systems
are decomposed into a family of components that are distributed and interact
by exchanging messages. Such systems show a number of interfaces to the
outside world such as user interfaces or interfaces to other system. Also the
interaction between a system and its environment is carried out by message
exchange.

A scientifically based modular development of this type of systems requires
a mathematical theory. Such a theory aims at a clear notion of interaction, of
an interactive component and of ways to manipulate and to compose interac-
tions and components.

In this chapter, we outline a theory and a mathematical model of interac-
tions and components with the following characteristics:

• A system interacts with its environment by message exchange via input
and output channels.

• An interaction is a pattern of messages on channels.
• Interaction takes place in a time frame.
• A system can be decomposed into a distributed family of subsystems called

components or represented by a state machine with input and output.

42 M. Broy

• A component is again a system and interactive.
• A component interacts with its environment exclusively by its interface

formed by named and typed channels. Channels are communication links
for asynchronous, buffered message exchange.

• A component encapsulates a state that cannot be accessed from the outside
directly.

• A component receives input messages from its environment on its input
channels and generates output messages to its environment on its output
channels.

• A component can be underspecified and thus nondeterministic. This means
that for a given input history there may exist several output histories
representing possible reactions of the component.

• The interaction between the component and its environment takes place
concurrently in a global time frame. In the model, there is a global notion
of time that applies both to the component and its environment.

• Each system can be used as a component again in a large system; systems
can be formed hierarchically.

• An interaction can be refined.
• A component offers a set of services.
• A service is a set of patterns of interactions.

Throughout this chapter we work exclusively with a simple model of discrete
(also called sparse) time. Discrete time is a satisfactory model for most of the
typical applications of digital information processing systems.

Our approach is based on a model that incorporates a number of simple
assumptions about systems. In addition to the ones mentioned above we are
working with the following assumptions that are significant for our semantic
model:

• We strictly distinguish input from output.
• We assume a notion of causality between input and output.
• We assume that causality is reflected by the timing model.

Based on the ideas of an interactive component we define forms of composi-
tion. We basically introduce only one powerful composition operator, namely
parallel composition with interaction.

For establishing a relation between interactions and services interaction
refinement. These notions of refinement typically occur in a systematic top
down system development.

2 Central Model of Interaction: Streams

A stream is a finite or infinite sequence of elements of a given set. In interactive
systems streams are built over sets of messages or actions. Streams are used
that way to represent interaction patterns by communication histories for
channels or histories of activities.

A Theory of System Interaction: Components, Interfaces, and Services 43

2.1 Types of Models for Interactive Systems

There are many different theories and fundamental models of interactive sys-
tems. Most significant for them are their paradigms of interaction and com-
position. We identify three basic concepts of communication in distributed
systems that interact by message exchange:

• Asynchronous communication (message asynchrony): a message is sent as
soon as the sender is ready, independent of the fact whether a receiver is
ready to receive it or not. Sent messages are buffered (by the communica-
tion mechanism) and can be accepted by the receiver at any later time; if
a receiver wants to receive a message but no message was sent it has to
wait. However, senders never have to wait (see [18], [21]) until receivers
are ready since messages may be buffered.

• Synchronous communication (message synchrony, rendezvous, handshake
communication): a message can be sent only if both the sender and the
receiver are simultaneously ready to communicate; if only one of them
(receiver or sender) is ready for communication, it has to wait until a
communication partner gets ready (see [15], [16]).

• Time synchronous communication (perfect synchrony): several interaction
steps (signals or atomic events) are conceptually gathered into one time
slot; this way systems are modeled with the help of sequences of sets of
events (see [6] as a well-known example).

In the following, we work with asynchronous message passing since this
model has fine properties for our purpose. We follow the system model given
in [11] basing our approach on a concept of a component that communicates
messages asynchronously with its environment via named channels within a
synchronous time frame.

2.2 Types, Streams, Channels and Histories

A type is a name for a set of data elements. Let TYPE be the set of all types.
With each type T ∈ TYPE we associate a set CAR(T) of data elements.
CAR(T) is called the carrier set for T.

By ID we denote a set of identifiers. A typed identifier is a pair (x, T)
consisting of an identifier x ∈ ID and a type T ∈ TYPE. We write also x : T
to express that the identifier x has type T.

We use the following notation:

M∗ denotes the set of finite sequences over M including the empty
sequence 〈 〉,

M∞ denotes the set of infinite sequences over M (that are represented
by the total mappings IN → M).

44 M. Broy

By

Mω × M∗ ∪ M∞

we denote the set of streams of elements taken from the set M. Streams of
elements from M are finite or infinite sequences of elements of the set M.

By 〈 〉 we denote the empty stream m. The set of streams has a rich alge-
braic and topological structure. We introduce concatenation ˆ as an operator:

Mω × Mω → Mω

On finite streams concatenation is defined as usual on finite sequences x, y ∈
M*:

〈 x1 . . . xn〉ˆ 〈 y1 . . . ym〉 = 〈 x1 . . . xny1 . . . ym〉
where 〈 x1 . . . xn〉 denotes a finite sequence of length n with x1,. . . , xn as its
elements. For infinite streams

r, s: IN → M

we define sˆx, xˆs, sˆr to be infinite streams as follows:

ŝ x = s,
ŝ r = s,
[〈x1 . . . xn〉̂ s](t) =

{
xt if t ≤ n
s(t + n) otherwise

We may see finite streams as partial functions IN → M and infinite streams
as total functions.

Based on concatenation we introduce the prefix order � prefix as a relation
on streams s, r ∈ Mω

s � r ⇔def ∃ z ∈ Mω: sˆz = r

(Mω,�) is a partially ordered set with 〈 〉 as its least element, complete in the
sense that every chain xt ∈ Mω: t ∈ IN has a least upper bound.

A stream represents the sequence of messages sent over a channel during
the lifetime of a system. Of course, in concrete systems this communication
takes place in a time frame. Hence, it is often convenient to be able to refer to
this time. Moreover, as we will see the theory of feedback gets much simpler.
Therefore we work with timed streams.

Streams are used to represent histories of communications of data messages
transmitted within a time frame. Given a message set M of type T we define
a timed stream by a function

s: IN → M*

For each time t the sequence s(t) denotes the sequence of messages communi-
cated at time t in the stream s. The set of all timed streams forms the carrier
set of type Stream T.

The t-th sequence s.t in a timed stream s ∈ (M∗)∞represents the sequence
of messages appearing on a channel in the t-th time interval or, if the stream

A Theory of System Interaction: Components, Interfaces, and Services 45

represents a sequence of actions, the sequence of actions executed in the t-th
time interval.

Throughout this chapter we work with a couple of simple basic operators
and notations for streams and timed streams respectively that are summarized
below:

〈 〉 empty sequence or empty stream,
〈m〉 one-element sequence containing m as its only element
x.t t-th element of the stream x,
#x length of the stream x,
xˆz concatenation of the sequence x to the sequence or stream z,
x↓t prefix of length t of the stream x,
S c©x stream obtained from x by deleting all its messages that are not

elements of the set S,
S#x number of messages in x that are elements of the set S,
x finite or infinite stream that is the result of concatenating all

sequences in the timed stream x. Note that x is finite if x carries
only a finite number of nonempty sequences.

In a timed stream x ∈ (M∗)∞we express at which times which messages
are transmitted. As long as the timing is not relevant for a system it does
not matter if a message is transmitted a bit later (scheduling messages earlier
may make a difference with respect to causality—see later). To take care of
this we introduce a delay closure. For a timed stream s ∈ (M∗)∞ we define the
set x↑ of timed streams that carry the same stream of messages but perhaps
with some additional time delay as follows:

x↑ = {x′ ∈ (M∗)∞: ∀ t ∈ IN: x′ ↓ t � x ↓ t ∧ x = x′}
Obviously we have

x ∈ x↑
and for each x′ ∈ x↑ we have x′↑ ⊆ x↑ and x = x′. The set x↑ is called the
delay closure for the stream x. The delay closure is easily extended to sets of
streams as follows (let S ⊆ (M∗)∞)

S↑ =
⋃

s∈S s↑
We may also consider timed streams of states to model the traces of state-

based system models (see [12]). In the following, we restrict ourselves to mes-
sage passing systems and therefore to streams of messages, however.

Throughout this chapter, we use streams exclusively to model the com-
munication histories of sequential communication media called channels. In
general, in a system several communication streams occur. Therefore we work
with channels to refer to individual communication streams. Accordingly, in
Focus, a channel is simply an identifier in a system that evaluates to a stream
in every execution of the system.

46 M. Broy

A channel is an identifier for streams. A channel is a name of a stream.
Formally it is an identifier of type Stream T with some type T. The concept of
a stream is used to define the concept of a channel history. A channel history
is given by the messages communicated over a channel.

Definition. Channel history
Let C be a set of channels; a channel history is a mapping (let IU be the

universe of all data elements)

x : C → (IN → IU*)

such that x.c is a stream of type Type(c) for each c ∈ C. Both by IH(C) as
well as by

−→
C the set of channel histories for the channel set C is denoted. ��

All operations and notation introduced for streams generalize in a straight-
forward way to histories applying them element wise. Given two disjoint sets
C and C′ of channels with C ∩ C′ = ∅ and histories z ∈ IH(C) and z′ ∈ IH(C′)
we define the direct sum of the histories z and z′ by (z⊕z′) ∈ IH(C ∪ C′). It
is specified as follows:

(z⊕z′).c = z.c ⇐ c ∈ C, (z⊕z′).c = z′.c ⇐ c ∈ C′

The notion of a stream is essential for defining the behavior of components
as shown the following chapter.

3 Components and Services

In this section we introduce the syntactic and semantic notion of a component
interface and that of a service. Since services are partial functions, a suggestive
way to describe them are assumption/commitment specifications. We show
how the notion of a service is related to state machines. State machines are
one way to describe services.

We closely follow the Focus approach explained in all its details in [14].
It provides a flexible modular notion of a component and of a service, too.

3.1 Specification of Components

An I/O-behavior represents the behavior of a component. Using logical means,
an I/O-behavior F can be described by a logical formula Φ relating the streams
on the input channels to the streams on the output channels. In such a formula
channel identifiers occur syntactically as identifiers (variables) for streams of
the respective type. The specifying formulas are interpreted in the standard
way of typed higher order predicate logic (see [4]).

An abstract interface specification of a component provides the following
information:

• its syntactic interface, describing how the component interacts with its
environment via its input and output channels;

A Theory of System Interaction: Components, Interfaces, and Services 47

• its behavior by a specifying formula Φ relating input and output channel
valuations.

This leads to a specification technique for components (see [14] for lots of
examples). In Focus we specify a component by a scheme of the following
form:

‹name›

in ‹input channels›

out ‹output channels›

 ‹specifying formula›

The shape of the scheme is inspired by well-known specification approaches
like Z (see [22]).

Example. Transmission, merge and fork
As simple but quite fundamental examples of components we specify a

merge component MRG, a transmission component TMC, and a fork compo-
nent FRK. In the examples let T1, T2, and T3 be types (recall that in our
case types are simply sets) where T1 and T2 are assumed to be disjoint and
T3 is the union of the sets of elements of type T1 and T2. The specification of
the merge component MRG (actually the specification relies on the fact that
T1 and T2 are disjoint which should be made explicit in the specification in
a more sophisticated specification approach) reads as follows:

MRG

in x: T1, y: T2

out z: T3

x = T1 z y = T2 z

In this specification we do not consider the time flow and therefore refer
only to the time abstractions of the involved streams. As a result we get a
time independent specification The causality of the time flow is considered in
detail in the following subsection.

We specify the proposition x ∼ y for timed streams x and y of arbitrary
type T; x ∼ y is true if the messages in x are a permutation of the messages
in y. Formally we define by the following logical equivalence:

x ∼ y ≡ (∀ m ∈ T: {m} c©x = {m} c©y)

Based on this definition we specify the component TMC.
Often it is helpful to use certain channel identifiers both for input channels

and for output channels. These are then two different channels, which may
have different types. To distinguish these channels in the specifying formulas,

48 M. Broy

we use a well-known notational trick. In a specification it is sometime con-
venient to use the same channel name for an input as well as for an output
channel. Since these are different channels with identical names we have to
distinguish them in the body of a specification. Hence, in the body of a spec-
ification, we write for a channel c that occurs both as input and as output
channel simply c to denote the stream on the input channel c and c′ to denote
the stream on the output channel c. Thus in the following specification z is
the outside name of the output channel z and z′ is its local name.

TMC

in z: T3

out z: T3

 z ~ z'

This simple specification expresses that every input message is forwarded
eventually also as output message, and vice versa. Nothing is specified about
the timing of the messages. In particular, messages may be arbitrarily de-
layed and overtake each other. If no restriction is added output messages may
even be produced earlier than they are received. This paradox is excluded by
causality in the following section.

The following component FRK is just the “inversion” of the component
merge. Its specification reads as follows.

FRK

in z: T3

out x: T1, y: T2

x = T1 z

y = T2 z

Note that the merge component MRG as well as the TMC component and
the fork component FRK as they are specified here are “fair”. Every input is
eventually processed and reproduced as output. ��

Based on the specifying formula given in a specification of an I/O-behavior
F we may prove properties about the function F.

3.2 Interfaces, I/O-Behaviors, Time, and Causality

In this section we introduce a theory of component behaviors and interface
abstraction. Then we discuss issues of time and causality.

A Theory of System Interaction: Components, Interfaces, and Services 49

3.2.1 Interfaces

We start with a syntactic, “static” view on components in terms of syntactic
interfaces and continue with a more semantic view.

Definition. Syntactic interface
Let I = {x1 : IT1, ... , xm : ITm} be a set of typed input channels and

O = {y1 : OT1, ... , yn : OTn} be the set of typed output channels. The pair
(I, O) characterizes the syntactic interface of a component. By (I �O) this
syntactic interface is denoted. ��

The syntactic interface does not say much about the behavior of a compo-
nent. It basically only fixes the basic steps of information exchange possible
for the component and its environment.

Definition. Semantic interface
A component interface (behavior) with the syntactic interface (I �O) is

given by a function

F :
−→
I → ℘(

−→
O)

For each input x ∈ −→I we denote by F.x the output histories that may be
returned for the input history x. The set F.x can be empty. ��

By this definition we basically define a relation between input and output
histories. We do not distinguish semantically so far between input and output.
In the next section we introduce the notion of causality as an essential semantic
differentiation between input and output.

3.2.2 Causality

For input/output information processing devices there is a crucial dependency
of output from input. Certain output messages depend on certain input mes-
sages. A crucial notion for interactive systems is therefore causality. Causality
indicates dependencies between the messages exchanged within a system.

So far I/O-behaviors are nothing but relations represented by set valued
functions. In the following we introduce and discuss the notion of causality
for I/O-behaviors.

I/O-behaviors generate their output and consume their input in a time
frame. This time frame is useful to characterize causality between input and
output. Output that depends causally on certain input cannot be generated
before this input has been received.

Definition. Causality
An I/O-behavior F :

−→
I → ℘(

−→
O) is called causal (or properly timed), if for

all times t ∈ IN we have

x↓t = z↓t ⇒ (F.x)↓t = (F.z)↓t ��

50 M. Broy

F is causal if the output in the t-th time interval does not depend on input
that is received after time t. This ensures that there is a proper time flow for
the component modeled by F.

If F is not causal, there exists a time t and input histories x and x′ such
that x↓t = x′↓t holds but (F.x)↓t �= (F.x′)↓t. A difference between x and x′

occurs only after time t but at time t the reactions of F in terms of output
messages are already different.

Nevertheless, causality permits instantaneous reaction [6]: the output at
time t may depend on the input at time t. This may lead into problems
with causality between input and output, if we consider in addition delay free
feedback loops known as causal loops. To avoid these problems we either have
to introduce a sophisticated theory to deal with such causal loops for instance
by domain theory and least fixpoints or we strengthen the concept of proper
time flow to the notion of strong causality.

Definition. Strong causality
An I/O-behavior F is called strongly causal (or time guarded), if for all

times t ∈ IN we have

x↓t = z↓t ⇒ (F.x)↓t+1 = (F.z)↓t+1 ��
If F is strongly causal then the output in the t-th time interval does not

depend on input that is received after the (t−1)-th time interval. Then F is
strongly causal and in addition reacts to input received in the (t−1)-th time
interval not before the t-th time interval. This way causality between input
and output is guaranteed.

A function f:
−→
I → −→

O is called strongly causal (and properly timed respec-
tively) if the deterministic I/O-behavior F:

−→
I → ℘(

−→
O) with F.x = f.x for all

x ∈ −→I has the respective properties.
By �F� we denote the set of strongly causal total functions f:

−→
I → −→

O ,
with f.x ∈ F.x for all input histories x ∈ −→I .

3.2.3 Realizability

A nondeterministic specification F defines a set �F� of total deterministic
behaviors. A specification is only meaningful if the set �F� is not empty. This
idea leads to the following definition.

Definition. Realizability
An I/O-behavior F is called realizable, if there exists a strongly causal total

function f:
−→
I → −→

O such that

∀ x ∈ −→I : f.x ∈ F.x. ��
A strongly causal function f:

−→
I → −→

O provides a deterministic strategy to
calculate for every input history a particular output history which is correct
with respect to F. Every input x↓t till time point t fixes the output till time

A Theory of System Interaction: Components, Interfaces, and Services 51

point t+1 and in particular the output at time t+1. Actually f essentially
defines a deterministic automata with input and output.

Obviously, partial I/O-behaviors are not realizable. But there are more
sophisticated examples of behaviors that are not realizable. Consider for in-
stance the following example of a behavior F:

−→
I → ℘(

−→
I) that is not realizable

(the proof of this fact is left to the reader, a proof is given in [14]):

F.x = {x′ ∈ −→I : x �= x′}

Note that F.x is strongly causal.

Definition. Full realizability
An I/O-behavior F is called fully realizable, if it is realizable and if for all

input histories x ∈ −→I :

F.x = f.x: f ∈ �F�

holds. ��
Full realizability guarantees that for every output histories there is a strat-

egy (a deterministic implementation) that computes this output history. In
fact, nondeterministic state machines are not more powerful than sets of de-
terministic state machines.

3.2.4 Time Independence

All the properties of I/O-behavior defined so far are closely related to time. To
characterize whether the timing of the messages is essential for a component
we introduce notions of time dependencies of components. Time independence
expresses that the timing of the input histories does not restrict the choice
of the messages but at most their timing in the output histories. We give a
precise definition of this notion as follows.

Definition. Time independence
An I/O-function F is called time independent, if for all its input histories

x, x′ ∈ −→I

x = x′ ⇒ F.x = F.x′

holds. ��
Time independence means that the timing of the input histories does not

influence the messages produced as output. We use this notion also for func-
tions

f:
−→
I → −→

O

By analogy, f is time independent, if for all its input histories x, x′ ∈ −→I

x = x′ ⇒ f.x = f.x
′

holds.

52 M. Broy

Definition. Time independent realizability
An I/O-behavior F is called time independently realizable, if there exists a

time independent, time guarded total function f:
−→
I → −→

O such that

∀ x ∈ −→I : f.x ∈ F.x ��

By �F�ti we denote the set of time guarded, time independent total func-
tions f:

−→
I → −→

O , where f.x ∈ F.x for all input histories x ∈ −→I .

Definition. Full time independent realizability
An I/O-behavior F is called fully time independently realizable, if it is time

independent and time independently realizable and if for all input histories
x ∈ −→I :

F.x = {f.x: f ∈ �F�ti} ��
Full time independent realizability guarantees that for all output histories

there is a strategy that computes this output history and does not use the
timing of the input.

Our component model has a built-in notion of time. This has the advantage
that we can explicitly specify timing properties. However, what if we want to
deal with systems where the timing is not relevant? In that case we use a
special subclass of specifications and components called time permissive.

Definition. Time permissivity
An I/O-behavior F is called time permissive, if for all input histories

x ∈ −→I :

F.x = (F.x)↑ ��
This means that for every output history y ∈ F.x any delay is tolerated

but not acceleration since this may lead to conflicts with causality.
If we want to specify a component for an application that is not time

critical, the I/O-behavior should be fully time independently realizable and
time permissive. This means that

• the timing of the input does not influence the timing of the output,
• the timing of the output is only restricted by causality, but apart from

that any timing is feasible.

This way we specify components for which time is only relevant with re-
spect to causality. This corresponds to functions that are fully time indepen-
dently realizable and time permissive. Such components are easily specified
by predicates that refer only to the time abstractions of the streams on the
channels.

A Theory of System Interaction: Components, Interfaces, and Services 53

3.3 Inducing Properties on Specifications

A specifying formula for a component with the set of input channels I and the
set of output channels O defines a predicate

p:
−→
I × −→O → IB

This predicate defines an I/O-behavior (not taking into account causality)

F:
−→
I → ℘(

−→
O)

by the equation (for x ∈ −→I)

F.x = {y ∈ −→O : p(x, y)}
For a component specification, we also may carefully formulate the speci-

fying formula such that the specified I/O-behavior fulfills certain of the prop-
erties such as causality or time independence as introduced above. Another
option is to add these properties, if wanted, as schematic requirements to spec-
ifications. This is done with the help of closures for specified I/O-behaviors
F. By closures with a given I/O-behavior either the inclusion greatest or the
inclusion least I/O-behavior is associated that has the required property and
is included in the I/O-behavior F or includes the I/O-behavior F, respectively.
We demonstrate this idea for strong causality.

3.3.1 Imposing Causality

Adding strong causality as a requirement on top of a given predicate p spec-
ifying the I/O-behavior F leads to a function F′ that is strongly causal. F′

is to guarantee all the restrictions expressed by the specifying predicate p
and by strong causality but not more. Following this idea F′ is defined as the
inclusion greatest function F′ where F′.x ⊆ F.x for all input histories x such
that F′ is strongly causal and y ∈ F′.x implies p(x, y). This characterization
leads to the following recursive definition for the function F′ written in the
classical way that is commonly used to define a closure.

Definition. Causality restriction
Given an I/O-behavior F the causality restriction F′ is the inclusion great-

est function such that the following equation holds:

F′.x = {y ∈ −→O : p(x, y) ∧ ∀ x′ ∈ −→I , t ∈ IN :
x↓t = x′↓t ⇒ ∃ y′ ∈ F′.x′: y↓t+1 = y′↓t+1}

Since the right-hand side of this equation is inclusion monotonic in F′ this
definition is proper. ��

Obviously, the behavior F′ is included in F, since y ∈ F′.x implies p(x,
y) and thus y ∈ F.x. In other words, F′.x = F′.x for all histories x. Since
the formula to the right of this equation is inclusion monotonic in F′ such a
function exists and is uniquely determined.

54 M. Broy

Theorem. Causality restriction is strongly causal
For every I/O-behavior F its causality restriction F′ is strongly causal.

Proof. Given

y ∈ F′.x ∧ x↓t = x′↓t
we conclude by the definition of F′:

∃ y′ ∈ −→O : y′↓t+1 = y↓t+1 ∧ y′ ∈ F′.x′

Thus we obtain

(F′.x)↓t+1 ⊆ (F′.x′)↓t+1

Vice versa if

y′′ ∈ F′.x′

then by x↓t = x′↓t we get

∃ y′ ∈ −→O : y′′↓t+1 = y′↓t+1 ∧ y′ ∈ F′.x

Thus we obtain

(F′.x′)↓t+1 ⊆ (F′.x)↓t+1

Hence

(F′.x)↓t+1 = (F′.x′)↓t+1

which shows that F′ is strongly causal. ��
Note that the causality restriction F′ may be the trivial function F′.x =

∅ for all x ∈ −→I , if there is a contradiction between strong causality and the
specifying predicate p. An example is given the following. We abbreviate for
a given function F the causality restriction by TG[F].

Example. Conflict with strong causality
Consider the specification

CTG

in x: T1

out y: T1

 t IN: x.t+1 = y.t

The component CTG is required to show at time t always as output what
it receives as input at time t+1. This specification is obviously in conflict with
strong causality.

Adding strong causality as a requirement to CTG we derive for every input
history x and every output history y:

A Theory of System Interaction: Components, Interfaces, and Services 55

[∀ t ∈ IN:x.t+1 = y.t]
∧ ∀ t ∈ IN, x′ ∈ (T1∗)∞: x↓t = x′↓t ⇒ ∃ y′: y↓t+1 = y′↓t+1
∧ ∀ t ∈ IN: x′.t+1 = y′.t

If we choose x.t+1 �= x′.t+1 (assuming T1 �= ∅) we get by the formula

x.t+1 = y.t = y′.t = x′.t+1

which is a contradiction to the assumption x.t+1 �= x′.t+1. Thus there does
not exist any output history for TG[CTG] if we assume causality. ��

If an I/O-behavior F is strongly causal, then obviously F = TG[F]. But
also in some other cases TG[F] can be easily identified. If a function F′′ defined
as follows:

F′′.x = y: p(x, y) ∧ ∀ x′ ∈ −→I , t ∈ IN:
x↓t = x′↓t ⇒ ∃ y′ ∈ −→O : y↓t+1 = y′↓t+1 ∧ p(x′, y′)

fulfills the defining equation for TG[F], then F′′ is the required function, that
is F′′ = TG[F]; otherwise, TG[F].x ⊆ F′′.x for all x.

Example. Transmission component
Consider the transmission component TMC given in the example above.

In this case we have p(x, y) = (x.z ∼ y.z), where z is the only channel for the
histories x and y and x.z and y.z are the streams for channel z. Adding strong
causality to the specification TMC we get the function (with I = {z})

TG[TMC].x = y: p(x, y) ∧ ∀ t ∈ IN, x′ ∈ −→I :
x↓t = x′↓t ⇒ ∃ y′: y↓t+1 = y′↓t+1 ∧ p(x′, y′)

From this we easily prove the formula

y ∈ TG[TMC].x ⇒ ∀ m ∈ T3, t ∈ IN:
#{m} c© x.z ↓ t ≥ #{m} c© y.z ↓ t + 1

which expresses that at every point in time t the number of messages in y at
time t+1 is less or equal to the number of messages m in x at time t. This
formula is a simple consequence of the fact that for each input history x and
each time t we can find an input history x′ such that

x.z ↓ t = x′z ↓ t

and

x′.z ↓ t = x′z

x′z is the finite sequence of messages in x.z ↓ t. For all y′ ∈ TG[TMC].x′ we
have y′ ∼ x′. Moreover, for y ∈ TG[TMC].x there exists y′ ∈ TG[TMC].x′

with y↓t+1 = y′↓t+1. We get for all m ∈ T3:

#{m} c©y.z ↓ t + 1

= #{m} c©yÕ.z ↓ t + 1
≤ #{m} c©y′z

56 M. Broy

= #{m} c©x′z
= #{m} c©x.z ↓ t ��
Strong causality is an essential property both for the conceptual modeling

aspects and for the verification of properties of specifications. Strong causality
models the causal dependencies between input and output and in this way the
asymmetry between input and output

For time permissive, strongly causal systems there is a strong relationship
to prefix monotonicity for nontimed streams. By causality we also rule out
the merge anomaly (see [7]).

3.3.2 A Short Discussion of Time and Causality

As pointed out above, notions like time independence and time permissive-
ness, and strong causality are logical properties that can either be added as
properties to specifications explicitly or proved for certain specifications. It is
easy to show for instance that MRG, TMC, and FRK are time permissive. If
we add strong causality as a requirement then all three specified I/O-behaviors
are fully realizable.

We may add also other properties of I/O-behaviors in a schematic way to
specifications. For instance, adding time permissiveness can be interpreted as
a weakening of the specification by ignoring any restrictions with respect to
timing. We define for an I/O-behavior F a time permissive function F′ by the
equation

F′.x = (F.x)↑

As pointed out, we do not require that an I/O-behavior described by a
specification has always all the properties introduced above. We are more
liberal and allow for more flexibility. We may add specific properties to speci-
fications freely (using key words, see [14]) whenever appropriate and therefore
deal in a schematic way with all kinds of specifications of I/O-behaviors and
timing properties.

A special case of I/O-behaviors is partial functions, which are functions
that for certain input histories have an empty set of output histories. Note
that partial functions are never realizable. An extreme case of partiality is
a function that maps every input history onto the empty set. Partial I/O-
behaviors are not interesting when used for modeling the requirements for an
implementation of a component, since an implementation shows at least one
output history for each input history.

Let us investigate the case where F.x = ∅ holds for a component with
behavior F for some input history x, If we assume strong causality. In this
case, since x↓0 = 〈 〉 for all streams x, we get x↓0 = z↓0 for all streams z and
since we assume F.x = ∅ we get

{y↓1: y ∈ F(x)} = ∅

A Theory of System Interaction: Components, Interfaces, and Services 57

by causality since {y↓1: y ∈ F(x)} = {y↓1: y ∈ F(z)}

{y↓1: y ∈ F(z)} = ∅

holds we get F.z = ∅ for all histories z. Therefore, the result of the application
of a strongly causal function is either empty for all its input histories or F is
“total”, in other words F.x �= ∅ for all x. In the first case we call the interface
function inconsistent. In the latter case we call the interface function total.

Thus also intuitively partial I/O-behaviors are never realizable. However,
partial functions may be of interest as intermediate steps in the specification
process, since based on these functions we construct other functions that are
not partial and more adequate for composition and implementation. We come
back to that under the keyword services.

3.4 Services

A service has a syntactic interface like a component. Its behavior, however,
is “partial” in contrast to the totality of a component interface. Partiality
here means that a service is defined only for a subset of its input histories
according to its syntactic interface. This subset is called the service domain
(see [13], [17]).

Definition. Service interface
A service interface with the syntactic interface (I �O) is given by a func-

tion

F :
−→
I → ℘(

−→
O)

that fulfills the timing property only for the input histories with nonempty
output set (let x, z ∈ −→I , y ∈ −→O , t ∈ IN):

F.x �= ∅ �= F.z ∧ x↓t = z↓t ⇒
{y↓t+1: y ∈ F(x)} = {y↓t+1: y ∈ F(z)}

The set

Dom(F) = {x: F.x �= ∅}

is called the service domain. The set

Ran(F) = {y ∈ F.x: x ∈ Dom(F)}
is called the service range. By

IF[I �O]

we denote the set of all service interfaces with input channels I and output
channels O. By IF we denote the set of all interfaces for arbitrary channel sets
I and O. ��

In contrast to a component, where the causality requirement implies that
for a component F either all output sets F.x are empty for all input histories

58 M. Broy

x or none, a service may be a partial function. To get access to a service, in
general, certain access conventions have to be observed. We speak of a service
protocol. Input histories x that are not in the service domain do not fulfill the
service access assumptions. This gives a clear view: a nonparadoxical compo-
nent is total, while a service may be partial. In other words a nonparadoxical
component represents a total service.

O

Service interface

I

Fig. 1. Service interface

A service is close to the idea of a use case in object oriented analysis. It
can be seen as the formalization of this idea. A service provides a partial view
onto a component.

Example. Queue service
A Queue service allows one to store elements of type Data and to request

them in a Queue fashion. We first define the involved data types:

type QIn = req ∪ Data
type QOut = Data

Based on these data types we write the specification template:

 Queue

in x: QIn

out y: QOut

 {req}#x = Data#y y Data x

This is the specification of a partial behavior. If the input stream x has
the form

x = 〈d1〉ˆ〈req〉ˆ〈req〉ˆ〈d2〉ˆ〈req〉ˆ. . .

then the condition for x cannot be made valid. There is no output history
that fulfils the specification. We may characterize the set of input histories in
the service domain as follows:

Queue Aspt(x) = ∃ y : Stream Qout: {req}#x = Data#y ∧ y � Data c©x

A Theory of System Interaction: Components, Interfaces, and Services 59

The assumption here is:

∀ x′: x′ � x ⇒ req#x ≤ Data#y

This predicate is called the service assumption. ��
The characterization of the service domain can be used in service specifica-

tions by formulating assumptions about the input histories; we will elaborate
on this in the next section.

Definition. Splicing
Let F ∈ IF[I � O] and a subset of the input channels I′ ⊆ I and a subset

of the output channels O′ ⊆ O be given, we define a service function

F′ ∈ IF[I′ � O′]

called the splicing of F to the syntactic interface (I′′ �O′) by the specification

F′.x′ = {y|O′: ∃ x: x′ = x|I ∧ y ∈ F.x}
Splicing derives a subinterface from a given service. It is an abstraction of F.
We denote F′ as defined above in this case also by F†(I′ �O′). ��

An easy proof shows that the behavior obtained by F′, the splicing of a
service F, is strongly causal again due to the causality of F and thus F′ is a
service provided F is a service.

3.5 Assumption/Commitment Specification of Services

There are many ways to specify components or services. All techniques for
component specifications (see [14]) can be used for services, in principle, too.
Services can be specified by logical formulas defining the relation between in-
put and output streams, by state machines, or by a set of message sequence
diagrams specifying the dialogue between the service user and the service
provider. In a service dialogue we observe the input and output history be-
tween the service provider and its environment. We assume that only special
input is allowed in such a dialogue.

In the following we discuss in detail an assertion technique for describing
services. Actually, it addresses explicitly the partiality of I/O-functions rep-
resenting the behavior of services. Since a service is represented by a partial
function we put specific emphasis on characterizing its domain.

We discuss two kinds of assertions, input assumptions and output
commitments. Input assumptions speak about the question whether some
input is in conformance to the service dialog. Since the conformance of input
histories to service dialogues may depend also on the previous output his-
tory the input assumptions are predicates with two parameters, which may
be surprising for some readers.

Let F ∈ IF[I �O] be a service and x ∈ IH[I] be an input history; if there
exists an input history x′ ∈ IH[I] such that for a time t ∈ IN

x↓t = x′↓t

60 M. Broy

and y ∈ F.x but there does not exist an output history y′ ∈ F.x′ such that
y↓t = y′↓t then we may conclude, that x↓t is a proper input for output y↓t,
but something in x′ is not. We define for each time t ∈ IN a predicate

At:
−→
I × −→O → IB

by the formula

At(x, y) = ∃ x′ ∈ IH[I], y′ ∈ F.x′: x↓t = x′↓t ∧ y↓t = y′↓t
The formula At+1(x, y) expresses that after input of x↓t that has caused

output y↓t there exists an output y.t for input x.t. At is called the input
assumption at time t. We easily prove for all times t ∈ IN:

At+1(x, y) ⇒ At(x, y)

In addition to At we define a predicate

A:
−→
I → IB

by the formula

A(x) = ∃ y ∈ IH[O]: y ∈ F.x

A is called the input assumption. We easily prove for all t ∈ IN:

A(x) ⇒ ∃ y ∈ IH[O]: At(x, y)

This shows that in the logical sense of implication the predicate A is stronger
than all the predicates At.

Furthermore for each time t ∈ IN we define a predicate

Gt:
−→
I × −→O → IB

by the formula

Gt(x, y) = ∃ x′ ∈ IH[I], y′ ∈ F.x′: x↓t = x′↓t ∧ y↓t+1 = y′↓t+1

Gt is called the output commitment at time t. We easily prove for all times t
∈ IN:

Gt+1(x, y) ⇒ Gt(x, y)

and also

Gt(x, y) ⇒ At(x, y)

Finally we define a predicate

G:
−→
I × −→O → IB

by the formula

G(x, y) = y ∈ F.x

A Theory of System Interaction: Components, Interfaces, and Services 61

G is called the output commitment. We easily prove for all t ∈ IN:

G(x, y) ⇒ Gt(x, y)

and

G(x, y) ⇒ A(x)

Often we are interested to derive the predicates G and A not from the
specification of F but to specify F in terms of the predicates A and G. Then
we speak of an assumption/commitment specification.

Definition. Assumption/commitment specifications
Given the predicates as defined above, we specify the service function F

as follows:

F.x = {y: A(x) ∧ G(x, y)}

and a component F′ by

F′.x = {y: (A(x) ⇒ G(x, y)) ∧ ∀ t ∈ IN: At(x, y) ⇒ Gt(x, y)}

In both cases we speak an assumption/commitment specification of the service
F and the component F′ respectively. ��

In an assumption/commitment specification the assumption A character-
izes for which input histories x the set F.x is empty. More precisely F.x = ∅ if
∀ y: ¬G(x, y). Since G(x, y) ⇒ A(x) we can actually drop A(x) in the service
specification.

Example. Indexed access
Assume we define a component for indexed access to data. We use the

following two types

Type In = put(i:Index, d:Data) | get(i:Index) | del(i:Index)
Type Out = out(d:Data) | fail(i:In) | ack(i:In)

It is specified as follows (using the scheme of [14]):

IndAcc C

in x: In

out z: y: Out

 sel(0, x, y)

Let σ be a mapping

σ: Index → Data ∪ {fail}
where for all i ∈ Index:

σ0(i) = fail

62 M. Broy

We define:

sel(σ, 〈a〉ˆx, 〈b〉ˆy) = [sel(σ′, x, y) ∧ ∃ i : Index, d :Data:
(a = put(i, d) ∧ (b = fail(i) ∨ (b = ack(i) ∧ σ′ = σ[i := d]))

∨ (a = get(i) ∧ σ[i] �= fail ∧ (b = fail(i) ∨ (b = out(d) ∧ d = σ[i]))
∨ (a = del(i) ∧ σ[i := fail]) ∧ b = ack(i)]

where we specify

(σ[i := d])[j] =
{

d if i = j
σ[j] otherwise

This specification expresses that the message get(i) must not be sent if
σ[i] = fail. In all other cases, the answer may be fail. ��

In the definition of assumption/commitment specifications as given above
F′ is a component. The definition of F′ has carefully be done in a way that
makes sure that F′ is total and strongly causal.

Theorem. Consistency of assumption/commitment specification
Let all the definitions be as above. Then F′ is total and strongly causal.

Proof. For every input history x we can construct an output history y ∈ F′.x.
We define y inductively by defining y.k in terms of y.1, . . . , y.k as follows:

y↓0 = 〈〉;

given y↓k we construct y↓k+1 as follows:

If Ak(x, y) holds then there exists a sequence s = y.k+1 such that
Gk(x, y) holds; if ¬Ak(x, y) holds then we can choose y.k+1 arbitrarily.

This construction yields an output history y. We show that F′.x �= ∅. We
consider three cases.

(1) A(x) holds; then by definition there exists y ∈ F.x ⊆ F′.x.
(2) ¬A(x) holds; we consider two subcases

(2a) Ak(x, y) and Gk(x, y) hold for all k; then y ∈ F′.x.
(2b) ¬Ak(x, y) and Ak′(x, y) and Gk′(x, y) for all k′ < k; again by
definition y ∈ F′.x.

It remains to show the strong causality of F′: If x↓k = z↓k then we can
use the same construction as above to construct a history y for x and y′ for z.
If we do the same choices for y.1, . . . , y.k+1 and y′.1, . . . , y′.k+1 yields some
y and y′ where y↓k+1 = y′↓k+1 and y ∈ F′.x and y′ ∈ F′.z. ��

Which input is feasible at a certain time point may depend on the previous
output, the service reaction till that time point. Given an input history x and
an output history y the function

At(x, y)

yields true, if the input till time point t is in conformance with the service
dialogue provided the service output history was y↓t. For nonpardoxical ser-
vices we trivially obtain A0(x, y) = false. This expresses that every input is
incorrect. The service domain is empty.

A Theory of System Interaction: Components, Interfaces, and Services 63

The expression

Gt(x, y)

yields true, if the output y till time point t is correct according to the given
service behavior.

Finally the proposition

A(x)

expresses, that the input history x is a correct input history for the service.
Given a correct input history x the expression

G(x, y)

yields true, if the output y is correct for input x according to the service.
As we will show in the following the notion of partiality and that of input

assumptions is essential for services. We define the chaos closure of a service
F as follows

Fchaos.x = {y: (A(x) ⇒ G(x, y)) ∧ ∀ t ∈ IN: At(x, y) ⇒ Gt(x, y)}
It turns a service into a component. Fchaos is a refinement of F. In fact

it is the least refinement of the service F that is a component. According to
its definition a service F is always strongly causal. Note that a naive chaos
completion by the formula

Fchaosnaive.x = {y: A(x) ⇒ G(x, y)}
would lead to a contradiction to the requirement of strong causality.

From the chaos closure Fchaos we can reconstruct the service F only under
the simple assumption that the formula

At(x, y) ⇒ (∀ y′: y↓t = y′↓t ⇒ Gt(x, y))

is never a tautology for any input history x. In other words, in the service
function F there is no chaotic behavior which means that every input history
x in the service domain actually restricts the output.

For a consistent service, we require a number of healthiness conditions for
the specification of services listed in the following:

• there exists at least one feasible input history and a correct output history
(dom(F) �= ∅)

∃ x, y: A(x) ∧ G(x, y)

• every finite feasible input history can be extended to an infinite feasible
input history

At(x, y) ⇒ ∃ x′, y′: x↓t+1 = x′↓t +1 ∧ y↓t+1 = y′↓t+1 ∧ G(x′, y′)

• for every feasible input history there exists a correct output history

A(x) ⇒ ∃ y: G(x, y)

64 M. Broy

• if there exists an output history y for some input history x the assumption
is fulfilled

G(x, y) ⇒ A(x)

If we construct the assertions A and G as described above from a consistent
service function with a nonempty domain, all these conditions are valid.

Note that the predicates A, G, At and Gt are only of interest for the
component specification but not for the service specification. They can be
extracted from a given service specification.

3.6 State Transition Specifications

Often a component can be described in a well-understandable way by a state
transition machine with input and output.

3.6.1 State Machines

We describe the data state of a transition machine by a set of typed attributes
V that can be seen as program variables. A data state is given by the mapping

η: V →
⋃

v∈V type(v)

It is a valuation of the attributes in the set V by values of the corresponding
type.

−→
V denotes the set of valuations of the attributes in V. In addition, we

use a finite set K of control states. Then each state of the component is a pair
(k, η) consisting of a control state k and a data state η. Σ denotes the set of
all states.

A state machine with input and output (see [20]) is given by a set Λ ⊆
Σ × (O → M∗) of pairs (σ0, y0) of initial states σ0∈ Σ and initial output
sequences y0 ∈ (O → M∗) as well as a state transition function

∆: (Σ × (I → M∗)) → ℘(Σ × (O → M∗))

Given a state σ ∈ Σ and a valuation u: I → M∗ of the input channels
by sequences every pair (σ′, r) ∈ ∆(σ, u) represents a successor state σ′ and
a valuation r: O → M∗ of the output channels representing the sequences
produced by the state transition.

3.6.2 Interface Abstractions for State Machines

The state transition function ∆ induces a function

B∆: Σ → ((O → M∗) → (
−→
I → ℘(

−→
O)))

B∆ provides the black-box view onto the state transition function ∆. For each
state σ ∈ Σ, each initial output y0∈ (O → M∗), each input pattern z ∈ (I →
M∗), and each input channel valuation x ∈ −→I , the black-box function B∆ is
the inclusion maximal solution of the equation

A Theory of System Interaction: Components, Interfaces, and Services 65

B∆(σ, y0).(〈z〉ˆx) =
{〈y0〉ˆy: ∃ σ′ ∈ Σ, r ∈ (O → M∗):(σ′, r) ∈ ∆(σ, z) ∧ y ∈ B∆(σ′, r).x}
Note that the right hand side of the equation above is inclusion monotonic

in B∆. If we add elements to B∆(σ, y0).x the set is also increased. B∆ is
recursively defined by an inclusion monotonic function, which even is guarded.
Hence there exists a unique inclusion maximal solution. B∆(σ, y0) defines an
I/O-behavior for the state σ and the initial output y0, which represents the
behavior of the component described by the state machine ∆ if initialized
by the state σ. Note that B∆(σ, y0) is always fully realizable. Introducing
oracles into the states can prove this leading to a deterministic behavior for
each state.

The guardedness of the recursion guarantees time guardedness of the I/O-
behavior B∆(σ, y0). B∆ generalizes to sets Λ of pairs of states and initial
output sequences:

B∆(Λ).x = y ∈ B∆(σ0, y0): (σ0, y0) ∈ Λ

Based on these definitions we relate state machines and I/O-behavior (see also
[20]).

Given a state transition function ∆ and a set Λ of pairs (σ0, y0) of initial
states σ0∈ Σ and initial output sequences y0∈ (O → M∗), B∆(Λ) provides
the black-box view on the behavior of the state transition machine ∆ for the
set Λ of pairs of states and initial output sequences.

3.6.3 State Transition Diagrams

We describe state machines often by state transition diagrams. A state tran-
sition diagram consists of a number of nodes representing control states and
a number of transition rules represented by labeled arcs between the control
states.

Example. State transition specification
The simple component SWT (switching transmission) receives two input

streams one of that has priority until in one time interval its input is empty,
then the priority changes to the other channel. It has only one attribute val
of sort T3∗. The specification of SWT is given in a graphical style by Fig 2.
A short explanation of the notation is found in [9].

Here the arrow starting from the dot indicates the initial state and initial
output. The component SWT always forwards the input of one of its input
channels until it gets empty. Then it switches to the transmission of the input
on the other channel. ��

In fact, the component SWT can also be specified by predicates on the
input and output streams. This leads, however, to a quite involved specifica-
tion.

A state transition diagram is defined as follows. Given a finite set K of
control states (which are nodes in the state transition diagram) and a set V
of typed attributes our state space Σ is defined by

66 M. Broy

(a)

 y : T2

z : T3 SWT

 x : T1

val : T3*

(b)

x_ Priority y_ Priority

x: a, y: ‹› / z: valˆa {val' = ‹›}

x: ‹›, y: b / z: valˆb {val' = ‹›}

{a ° ‹›} x: a, y: b / z: a {val' = valˆb} {b ° ‹›} x: a, y: b / z: b {val' = valˆa}

 z: ‹› {val' = ‹›}

Fig. 2 (a). SWT as data flow node; (b). state transition diagram for SWT

Σ = K × −→V

For each control state k ∈ K we define a set of transition rules. Each
transition rule leads to a control state k′ ∈ K and is labeled by a transition
expression

{P} x1 : a1, ..., xn : an / y1 : b1, . . ., ym : bm{Q}

where P is a logical expression called the guard that contains only the at-
tributes from V as logical variables and some auxiliary variables that are
bound variables to the transition rule. The x1, ..., xn are the input channels
(pairwise distinct) and the y1, ..., ym are the output channels (pairwise dis-
tinct). The a1, ..., an and b1, ..., bmare terms denoting sequences of messages
of the types of the respective channels. Q is a logical expression called the
post condition that contains besides the local variables of the transition rule
the attributes in V as logical variables, also in a primed form.

The transition rule can only fire, if the machine is in control state k, if
the guard evaluates to true and if all the input a1, ..., an is available on the
channels x1, ..., xn and if there exist b1, ..., bm such that Q holds. For all
technical details see [9].

A Theory of System Interaction: Components, Interfaces, and Services 67

3.6.4 Proofs about State Machines

State transition systems own certain invariants. An invariant is a logical for-
mula that refers to the state of a component. These states are composed of
the control state, the state attributes, and the streams associated with the
input and output channels. Invariants provide an effective method for proving
safety properties for components described by state machines.

3.6.5 Interfaces are State Machines

In this section we show that an interface abstraction defines itself an abstract
state machine. Given an interface function

F:
−→
I → ℘ (

−→
O)

we define the state space by the function space

Σ =
−→
I → ℘ (

−→
O)

We get a state machine

∆: (Σ × (I → M∗)) → ℘(Σ × (O → M∗))

by the following definition (let G ∈ −→I → ℘ (
−→
O), z ∈ (I → M∗))

∆(G, z) =
{(H,s) ∈ (

−→
I → ℘ (

−→
O)) × (O→M∗):∀ x ∈ −→I : {〈s〉ˆy: y∈H(x)} = G(〈z〉ˆx)}

The function H in the formula above is called a resumption and s is called
the output. H represents the new state of the machine after the transition
represented by an I/O-function. If G is strongly causal, then the set of pairs
(H, s) related with G do not depend on z and define the initial states and the
initial outputs of the state machine related with G.

However, this construction does not necessarily yield a state machine, the
interface abstraction of which is G again. The reason lies in specific liveness
properties. We illustrate the problem by a simple example.

Example. Liveness properties and interface abstraction
We consider a simple behavior given by the specification template:

 LS

in x: {a}

out y: {b}

 {a}#x {b}#y

The component LS may produce an arbitrary number of messages b. It
produces at least as many messages b as it receives messages a. Of course it

68 M. Broy

may produce in the first time interval no output or an arbitrary number of
messages b. Obviously LS is for the empty output a possible resumption for
LS. This shows that the constructed state machine may produce no output
at all for one of its runs. ��

However, if we consider only deterministic resumptions, the problem dis-
appears. We define the state machine associated with following definition (let
G ∈ −→I → ℘(

−→
O), z ∈ (I → M∗))

∆det(G, z) = {(h,s) ∈ (
−→
I →−→

O) × (O→M∗): ∀ x ∈ −→I : 〈s〉ˆh(x) ∈ G(〈z〉ˆx)}
Each function h in the formula above is called a deterministic resumption.

Example. Deterministic resumptions
Consider the component LS in the example above. Let ls be a deterministic

resumption for the empty input. It produces at least as many messages b as
it receives messages a. Of course it may produce in the first time interval no
output or an arbitrary number of messages b. According to the definition of
ls the output ls.x fulfills the property

{a}#x ≤ {b}#ls.x. ��
This construction shows the significance of realizability. A fully realizable
behavior defines with the help of its deterministic resumptions a state machine
the interface abstraction of which is the behavior again. In each deterministic
resumption all decisions due to nondeterminism have been fixed in a fair way.

4 Composition Operators

In this section we introduce an operator for the composition of components.
We prefer to introduce only one very general powerful composition operator.

Given I/O-behaviors with disjoint sets of output channels

F1:
−→
I 1 → ℘ (

−→
O 1), F2:

−→
I 2 → ℘ (

−→
O 2)

where the sets of output channels are disjoint O1 ∩ O2 = ∅ we define the
parallel composition with feedback as it is illustrated by Fig. 3 by the I/O-
behavior

F

...

...

F

...

...

1 2

F
1

F
2

Fig. 3. Parallel composition with feedback

A Theory of System Interaction: Components, Interfaces, and Services 69

F1 ⊗ F2:
−→
I → ℘ (

−→
O)

where the syntactic interface is specified by the equations:

I = (I1 ∪ I2)\(O1 ∪ O2), O = (O1 ∪ O2)\(I1 ∪ I2)

The resulting function is specified by the following equation (here y ∈ −→C
where the set of channels C is given by C = I1 ∪ I2 ∪ O1 ∪ O2):

(F1⊗F2).x = {y|O: y|I = x|I ∧ y|O1 ∈ F1(y|I1) ∧ y|O2 ∈ F2(y|I2)}

Here y denotes a valuation of all the channels in C of F1 and F2. y|C′ denotes
the restriction of the valuation y to the channels in C′ ⊆ C. The formula
essentially says that all the streams on output channels of the components F1

and F2 are feasible output streams of these components.
Let Φ1 and Φ2 be the specifying formulas for the functions F1 and F2

respectively; the specifying formula of F1 ⊗ F2 reads as follows:

∃ z1, ..., zk: Φ1 ∧ Φ2

where z1, ..., zk = (I1 ∪ I2) ∩ (O1 ∪ O2) are the internal channels of the
system.

This shows a beautiful property of our approach: parallel composition
corresponds to the conjunction of the specifying formulas where channel hiding
is expressed by existential quantification.

4.1 Composed Systems: Architectures

An interactive distributed system consists of a family of interacting com-
ponents (in some approaches also called agents, modules, or objects). These
components interact by exchanging messages over the channels that connect
them. A structural system view, also called a system architecture, consists
of a network of communicating components. Its nodes represent components
and its arcs represent communication lines (channels) on which streams of
messages are sent.

Let Com[I, O] denote the set of components with syntactic interface I �O
and Com denote the set of all components. We model distributed systems by
data flow nets. Let K be a set of identifiers for components and I and O be
sets of input and output channels, respectively. A distributed system (ν, O),
an architecture, with syntactic interface (I, O) is represented by the mapping

ν: K → Com

that associates with every node a component behavior in the form of a black-
box view, formally, an interface behavior given by an I/O-function.

The formation of a system from a given set of components is simple. Fig. 4
shows such a set of components.

We can form a network from a set of components by connecting all output
channels with input channels with identical names provided the channel types

70 M. Broy

Sender Receiver Medium1 Medium2

x c4

c1

c2

c3 y

c1

c2

c3

c4

Fig. 4. Graphical illustration of a set of components with their channels

are consistent and that there are no name clashes for the output channels. For
the set of components shown in Fig. 4 we obtain a net as shown in Fig. 5. A
rearrangement of the components yields the more readable data flow diagram
describing a system architecture shown in Fig. 6.

Sender Receiver Medium1 Medium2

x c4

c1

c2

c3 y

c1

c2

c3

c4

Fig. 5. Forming a data flow net from the components in Fig. 2

Sender Receiver

Medium1

Medium2

x

c4

c1

y

c2

c3

Fig. 6. Data flow net of Fig. 5 in a better readable form

A Theory of System Interaction: Components, Interfaces, and Services 71

As a well-formedness condition for a net formed by a set of components K,
we require that for all component identifiers i, j ∈ K (with i �= j) the sets of
output channels of the components ν(i) and ν(j) are disjoint. This is formally
guaranteed by the condition

i �= j ⇒ Out(ν(i)) ∩ Out(ν(j)) = Ø

In other words, each channel has a uniquely specified component as its
source1. We denote the set of all (internal and external) channels of the net
by the equation

Chan((ν,O)) = O ∪ {c ∈ In(ν(i)): i ∈ K} ∪ {c ∈ Out(ν(i)): i ∈ K}
The set

I = Chan((ν,O)) \ {c ∈ Out(ν(i)): i ∈ K}
denotes the set of input channels of the net. The channels in the set {c ∈
Out(ν(i)): i ∈ K}\(I ∪ O) are called internal.

Each data flow net describes an I/O-function. This I/O-function is called
the interface abstraction or the black-box view of the distributed system de-
scribed by the data flow net. We get an abstraction of a distributed system to
its black-box view by mapping it to a component behavior in Com[I, O] where
I denotes the set of input channels and O denotes the set of output channels
of the data flow net. This black-box view is represented by the component
behavior f ∈ Com[I, O] specified by the following formula (note that y ∈ −→C
where C ≡ Chan((ν, O)) as defined above):

f(x) = {y|O: y|I = x ∧ ∀ i ∈ K: y|Out(ν(i)) ∈ ν(i)(y|In(ν(i)))}
Here, we use the notation of function restriction. For a function g: D → R
and a set T ⊆ D we denote by g|T: T → R the restriction of the function g
to the domain T. The formula essentially expresses that the output history
of a data flow net is the restriction of a fixpoint for all the net-equations for
components and their output channels.

5 Layers and Layered Architectures

In this section we introduce the notion of a service layer and that of a layered
architecture based on the idea of a component interface and that of a service.
Roughly speaking a layered software architecture is a family of components
forming layers in a component hierarchy. Each layer defines an upper interface
called the export interface and makes use of a lower interface called the import
interface.
1 Channels that occur as input channels but not as output channels have the envi-

ronment as their source.

72 M. Broy

5.1 Service Layers

In this section we introduce the notion of a service layer. A service layer
is a service with a syntactic interface decomposed into two complementary
subinterfaces. Of course, one might consider not only two but many separate
interfaces for a system building block—however, considering two interfaces is
enough to discuss most of the interesting issues of layers.

5.1.1 Service Users and Service Providers

In practically applications, services are often structured into service providers
and service users. What is the difference between a service provider F ∈
IF[I � O] and a service user G ∈ IF[O� I]? A service user G is, in general,
highly nondeterministic. G can use the service in many different ways, in
general. It has only to follow the service access protocol making sure that
the service input history that it issues is in the service domain. By using F
according to G we get two histories x and by the formula:

y ∈ F.x

Thus the most general user G of the service F is obviously

G.y = {x: y ∈ F.x}
A more specific user therefore is given by a refinement G′ of G. It may use F
only in a restricted form, but it has to be able to accept all output services
generated by F on its input histories.

Thus we require

Ran(G′) ⊆ Dom(F)
{y: ∃ x: y ∈ F.x ∧ x ∈ Ran(G)} ⊆ Dom(G)

The second formula means that the service user is prepared to handle every
output of the service provider produced as reaction on input of G.

5.1.2 Service Layers

A layer is a service with (at least) two syntactic interfaces. Therefore all the
notions introduced for services apply also for service layers.

Definition. Service layer
Given two syntactic service interfaces (I � O) and (O′ � I′) where we as-

sume I ∩ O′ = ∅ and O ∩ I′ = ∅; the behavior of a service layer L is
represented by a service interface

L ∈ IF[I ∪ O’ � O ∪ I’]

For the service layer the first syntactic service interface is called the syn-
tactic upward interface and the second one is called the syntactic downward

A Theory of System Interaction: Components, Interfaces, and Services 73

interface. The syntactic service layer interface is denoted by (I � O/O′ � I′).
We denote the set of layers by IL[I �O/O′ � I′]. ��

The idea of a service layer interface is well illustrated by Fig. 7. It shows
the service layer with its two interfaces. The upward interface is also called
export interface. The downward interface is also called the import interface.

From a behavioral point of view a service layer itself is nothing but a
service, with its syntactic interface divided into an upper and a lower part.

O

O'
I'

Service layer

I
upward interface

downward interface

Fig. 7. Service layer

5.1.3 Composition of Service Layers

A service layer can be composed with a given service to provide an upper
service. Given a service interface F′ ∈ IF[I′ �O′] called the import service
and a service layer L ∈ IL[I �O/O′ � I′] we define its composition by the
term (for simplicity we assume that the channel sets I, O, I′, O′ are pairwise
disjoint):

L⊗F’

This term corresponds to the small system architecture shown in Fig. 9.
We call the layered architecture correct with respect to the export service
F ∈ IF[I �O] for a provided import service F’ if the following equation holds:

F = L⊗F’

The idea of the composition of layers with services is illustrated in Fig. 9.
This is the parallel composition as introduced before. But now we work with
a structured view on the two interfaces.

We may also compose two given service layers L ∈ IL[I� O/O′ � I′] and
L′ ∈ IL[O′ � I′/O′′ � I′′] into the term (for simplicity we assume that I, O, I′,
O′, I′′ O′′ are pairwise disjoint)

L⊗L’

This term denotes a layer in IL[I �O/O′′ � I′′]. The composition of layers
is illustrated in Fig. 8.

74 M. Broy

Service Layer L

I
O

I'
O'

Service Layer L’

I"
O"

Fig. 8. Service layer composed of two service layers

If we iterate the idea of service layers, we get hierarchies of layers also
called layered architectures as shown in Fig. 11.

With Fig. 9 we associate three services involved in a layer pattern for the
service layer L:

• The import service F′ ∈ IF[I′ �O′].
• The export service F ∈ IF[I � O] with F = L⊗F′.
• The downward service G ∈ IF[O′ � I′] with G = L†(O′ � I′) .

Service Layer L

I
O

I' O'

Service interface F'

Fig. 9. Layered architecture formed of a service and service layer

The downward service G is the service “offered” (or more precisely the
counterpart of the required service) by L to the downward layer; it uses the
import service F′. We assume that all inputs to the downward service are
within its service domain. Thus the proposition

Ran(G) ⊆ Dom(F’) (*)

A Theory of System Interaction: Components, Interfaces, and Services 75

is required. Vice versa all the output produced by F′ on input from G is
required to be in the domain of G:

{y ∈ F’.x: x ∈Ran(F’)} ⊆ Dom(G)

Actually the requirement (*) is stronger than needed, in general! If G does
not use its whole range due to the fact, that F′ does not use the whole domain
of G then we can weaken the requirement Ran(G) ⊆ Dom(F′). In fact, we may
use a kind of invariant that describes the interactions between services F′ and
G. However in top down system design it is more convenient to work with
(*). This introduces a methodologically remarkable asymmetry between the
services downward service G and the import service F′. We come back to this
issue!

Another issue is the engineering of layered architectures. Each layer adds
to the functionality of the system. Therefore an interesting question is how
the export services should be an extension of the import services.

The idea of a layered architecture is illustrated in Fig. 10. It is character-
ized best by the family of export services Fj ∈ IF[Ij �Oj] for 0 ≤ j ≤ n. We
get for each layer Lj+1 ∈ IL[Ij+1 � Oj+1/Oj � Ij]:

• The export service Fj+1 ∈ IF[Ij+1 �Oj+1] is given by Fj+1 = Lj+1⊗Fj.
• Its the import service is Fj ∈ IF[Ij �Oj].
• The downward service Gj ∈ IF[Oj � Ij] is given by Gj = Lj+1†(Oj � Ij).

In the following we deal with the interaction between layers of layered
architectures. We, in particular, study the specification of service layers.

5.2 Specifying Service Layers

In this section we discuss how to characterize and to specify service layers.
As we have shown, one way to specify layers is the assumption/commitment
style. We concentrate here on the specification of layers in terms of services.

5.2.1 Characterizing Layers by their Import and Export Services

The idea of a layer is characterized best as follows: a service layer L ∈
IL[I �O/O′ � I′] offers an export service F = L⊗F′ provided an adequate
import service F′ ∈ IF[I′ � O′] is available. In general, a layer shows only
a sensible behavior for a small set of import services F′. Therefore the idea of
a layer is best communicated by the characterization and the specification of
its required import and its provided export services.

Note, however, that a layer L ∈ IL[I � O/O′ � I′] is not uniquely charac-
terized by a specification of its import and export service. In fact, given two
services, an import service F′ ∈ IF[I′ � O′] and an export service F ∈ IF[I �O]
there exist, in general, many layers L ∈ IL[I �O/O′ � I′] such that the follow-
ing equation holds

F = L⊗F’

76 M. Broy

On-3In-3

On-2In-2

On-1In-1

In On

Service layer n

Service layer n-1

Service layer n-2

O0I0

Service layer 0

...

Fig. 10. Layered architecture

In the extreme, the layer L is never forced to actually make use of its import
service. It may never send any messages to F′ but realize this service by itself
internally. This freedom to use an import service or not changes for two or
multi-SAP layers (SAP = service access point) that support communication.

5.2.2 Interaction Interfaces between Layers

In a layered architecture two families of streams pointing in different directions
connect each pair of consecutive layers. Next we concentrate on this idea of
an interface between two layers (see Fig. 11).

Definition. Service interaction interface
Let I, I′, I′′, O, O′, and O′′ be sets of channels; a service interaction interface

between two layers in L ∈ IL(I �O/O′ � I′) and L′ ∈ IL(I′ � O′/O′′ � I′′) with
the syntactic interface (I �O) is given by a set

S ⊆ IH(I′ ∪ O′)

of channel histories which fulfills the following strong causality property

∀ z, z′ ∈ S, ∀ t ∈ IN:
(z|I′)↓t = (z′|I′)↓t ⇒ {(y|O′)↓t+1: y ∈ S

∧ (y|I′) = z | I′}= {(y|O′)↓t+1: y ∈ S ∧ (y|I′) = z′|I′}
∧ (z|O′)↓t = (y′|O′)↓t ⇒ {(z|I′) ↓ t+1: z∈S
∧ (z|O′) = y|O′} = {(z|I′) ↓t+1: z∈S ∧ (z|O′) = y’|O′} ��

A Theory of System Interaction: Components, Interfaces, and Services 77

Service Layer L

I O

I' O'

Service interface F'

I" O"

interaction interface
between two layers

Fig. 11. Service layer composed of two service layers

Figure 11 shows the interaction interface between two layers.
If we concentrate on the interaction going on between the layers L and

L′ we isolate their downward and upward services F = L†(I′ � O′) and G =
L′†(I′ �O′) respectively.

From an interaction interface S we can derive two corresponding services
F ∈ IF[I′ � O′] and G ∈ IF[O′ � I′] as follows:

F.x = {z|O′: z ∈S ∧ x = z|I′}
G.y = {z|I′: z ∈S ∧ y = z|O′}

The definition of an interaction interface guarantees that both functions
G and F are actual strongly causal on their domains and thus define services.
This way we can see an interaction interface as the specification of two services.

Sets of message sequence charts nicely describe interaction interfaces. An
interaction interface deals with the communication protocols between two
subinterfaces of two components (in our case the interfaces between two lay-
ers). This idea is also called a connector in software architecture.

5.2.3 Matching Services

Figure 9 shows that there are three services involved in a layer specification
pattern for the layer L ∈ IL[I �O/O′ � I′]:

• The import service F′ ∈ IF[I′ �O′].
• The export service F ∈ IF[I � O] with F = L⊗F′.
• The downward service G ∈ IF[O′ � I′] with G = L†(O′ � I′).

If we compose two service interfaces for instance when composing two
layers as shown in Fig. 9 we have two syntactically corresponding services
F′ ∈ IF[I′ �O′] and G ∈ IF[O′ � I′].

78 M. Broy

If we compose the two services, we get an interaction history S ⊆ IH(I′ ∪
O′) specified as follows:

S = {z ∈ IH(I′ ∪ O′): z|I′ ∈G(z|O′) ∧ z|O′ ∈F′ (z|I′)}

We call the two services F′ and G matching if

S|O’ ⊆ Dom(G)

and

S|I’ ⊆ Dom(F’)

In other words, all output histories produced by the downward service G
are required to be in the domain of the service F′ and all output histories
produced by F′ are required to be in the domain of G. In fact, in general,
not all input histories in the domain of F and of G do actually occur in S.
However, that either F′ or G produce output histories in S that are not in the
domain of the corresponding service is seen as a design error.

Note the symmetry between the services F′ and G here. We cannot actually
say that the service F uses the service G or that the service G uses F. This
symmetry is broken in the case of import and export services as follows.

We look again at the question whether there is a difference between offering
a service for usage (which is the role of an export service) and the idea of using
a service (which is the role of the downward service). In fact, if we introduce
an asymmetry by stating that the service F uses G, we require the following
conditions.

The downward service G uses the import service F′. Thus

Ran(G) ⊆ Dom(F’) (*)

is required. Vice versa all the output produced by F′ on input from G is
required to be in the domain of G:

{y ∈ F’.x: x ∈Ran(F’)} ⊆ Dom(G)

By this requirement we break the symmetry between the imported service
and the downward service. We do not describe the downward service G but
rather the import service.

As noted before actually the requirement (*) is stronger than needed, in
general! If G does not use its whole range in the domain of F′ due to the
fact, that F′ does not use the whole domain of G then we can weaken the
requirement Ran(G) ⊆ Dom(F′).

5.2.4 Specification of Interactions

Looking at the interaction that takes place between two layers of a layered
architecture, we speak of an interaction interface. We consider the composition

F = L⊗F’

A Theory of System Interaction: Components, Interfaces, and Services 79

We have to deal with three interfaces F, L and F′. F is a “subinterface” of
L. In the classical top down design process we assume that F is given by a
requirements specification, and if we are interested in a design, given by L
and F′. In a design, we either assume that the service F′ is given (as in a
bottom up proceeding) and we want to specify layer L or that we do a free
decomposition of F into L and F′.

Given the composition above for every input history x for F we get inter-
action interfaces for L and F′ defined by the set of histories

{z ∈IH[O’∪I’]: ∃ x ∈ IH[I], y ∈IH[O]:
y⊕(z|I’) ∈ L(x⊕(z|O’)) ∧ z|O’ ∈F’(z|I’)}

This expression defines a set of histories for the channels between the layer L
and the service interface F′. This set of histories is called interaction interface.
From the interaction interface we can derive the specification of the interface
F′.

5.3 Export/Import Specifications of Layers

Typically not all input histories are good for an access to a service. Only
those that are within the service domain and thus fulfill certain service as-
sumptions lead to a well controlled behavior. This suggests the usage of as-
sumption/commitment specifications for services as introduced above. The
specification of layers is based on the specification of services.

A layer is a bridge between two services. In a layered architecture a layer
exhibits several interfaces:

• the upward interface, also called the export service interface;
• the downward interface, the converse of which is also called the import

service interface.

More precisely, the upward interface is a function of the downward interface
and vice versa. From a methodological point of view we work according to the
following idea:

• the upward service interface corresponds to the service interface specifica-
tion, provided the downward service interface requirements are fulfilled;

• for the export and the import service interface we assume another form of
an assumption/commitment specification.

In particular, in such a specification we do not force a layer to actually
make usage of the import interface. It can make use of the interface but it
does not need to. This is different for double layered architectures (see later).

If we specify the interaction at the interface between two layers by an
interaction interface, we give another form of a specification of a layered ar-
chitecture. The interaction interface between two layers has to fulfill certain
rules and show certain properties. These rules induce specifications for the
upper and the lower level.

80 M. Broy

Since a layer is strictly speaking a service with a more structured syn-
tactic interface the techniques of assumption/commitment specifications can
immediately be transferred to this situation.

Each layer interaction is completely separated from the layer interactions
above or below. This allows an independent specification and implementation.
In other words, to understand the downward interface of a layer L we have
only to study the service L†(O′ � I′). We do not have to take into account the
rather complex service L†(I �O). The relationship between the export service
(O � I) and the downward service L†(O′ � I′) is the responsibility of the layer.

In a requirement specification of a layer we do not want to describe all
behaviors of a layer and thus see the layer as a component, but only those that
fit into the specific scheme of interactions. We are, in particular, interested
in the specification of the behavioral relationship between the layer and its
downward layer. There are three principle techniques to specify these aspects
of a layer:

• We specify the interaction interface S ⊆ IH(I′∪O′) between the layer and
its downward service.

• We specify the layer L ∈ IL[I �O/O′ � I′] indirectly by specifying the ex-
port service F ∈ IF[I �O] and the import service F′ ∈ IF[I′ �O′] such that
F ≈> L⊗F′.

• We specify the layer L ∈ IL[I �O/O′ � I′] as a service
FL ∈ IF[I∪O′ � O ∪ I′].

All three techniques work in principle and are related. However, the second
one seems from a methodological point of view most promising. In particular,
to specify a layered architecture, we only have to specify for each layer the
export service.

An interesting and critical question is the methodological difference we
make between the two services associated with a layer, the export service and
downward service.

5.4 Designing Layered Architectures

In the design of a layered architecture we have to carry out the following steps:

• specification of the overall service interface (“top service”);
• decomposition of the system into layers of a layered architecture;
• specification of the export service of each layer.

These steps can be done fully systematically within our approach. Its
essence is a sequence of (export) service specifications.

A Theory of System Interaction: Components, Interfaces, and Services 81

6 System Development by Refinement

In requirements engineering and in the design phase of system development
many issues have to be addressed such as requirements elicitation, conflict
identification and resolution, information management as well as the selection
of a favorable software architecture (see [19]). These activities are connected
with development steps. Refinement relations (see [8]) are the medium to
formalize development steps and in this way the development process.

In Focus we formalize the following basic ideas of refinement:

• property refinement—enhancing requirements—allows us to add properties
to a specification;

• glass box refinement—designing implementations—allows us to decompose
a component into a distributed system or to give a state transition descrip-
tion for a component specification;

• interaction refinement—relating levels of abstraction—allows us to change
the representation of the communication histories, in particular, the gran-
ularity of the interaction as well as the number and types of the channels
of a component (see [8]).

In fact, these notions of refinement describe the steps needed in an ide-
alistic view of a strict hierarchical top down system development. The three
refinement concepts mentioned above are formally defined and explained in
detail in the following.

6.1 Property Refinement

Property refinement is a well-known concept in structured programming. It
allows us to replace an I/O-behavior with one having additional (“refined”)
properties. This way a behavior is replaced by a more restricted one. In Focus
an I/O-behavior

F:
−→
I → ℘ (

−→
O)

is refined by a behavior

�F:
−→
I → ℘ (

−→
O)

if

�F ⊆ F

This relation stands for the proposition

∀ x ∈ −→I : �F.x ⊆ F.x

Obviously, property refinement is a partial order and therefore reflexive, asym-
metric, and transitive. Moreover, the inconsistent specification logically de-
scribed by false refines everything.

82 M. Broy

A property refinement is a basic refinement step adding requirements as
it is done step by step in requirements engineering. In the process of require-
ments engineering, typically the overall services of a system are specified. Re-
quiring more and more sophisticated properties for components until a desired
behavior is specified, in general, does this.

Example. A specification of a component that transmits its input from its
two input channels to its two output channels (but does not necessarily observe
the order) is specified as follows.

TM2

in x: T1, y: T2

out x: T1, y: T2

 x' ~ x y' ~ y

We refine this specification to the simple specification of the time permissive
identity TII that reads as follows:

TII

in x: T1, y: T2

out x: T1, y: T2

y ' = y x ' = x

TII is a property refinement of TM2, formally expressed

TII ⊆ TM2

A proof of this relation is straightforward (see below). ��
The verification conditions for property refinement are easily generated as

follows. For given specifications S1 and S2 with specifying formulas Φ1 and Φ2,
the specification S2 is a property refinement of S1 if the syntactic interfaces of
S1 and S2 coincide and if for the specifying formulas Φ1 and Φ2 the proposition

Φ1 ⇐ Φ2

holds. In our example the verification condition is easily generated. It reads
as follows:

x′ ∼ x ∧ y′ ∼ y ⇐ y′ = y ∧ x = x

The proof of this condition is obvious. It follows immediately from the defini-
tions of the time abstraction x and x′ ∼ x.

The property refinement relation is verified by proving the logical impli-
cation between the specifying formulas.

Property refinement is useful to relate composed components to compo-
nents specified by logical formulas (see also glass box refinement in Sect. 6.3).
For instance, the following refinement relation

A Theory of System Interaction: Components, Interfaces, and Services 83

(MRG ◦ FRK) ⊆ TII

holds. Again the proof is straightforward.
As demonstrated the additional assumptions of schematic properties such

as strong causality or realizability is an strengthening of the specifying pred-
icate. Therefore it is also a step in the property refinement relation.

Property refinement is characteristic for the development steps in require-
ments engineering. It is also used as the baseline of the design process where
decisions being made introduce further properties of the components.

6.2 Compositionality of Property Refinement

For Focus, the proof of the compositionality of property refinement is
straightforward. This is a consequence of the simple definition of composi-
tion. The rule of compositional property refinement reads as follows:

F̂1 ⊆ F1 F̂2 ⊆ F2

F̂⊗ F̂2 ⊆ F1 ⊗ F2

The proof of the soundness of this rule is straightforward due to the mono-
tonicity of the operator ⊗ with respect to set inclusion. Compositionality is
often called modularity in system development. Modularity guarantees that
separate refinements of the components of a system lead to a refinement of
the composed system. Thus modularity allows for a separate development of
components.

Example. For our example the application of the rule of compositionality
reads as follows. Suppose we use a specific component MRG1 for merging two
streams. It is defined as follows (recall that T1 and T2 form a partition of T3)

MRG1

in x: T1, y: T2

out z: T3

 z = ˆf(x, y)

where s T1
*

, t T2
*

, x (T1
*

) , y (T2
*

) :

 f(s ˆx, t ˆy) = sˆt ˆf(x, y)

Note that this merge component MRG1 is deterministic and not time inde-
pendent. According to the Focus rule of compositionality and transitivity of
refinement, it is sufficient to prove

MRG1 ⊆ MRG

to conclude

MRG1 ◦ FRK ⊆ MRG ◦ FRK

84 M. Broy

and by the transitivity of the refinement relation

MRG1 ◦ FRK ⊆ TII

This shows how local refinement steps that are refinements of subcomponents
of a composed system and their proofs are schematically extended to global
proofs. ��

The composition operator and the relation of property refinement leads to
a design calculus for requirements engineering and system design. It includes
steps of decomposition and implementation that are treated more systemati-
cally in the following section.

6.3 Glass Box Refinement

Glass box refinement is a classical concept of refinement used in the design
phase. In this phase we typically decompose a system with a specified interface
behavior into a distributed system architecture or we represent (implement)
it by a state transition machine. In other words, a glass box refinement is a
special case of a property refinement that is of the form

F1 ⊗ F2 ⊗ ... ⊗ Fn ⊆ F design of an architecture for a system F

or of the form

B∆(Λ) ⊆ F implementation of system F by a state machine

where the I/O-behavior B∆(Λ) is defined by a state machine ∆ (see also [23])
with Λ as its initial states and outputs.

Glass box refinement means the replacement of a component F by a prop-
erty refinement that is given by a design. A design is represented by a network
of components F1 ⊗ F2 ⊗ ... ⊗ Fn or by a state machine ∆ with I/O-function
B∆. The design is a property refinement of F provided the interface behavior
of the net or of the state machine respectively is a property refinement of the
component F.

Accordingly, a glass box refinement is a special case of property refine-
ment where the refining component has a specific syntactic form. In the case
of a glass box refinement that transforms a component into a network, this
form is a term shaped by the composition of a set of components. The term
describes an architecture that fixes the basic implementation structure of a
system. These components have to be specified and we have to prove that
their composition leads to a system with the required functionality.

Again, a glass box refinement can be applied afterwards to each of the
components Fi in a network of components. The components F1, ..., Fn can
be hierarchically decomposed again into a distributed architecture in the same
way, until a granularity of components is obtained which is not to be further
decomposed into a distributed system but realized by a state machine. This

A Theory of System Interaction: Components, Interfaces, and Services 85

form of iterated glass box refinement leads to a hierarchical, top down refine-
ment method.

Example. A simple instance of such a glass box refinement is already shown
by the proposition

MRG ◦ FRK ⊆ TII

It allows us to replace the component TII by a network of two components. ��
Note, a glass box refinement is a special case of a property refinement.

It is not in the center of this chapter to describe in detail the design
steps leading from a interface specification to distributed systems or to state
machines. Instead, we take a purist’s point of view. Since we have introduced a
notion of composition we consider a system architecture as being described by
a term defining a distributed system by composing a number of components.

A state machine is specified by a number of state transition rules that
define the transitions of the machine (see Sect. 2.6).

Example. Glass box refinement by state machines
The state machine specification SWT is a glass box refinement for the

component UFM. We have

SWT ⊆ UFM

The proof of this formula is a simple consequence of the invariant proved for
SWT. ��

In fact we may also introduce a refinement concept for state machines ex-
plicitly in terms of relations between states leading to variations of simulations
and bisimulations (see [1], [2], [5], and also [3]). This is useful if components
are refined by state machines. We call a relation between state machines with
initial states σ and σ′, initial output y and y′ and transition function ∆ and
∆′ a refinement if

B∆′(σ′, y′) ⊆ B∆(σ, y)

Glass box refinement is a special case of property refinement. Thus it is compo-
sitional as a straightforward consequence of the compositionality of property
refinement.

6.4 Interaction Refinement

In Focus interaction refinement is the refinement notion for modeling devel-
opment steps between levels of abstraction. Interaction refinement allows us
to change for a component

• the number and names of its input and output channels,
• the types of the messages on its channels determining the granularity of

the messages.

86 M. Broy

A pair of two functions describes an interaction refinement

A:
−→
C ’ → ℘(

−→
C) R:

−→
C → ℘(

−→
C ’)

that relate the interaction on an abstract level with corresponding interaction
on the more concrete level. This pair specifies a development step that is
leading from one level of abstraction to the other as illustrated by Fig. 12.

abstract level

concrete level

R A

.

.

Fig. 12. Communication history refinement

Given an abstract history x ∈ −→C each y ∈ R.x denotes a concrete history
representing x. Calculating a representation for a given abstract history and
then its abstraction yields the old abstract history again. Using sequential
composition, this is expressed by the requirement:

R ◦ A = Id

Let Id denote the identity relation. A is called the abstraction and R is called
the representation. R and A are called a refinement pair. For nontimed com-
ponents we weaken this requirement by requiring R ◦ A to be a property
refinement of the time permissive identity TII (as a generalization of the
specification TII given in Sect. 6.1 to arbitrary sets of channels), formally
expressed by

(R ◦ A).x = {x}
Choosing the component MRG for R and FRK for A immediately gives a
refinement pair for nontimed components.

Interaction refinement allows us to refine components, given appropriate
refinement pairs for their input and output channels. The idea of an interaction
refinement is visualized in Fig. 13 for the so-called U−1-simulation. Note that
here the components (boxes) AI and A0 are no longer definitional in the
sense of specifications, but rather methodological, since they relate two levels
of abstraction. Nevertheless, we specify them as well as by the specification
techniques introduced so far.

A Theory of System Interaction: Components, Interfaces, and Services 87

abstract level

concrete level

F

ˆ
FI

2 O
2

I
1

O
1

A
I

. . .

. . .

R
O

. . .

. . .

Fig. 13. Interaction refinement (U−1-simulation)

Given refinement pairs

AI:
−→
I 2 → ℘ (

−→
I 1) RI:

−→
I 1 → ℘(

−→
I 2)

AO:
−→
O 2 → ℘ (

−→
O 1) RO:

−→
O 1 → ℘(

−→
O 2)

for the input and output channels we are able to relate abstract to concrete
channels for the input and for the output. We call the I/O-behavior

�F:
−→
I 2 → ℘(

−→
O 2)

an interaction refinement of the I/O-behavior

F:
−→
I 1 → ℘(

−→
O 1)

if the following proposition holds:
�F ⊆ AI ◦ F ◦ RO U−1 -simulation

This formula essentially expresses that �F is a property refinement of the com-
ponent AI ◦ F ◦ RO. Thus for every “concrete” input history x̂ ∈ −→I 2 every
concrete output ŷ ∈ −→O 2 can be also obtained by translating x̂ onto an abstract
input history x ∈ AI.x̂ such that we can choose an abstract output history y
∈ F.x such that ŷ ∈ RO.y.

There are three further versions of interaction refinement obtained by re-
placing in Fig. 13 the upward function AI by the downward function RI or
the upward function AO by the downward function RO or both:

RI ◦ �F ⊆ F ◦ RO Downward simulation
�F ◦ AO ⊆ AI ◦ F Upward simulation

RI ◦ �F ◦ AO ⊆ F U-simulation

These are different relations to connect levels of abstractions. We prefer U−1-
simulation as the most restrictive, “strongest” notion which implies the other
three. This fact is easily demonstrated as follows. From

88 M. Broy

�F ⊆ AI ◦ F ◦ RO

we derive by multiplication with RI from the left

RI ◦ �F ⊆ RI ◦ AI ◦ F ◦ RO

and by RI ◦ AI = Id we get

RI ◦ �F ⊆ F ◦ RO

which is the property of downward simulation. By similar arguments we prove
that an U−1-simulation F̂ is also an upward simulation and an U-simulation.

A more detailed discussion of the mathematical properties of U−1-
simulation is given in the following section and more details are found in
[8].

Example. For the time permissive identity for messages of type T3 a com-
ponent specification reads as follows:

TII3

in z: T3

out z: T3

z = z '

We obtain

MRG ◦ TII3 ◦ FRK ⊆ TII

as a simple example of interaction refinement by U-simulation. The proof is
again straightforward.

TII

x

y

MRG

x
y

z

TII3
z

z

x

y

z

x y

FRK

Fig. 14. Graphical representation of an interaction refinement

Figure 7 shows a graphical description of this refinement relation. ��

A Theory of System Interaction: Components, Interfaces, and Services 89

The idea of interaction refinement is found in other approaches like TLA,
as well. It is used heavily in practical system development, although it is hardly
ever introduced formally there. Examples are the communication protocols in
the ISO/OSI hierarchies. Interaction refinement formalizes of the relationship
between layers of abstractions in system development.

This way it can be used to relate the layers of protocol hierarchies, the
change of data representations for the messages or the states as well as the
introduction of time in system developments.

We show in the sequel that in Focus an interaction refinement in fact
is a Galois connection. This indicates that interaction refinement maintains
reasonable structural properties. It shows in particular that under the condi-
tions given below U-simulation and U−1-simulation are in fact equivalent.

Theorem. Interaction refinement is a Galois connection
Let the two function spaces

S1 = (
−→
I 1 → ℘ (

−→
O 1))

S2 = (
−→
I 2 → ℘ (

−→
O 2))

be given and the functions AI, RI, AO, RO be defined as above. The condition
of a Galois connection then reads as follows

∀ F ∈ S1, �F ∈ S2: (AI ◦ F ◦ RO ⊇ �F) ≡ (F ⊇ RI ◦ �F ◦ AO)

This condition is fulfilled if

RI ◦ AI ⊆ Id AI ◦ RI ⊇ Id
(*)

RO ◦ AO ⊆ Id AO ◦ RO ⊇ Id

Proof. The proof for the direction from left to right reads as follows:

AI ◦ F ◦ RO ⊇ �F

⇒ {monotonicity of “◦” with respect to “⊇”}
RI ◦ AI ◦ F ◦ RO ◦ AO ⊇ RI ◦ �F ◦ AO

⇒ {RI ◦ AI ⊆ Id and RO ◦ AO ⊆ Id}
F ⊇ RI ◦ �F ◦ AO

The proof for the direction from right to left reads as follows:

F ⊇ RI ◦ �F ◦ AO

⇒ {monotonicity of “◦” with respect to “⊇”}
AI ◦ F ◦ RO ⊇ AI ◦ RI ◦ �F ◦ AO ◦ RO

⇒ {AI ◦ RI ⊇ Id and AO ◦ RO ⊇ Id,

transitivity of “⊇”, monotonicity of “◦” with respect to “⊇”}
AI ◦ F ◦ RO ⊇ �F

90 M. Broy

This completes the proof that an interaction refinement forms a Galois con-
nection. ��

Since it is easy to show that under the conditions (*) downward simulation
implies U-simulation and also that upward simulation implies U-simulation
we get that under these conditions in fact all four notions of simulations are
equivalent. So we speak generally of interaction refinement and refer to any
of the cases.

Compositionality of U−1-Simulation

Interaction refinement is formulated with the help of property refinement.
In fact, it can be seen as a special instance of property refinement. This
guarantees that we can freely combine property refinement with interaction
refinement in a compositional way.

Example. In a property refinement, if we replace the component TII3 by a
new component TII3′ (for instance along the lines of the property refinement of
TII into MRG ◦ FRK), we get by the compositionality of property refinement

MRG ◦ TII3′ ◦ FRK ⊆ TII

from the fact that TII3 is an interaction refinement of TII. ��
We concentrate on U−1-simulation in the following and give the proof of

compositionality only for that special case. To keep the proof simple we do
not give the proof for parallel composition with feedback but give the proof in
two steps for two special cases, first defining the compositionality for parallel
composition without any interaction which is a simple straightforward exercise
and then give a simplified proof for feedback.

For parallel composition without feedback the rule of compositional refine-
ment reads as follows:

�F1 ⊆ A1
I ◦ F1 ◦ R1

O
�F2 ⊆ A2

I ◦ F2 ◦ R2
O

�F1 ‖ �F2 ⊆ (A1
I ‖ A2

I) ◦
(F1 ‖ F2) ◦ (R1

O ‖ R2
O)

where we require the following syntactic conditions (let (Ik, Ok) be the syn-
tactic interface of Fk for k = 1, 2):

O1 ∩ O2 = ∅ and I1 ∩ I2 = ∅ and (I1 ∪ I2) ∩ (O1 ∪ O2) = ∅

and analogous conditions for the channels of �F1 and �F2. These conditions make
sure that there are no name clashes.

It remains to show the compositionality of feedback. Let F ∈ IF[I �O]; we
write µ F ∈ IF[I\Z �O] for the component where all the output channels of F
that are also input channels are fed back. Let Z = I ∩ O; then µ F is defined
by

A Theory of System Interaction: Components, Interfaces, and Services 91

(µ F).x = {y|O: y|I\Z = x ∧ y|O ∈ F.(y|I)}

The general case reads as follows:
�F⊆ (AI ‖A) ◦ F ◦ (RO ‖ R)
µ �F⊆AI ◦ (µ F) ◦ (RO ‖ R) where we require the syntactic conditions

Out(R) = In(A) = In(�F) ∩ Out(�F),
Out(A) = In(R) = In(F) ∩ Out(F).

For independent parallel composition the soundness proof of the compositional
refinement rule is straightforward. For simplicity, we consider the special case
where

In(F) = Out(F)

In other words, we give the proof for only the feedback operator and only for
the special case where the channels coming from the environment are empty.
This proof generalizes without difficulties to the general case. In our special
case the set I is empty and thus AI can be dropped. We write for simplicity
only R instead of R0.The compositional refinement rule reads as follows:

�F⊆A ◦ F ◦ R
µ �F⊆ (µ F) ◦ R

where R◦A = Id. The proof of the soundness of this rule is shown as follows.
Here we use the classical relational notation:

xFy

that stands for y ∈ F.x.

Proof. Soundness for the rule of U−1-simulation:

If we have: �z ∈ µ �F
then by the definition of µ �z �F �z
and by the hypothesis: ∃ x, y: �zAx ∧ xFy ∧ yR�z
then by R ◦ A = Id: y R �z ∧ �z A x ⇒ x = y
we obtain: ∃ x, y: �zAx ∧ xFy ∧ yR�z ∧ x = y
and thus: ∃ x: �zAx ∧ xFx ∧ xR�z
therefore: x ∈ µ F
and finally: �z ∈ µ F ◦ R

��
The simplicity of the proof of our result comes from the fact that we

have chosen such a straightforward denotational model of a component and of
composition. In the Focus model, in particular, input and output histories are
represented explicitly. This allows us to apply classical ideas of data refinement
to communication histories. Roughly speaking: communication histories are
nothing else than data structures that can be manipulated and refined like
other data structures, too.

92 M. Broy

Remark. Compositionality is valid for the other forms of refinement only
under additional conditions (see [8]).

Example. To demonstrate interaction refinement let us consider the specifi-
cation of two trivial delay components. They forward their input messages to
their output channels with some delay.

D3

in c, z: T3

out c, z: T3

c'= z
zÕ = c

D

in x, c: T1, y, d: T2

out x, c: T1, y, d: T2

c' = x , xÕ = c
d' = y , yÕ = d

We have (see Fig. 16)

(MRG ‖ MRG[c/x, d/y, c/z]) ◦ D3 ◦ (FRK ‖ FRK[c/x, d/y, c/z]) ⊆ D

and in addition (here we write µc for a feedback only on channel c, see Fig.
15)

x

c

y

d

x

c

y

d

D

D3c

z

d/yc/x

MRG MRG

x y

c/z

c

z

c/xyx

FRK FRK

d/y

z c/zz

Fig. 15. Interaction refinement

A Theory of System Interaction: Components, Interfaces, and Services 93

x

c

D3

c z

z

TII3

z

z

xc y d

c y d

x y

x y

TII

D

Fig. 16. Refinement relations

(µcD3)\{c} ⊆ TII3, (µc,dD)\{c, d} ⊆ TII

and so finally we obtain (see Fig. 16) by applying the rule of the composition-
ality of refinement for feedback to

MRG ◦ (µcD3)\{c} ◦ FRK ⊆ (µc,dD)\{c, d} ⊆ TII

This shows the power of the compositionality rule for interaction refine-
ment. ��

We obtain a refinement calculus, which can also be supported by a CASE
tool. All the refinement rules are transformation rules. Their verification can
be supported by a interactive theorem prover, their application by a transfor-
mation system.

7 Discussion and Conclusions

The previous sections introduce a comprehensive mathematical and logical
theory of interaction as a foundation for a component-oriented system mod-
eling. It addresses all the steps of a hierarchical stepwise refinement develop-
ment method. It is compositional and therefore supports all the modularity
requirements that are generally needed. The Focus refinement calculus leads
to a logical calculus for “programming in the large” to argue about software
architectures and their refinement.

94 M. Broy

d

c

c

x

y

z

x

y

z

MRG FRK

D

D3

Fig. 17. Interaction refinement

The presented method aims, in particular, at the following logical and
mathematical foundations for software and systems engineering:

• a mathematical notion of a syntactic and semantic interface of a compo-
nent;

• a formal specification notation and method;
• a precise notion of composition;
• a mathematical notion of refinement and development;
• a compositional development method;
• a flexible concept of software architecture;
• concepts of time and the refinement of time.

What we did not mention throughout the paper are concepts that are also
available and helpful from a more practical point of view including

• systematic combination with tables and diagrams,
• tool support in the form of AutoFocus.

In fact, there are other system models that can perhaps provide a similar
fundamental framework. But this is not obvious as indicated in the discussion
above.

The simplicity of our results is a direct consequence of the specific choice
of the semantic model for Focus. The introduction of time makes it possible
to talk about causality, which makes the reasoning about feedback loops in
the model robust and expressive. The fact that communication histories are
explicitly included into the model allows us to avoid all kinds of complica-
tions like prophecies or stuttering and leads to an abstract relational view of
systems.

What we have presented is just the scientific kernel and justification of
method. More pragmatic ways to describe specifications are needed.

A Theory of System Interaction: Components, Interfaces, and Services 95

An attempt to specialize the presented work also to component concepts
used in practice such as object-oriented analysis, design, and programming is
found in [10]. It leads there, in particular, to an abstract method for interface
specifications for classes and objects. Whether this method is of practical value
is another question that can only be answered after more experimentation.

Acknowledgements

It is a pleasure to thank Andreas Rausch and Bernhard Rumpe for stimulating
discussions and helpful remarks on draft versions of the manuscript.

8 References

1. M. Abadi, L. Lamport: The Existence of Refinement Mappings. Digital Systems
Research Center, SRC Report 29, August 1988.

2. M. Abadi, L. Lamport: Composing Specifications. Digital Systems Research
Center, SRC Report 66, October 1990.

3. L. Aceto, M. Hennessy: Adding Action Refinement to a Finite Process Algebra.
Proc. ICALP 91, LNCS 510, Springer 1991, 506-519.

4. P. Andrews: An I ntroduction to Mathematical Logic and Type Theory: To Truth
Through Proof. Computer Science and Applied Mathematics. Academic Press
1986.

5. R.J.R. Back: Refinement Calculus, Part I: Sequential Nondeterministic Pro-
grams. REX Workshop. In: J. W. deBakker, W.-P. deRoever, G. Rozenberg
(eds): Stepwise Refinement of Distributed Systems. LNCS 430, Springer 1989,
42-66 // R.J.R. Back: Refinement Calculus, Part II: Parallel and Reactive Pro-
grams. REX Workshop. In: J. W. de Bakker, W.-P. de Roever, G. Rozenberg
(eds): Stepwise Refinement of Distributed Systems. LNCS 430, Springer 1989,
67-93.

6. G. Berry, G. Gonthier: The Esterel Synchronous Programming Language:
Design, Semantics, Implementation. INRIA Research Report 842, 1988.

7. J. D. Brock, W. B. Ackermann: Scenarios: A Model of Nondeterminate Com-
putation. In: J. Diaz, I. Ramos (eds): Formalization of Programming Concepts.
LNCS 107, Springer 1981, 225-259.

8. M. Broy: Compositional Refinement of Interactive Systems. Digital Systems
Research Center, SRC Report 89, July 1992, Also in: J. ACM, Vol. 44, No. 6
(Nov. 1997), 850-891.

9. M. Broy: The Specification of System Components by State Transition Dia-
grams. Technische Universität München, Institut für Informatik, TUM-I9729,
May 1997.

10. M. Broy: Towards a Mathematical Concept of a Component and its Use. First
Components’ User Conference, Munich 1996. Revised version in: Sof tware -
Concepts and Tools 18, 1997, 137-148.

11. M. Broy: Compositional Refinement of Interactive Systems Modelled by Rela-
tions. In: W.-P. de Roever, H. Langmaack, A. Pnueli (eds.): Compositionality:
The Significant Difference. LNCS 1536, Springer 1998, 130-149.

96 M. Broy

12. M. Broy: From States to Histories. In: D. Bert, Ch. Choppy, P. Mosses (eds.):
Recent trends in Algebraic Development Techniques. WADT’99, LNCS 1827,
Springer 2000, 22-36.

13. M. Broy: Multi-view Modeling of Software Systems. Keynote. FM2003 Satellite
Workshop on Formal Aspects of Component Software, 8-9 September 2003, Pisa,
Italy.

14. M. Broy, K. Stølen: Specification and Development of Interactive Systems: Fo-
cus on Streams, Interfaces, and Refinement. Springer 2001.

15. C.A.R. Hoare: Communicating Sequential Processes. Prentice Hall, 1985
16. R. Milner: A Calculus of Communicating Systems. LNCS 92, Springer 1980.
17. D. Herzberg, M. Broy: Modelling Layered Distributed Communication Systems.

To appear in Formal Aspects of Computer Programming.
18. G. Kahn: The Semantics of a Simple Language for Parallel Processing. In: J.L.

Rosenfeld(ed.): Inf . Processing 74. Proc. of the IFIP Congress 74, Amsterdam:
North Holland 1974, 471-475.

19. D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, W. Mann:
Specification and Analysis of System Architecture Using Rapide. IEEE Trans.
Software Engr., Special Issue on Software Architecture, 21(4): 336-355, April
1995

20. N. A. Lynch, E. W. Stark: A Proof of the Kahn Principle for Input/Output
Automata. Inf . \& Computation 82(1): 81-92, 1989.

21. Specification and Description Language (SDL), Recommendation Z.100. CCITT
Technical report, 1988.

22. M. Spivey: Understanding Z - A Specification Language and Its Formal Seman-
tics. Cambridge Tracts in Theoretical Comp. Science 3, Cambridge Univ. Press
1988.

Verification of Open Systems�

Orna Kupferman1 and Moshe Y. Vardi2

1 Hebrew University, Jerusalem, Israel
2 Rice University, Houston, TX, USA

Summary. In order to check whether an open system satisfies a desired property,
we need to check the behavior of the system with respect to an arbitrary environ-
ment. In the most general setting, the environment is another open system. Given
an open system M and a property ψ, we say that M robustly satisfies ψ iff for
every open system M ′, which serves as an environment to M , the composition
M‖M ′ satisfies ψ. The problem of robust model checking is then to decide, given M
and ψ, whether M robustly satisfies ψ. In essence, robust model checking focuses
on reasoning algorithmically about interaction. In this work we study the robust-
model-checking problem. We consider systems modeled by nondeterministic Moore
machines, and properties specified by branching temporal logic (for linear tempo-
ral logic, robust satisfaction coincides with usual satisfaction). We show that the
complexity of the problem is EXPTIME-complete for CTL and the µ-calculus, and
is 2EXPTIME-complete for CTL�. Thus, from a complexity-theoretic perspective,
robust satisfaction behaves like satisfiability, rather than like model checking.

1 Introduction

Today’s rapid development of complex and safety-critical systems requires
reliable verification methods. In formal verification, we verify that a system
meets a desired property by checking that a mathematical model of the sys-
tem satisfies a formal specification that describes the property. We distinguish
between two types of systems: closed and open [22]. (Open systems are called
reactive systems in [22].) A closed system is a system whose behavior is com-
pletely determined by the state of the system. An open system is a system
that interacts with its environment and whose behavior depends on this in-
teraction. Thus, while in a closed system all the nondeterministic choices are
internal, and resolved by the system, in an open system there are also ex-
ternal nondeterministic choices, which are resolved by the environment [24].
� The chapter is based on our paper Robust Satisfaction, Proceedings of the 10th

Conference on Concurrency Theory, volume 1664 of Lecture Notes in Computer
Science, pages 383–398, Springer-Verlag, Berlin, 1999.

98 O. Kupferman and M.Y. Vardi

Since an open system has control only about its internal nondeterminism,
and should be able to function correctly with respect to all possible ways in
which its external nondeterminism is resolved, the term angelic nondetermin-
ism is used for nondeterminism that is resolved by the system, while demonic
nondeterminism is nondeterminism that is resolved by the environment [37].

In order to check whether a closed system satisfies a desired property, we
translate the system into a formal model, typically a state-transition graph,
specify the property as a temporal-logic formula, and check formally that the
model satisfies the formula. Hence the name model checking for the verification
methods derived from this viewpoint [4, 43]. In order to check whether an open
system satisfies a desired property, we need to check the behavior of the system
with respect to an arbitrary environment [15]. In the most general setting, the
environment is another open system. Thus, given an open system M and a
specification ψ, we need to check whether for every (possibly infinite) open
system M ′, which serves as an environment to M , the composition M‖M ′

satisfies ψ. If the answer is yes, we say that M robustly satisfies ψ. The problem
of robust model checking, initially posed in [18], is to determine, given M and
ψ, whether M robustly satisfies ψ. In essence, robust model checking focuses
on reasoning algorithmically about interaction.

Two possible views regarding the nature of time induce two types of tem-
poral logics [35]. In linear temporal logics, time is treated as if each moment
in time has a unique possible future. Thus, linear temporal logic formulas
are interpreted over linear sequences and we regard them as describing a be-
havior of a single computation of a system. In branching temporal logics,
each moment in time may split into various possible futures. Accordingly,
the structures over which branching temporal logic formulas are interpreted
can be viewed as infinite computation trees, each describing the behavior of
the possible computations of a nondeterministic system. We distinguish here
between universal and nonuniversal temporal logics. Formulas of universal
temporal logics, such as LTL, ∀CTL, and ∀CTL�, describe requirements that
should hold in all the branches of the tree [19]. These requirements may be
either linear (e.g., in all computations, only finitely many requests are sent)
as in LTL, or branching (e.g., in all computations we eventually reach a state
from which, no matter how we continue, no requests are sent) as in ∀CTL.
In both cases, the more behaviors the system has, the harder it is for the
system to satisfy the requirements. Indeed, universal temporal logics induce
the simulation order between systems [38, 6]. That is, a system M simulates a
system M ′ if and only if all universal temporal logic formulas that are satisfied
in M ′ are satisfied in M as well. On the other hand, formulas of nonuniversal
temporal logics, such as CTL and CTL�, may also impose possibility require-
ments on the system (e.g., there exists a computation in which only finitely
many requests are sent) [9]. Here, it is no longer true that simulation between
systems corresponds to agreement on satisfaction of requirements. Indeed, it
might be that adding behaviors to the system helps it to satisfy a possibility

Verification of Open Systems 99

requirement or, equivalently, that disabling some of its behaviors causes the
requirement not to be satisfied.

It turned out that model-checking methods are applicable also for ver-
ification of open systems with respect to universal temporal-logic formulas
[36, 29]. To see this, consider an execution of an open system in a maximal
environment; i.e., an environment that enables all the external nondeterminis-
tic choices. The result is a closed system, and it simulates any other execution
of the system in some environment. Therefore, one can check satisfaction
of universal requirements in an open system by model checking the system
viewed as a closed system (i.e., all nondeterministic choices are internal). This
approach, however, cannot be adapted when verifying an open system with
respect to nonuniversal requirements. Here, satisfaction of the requirements
with respect to the maximal environment does not imply their satisfaction
with respect to all environments. Hence, we should explicitly make sure that
all possibility requirements are satisfied, no matter how the environment re-
stricts the system.

To see the difference between robust satisfaction and usual satisfaction,
consider the open system M described in Fig. 1. The system M models a

come

read

wait

get

M : M ′
2:

come

take

wait

withdraw

come

give

M ′
1:

wait wait

deposit

put

read get give

put take

give

withdraw

take

read readdeposit
withdraw

Fig. 1. An ATM and two environments for it

cash machine (ATM). Each state of the machine is labeled by the signal that
the machine outputs when it visits the states. Each transition is labeled by the
signal that the machine reads when the transition is taken. At the state labeled
wait, M waits for customers. When a customer comes, M moves to the state
labeled read, where it reads whether the customer wants to deposit or withdraw
money. According to the external choice of the customer, M moves to either
a get or give state, from which it returns to the wait state. An environment
for the ATM is an infinite line of customers, each with his depositing or
withdrawing plans. Suppose that we want to check whether the ATM can
always get money eventually; thus, whether it satisfies the temporal logic
formula ψ = AGEF get . Verification algorithms that refer to M as a closed
system perform model checking in order to verify the correctness of the ATM.

100 O. Kupferman and M.Y. Vardi

Since M |= ψ, they get a positive answer to this question. Nonetheless, it is
easy to see that the ATM does not satisfy the property ψ with respect to all
environments. For example, the composition of M with the environment M ′

1,
in which all the customers only withdraw money, does not satisfy ψ. Formally,
M ′

1 never supplies to M the input deposit, thus M ′
1 disables the transition of

M from the read state to the get state. Consequently, the composition M‖M ′
1

contains a single computation, in which get is not reachable.
A first attempt to solve the robust-model-checking problem was presented

in [29, 34], which suggested the method of module checking. In this algorithmic
method we check, given M and ψ, whether, no matter how an environment
disables some of M ’s transitions, it still satisfies the property. In particular,
in the ATM example, the module-checking paradigm takes into consideration
the fact that the environment can consistently disable the transition from the
read state to the get state, and detects the fact that the ATM cannot always
get money eventually. Technically, allowing the environment to disable some
of M ’s transitions corresponds to restricting the robust-satisfaction problem
to environments M ′ that are both deterministic and have complete informa-
tion, in the sense that all the output variables of the system are read by the
environment, thus the system has no internal variables.

This latter assumption is removed in [30], which considers module checking
with incomplete information. In this setting, the system has internal variables,
which the environment cannot read. While a deterministic environment with
a complete information corresponds to arbitrary disabling of transitions in M ,
the composition of M with a deterministic system with incomplete informa-
tion is such that whenever two computations of the system differ only in the
values of internal variables along them, the disabling of transitions along them
coincide. As an example, consider the variant of the ATM machine described
in Fig. 2. Here, the ATM I has an internal variable indicating whether it has

I : I ′ :

get give take try later

wait

read, emptyread, full

appologize

withdraw

come come

take

deposit
withdraw deposit try laterput

wait

withdraw

come

give appologize

read, empty

read, full

Fig. 2. An ATM with internal variables and an environment for it

money to give. The fact the variable is internal introduces nondeterminism
in the description of I. Thus, I waits for customers, and when a customer
comes, I consults the internal variable and moves accordingly to either the
state labeled read, full or to the state labeled read, empty. The customer does

Verification of Open Systems 101

not know whether the system is empty or full, and his choice is independent of
this information. Only after the choice is made, the system shares this infor-
mation with the customer (in fact, in the fortunate cases of the system being
full or the customer depositing money, the information is kept internal). The
environment I ′ corresponds to the case where all customers withdraw money.
Note that only after the choice is made, the customers may discover that the
ATM has no money. Thus, technically, when we consider the composition of
I with an environment I ′, we cannot consider, for example, environments in
which the transition from the state labeled read, full to the state labeled give
is enabled while the transition from the state labeled read, empty to the state
labeled apologize is disabled, or vice versa.

While the setting in [30] is more general, it still does not solve the general
robust-model-checking problem. To see this, let us go back to the ATM M
from Fig. 1. Suppose that we want to check whether the ATM can either move
from all the successors of the initial state to a state where it gets money, or
it can move from all the successors of the initial state to a state where it
gives money. When we regard M as a closed system, this property is satisfied.
Indeed, M satisfies the temporal-logic formula ϕ = AXEXget ∨AXEXgive.
Moreover, no matter how we remove transitions from the computation tree of
M , the trees we get satisfy either AXEXget or AXEXgive1. In particular,
M‖M ′

1 satisfies AXEXgive. Thus, if we follow the module-checking paradigm,
the answer to the question is positive. Consider now the environment M ′

2

described in Fig. 1. The initial state of M‖M ′
2 has two successors. One of these

successors has a single successor in which the ATM gives money and the second
has a single successor in which the ATM gets money. Hence, M‖M ′

2 does
not satisfy ϕ. Intuitively, while the module-checking paradigm considers only
disabling of transitions, and thus corresponds to the composition of M with
all deterministic environments, robust model checking considers all, possibly
nondeterministic, environments. There, the composition of the system with an
environment may not just disable some of the system’s transitions, but may
also, as in the example above, increase the nondeterminism of the system.

In this chapter we study the robust-satisfaction problem and describe a
unified approach and solution for it. Thus, given an open system M and
a specification ψ, we solve the problem of determining whether M robustly
satisfies ψ. BothM and its environment are nondeterministic Moore machines.
They communicate via input and output variables and they both may have
private variables and be nondeterministic. Our setting allows the environment
to be infinite, and to have unbounded branching degree. Nevertheless, we show
that if there is some environment M ′ for which M‖M ′ does not satisfy ψ, then
there is also a finite environment M ′′ with a bounded branching degree (which
depends on the number of universal requirements in ψ) such that M‖M ′ does
not satisfy ψ.

1 We assume that the composition of the system and the environment is deadlock
free, thus every state has at least one successor.

102 O. Kupferman and M.Y. Vardi

We solve the robust-model-checking problem for branching temporal spec-
ifications. As with module checking with incomplete information, alternation
is a suitable and helpful automata-theoretic mechanism for coping with the
internal variables of M and M ′. In spite of the similarity to the incomplete
information setting, the solution the robust model-checking problem is more
challenging, as one needs to take into consideration the fact that a module
may have different reactions to the same input sequence, yet this is possi-
ble only when different nondeterministic choices have been taken along the
sequence. Using alternating tree automata, we show that the problem of ro-
bust satisfaction is EXPTIME-complete for CTL and the µ-calculus, and is
2EXPTIME-complete for CTL�. The internal variables of M make the time
complexity of the robust-model-checking problem exponential already in the
size of M . The same complexity bounds hold for the problem of module check-
ing with incomplete information [30]. Thus, on the one hand, the problem of
robust model checking, which generalizes the problem of module checking with
incomplete information, is not harder than the latter problem. On the other
hand, keeping in mind that the system to be checked is typically a paral-
lel composition of several components, which by itself hides an exponential
blow-up [21], our results imply that checking verification of open systems with
respect to nonuniversal branching temporal specifications is rather intractable.
From a complexity-theoretic perspective, robust satisfaction behaves like sat-
isfiability [14, 9, 46, 10], rather than like model checking [5, 12].

In the discussion, we compare robust model checking with previous work
about verification of open systems as well as with the closely-related area of
supervisory control [45, 3]. We also refine the classification of specifications
into universal and nonuniversal ones and show that the existential fragment
of nonuniversal specifications is insensitive to the environment being nonde-
terministic. Finally, we argue for the generality of the model studied in this
paper and show that it captures settings in which assumptions about the
environment are known, as well as settings with global actions and possible
deadlocks.

2 Preliminaries

2.1 Trees and Automata

Given a finite set Υ , an Υ -tree is a set T ⊆ Υ ∗ such that if x · υ ∈ T , where
x ∈ Υ ∗ and υ ∈ Υ , then also x ∈ T . When Υ is not important or clear from
the context, we call T a tree. The elements of T are called nodes, and the
empty word ε is the root of T . For every x ∈ T , the nodes x · υ ∈ T where
υ ∈ Υ are the children of x. Each node x �= ε of T has a direction in Υ . The
direction of a node x · υ is υ. We denote by dir(x) the direction of node x.
An Υ -tree T is a full infinite tree if T = Υ ∗. Unless otherwise mentioned, we
consider here full infinite trees. A path η of a tree T is a set η ⊆ T such that

Verification of Open Systems 103

ε ∈ η and for every x ∈ η there exists a unique υ ∈ Υ such that x · υ ∈ η. The
i’th level of T is the set of nodes of length i in T . Given two finite sets Υ and
Σ, a Σ-labeled Υ -tree is a pair 〈T, V 〉 where T is an Υ -tree and V : T → Σ
maps each node of T to a letter in Σ. When Υ and Σ are not important or
clear from the context, we call 〈T, V 〉 a labeled tree.

Alternating tree automata generalize nondeterministic tree automata and
were first introduced in [39]. An alternating tree automatonA = 〈Σ,Q, q0, δ, α〉
runs on full Σ-labeled Υ -trees (for an agreed set Υ of directions). It consists
of a finite set Q of states, an initial state q0 ∈ Q, a transition function δ, and
an acceptance condition α (a condition that defines a subset of Qω).

For a set Υ of directions, let B+(Υ × Q) be the set of positive Boolean
formulas over Υ ×Q; i.e., Boolean formulas built from elements in Υ ×Q using
∧ and ∨, where we also allow the formulas true and false and, as usual, ∧
has precedence over ∨. The transition function δ : Q×Σ → B+(Υ ×Q) maps
a state and an input letter to a formula that suggests a new configuration for
the automaton. For example, when Υ = {0, 1}, having

δ(q, σ) = (0, q1) ∧ (0, q2) ∨ (0, q2) ∧ (1, q2) ∧ (1, q3)

means that when the automaton is in state q and reads the letter σ, it can
either send two copies, in states q1 and q2, to direction 0 of the tree, or send a
copy in state q2 to direction 0 and two copies, in states q2 and q3, to direction
1. Thus, unlike nondeterministic tree automata, here the transition function
may require the automaton to send several copies to the same direction or
allow it not to send copies to all directions.

A run of an alternating automaton A on an input Σ-labeled Υ -tree 〈T, V 〉
is a tree 〈Tr, r〉 in which the root is labeled by q0 and every other node is
labeled by an element of Υ ∗ × Q. Unlike T , in which each node has exactly
|Υ | children, the tree Tr may have nodes with many children and may also
have leaves (nodes with no children). Thus, Tr ⊂ IN∗ and a path in Tr may
be either finite, in which case it contains a leaf, or infinite. Each node of Tr

corresponds to a node of T . A node in Tr, labeled by (x, q), describes a copy
of the automaton that reads the node x of T and visits the state q. Note that
many nodes of Tr can correspond to the same node of T ; in contrast, in a run of
a nondeterministic automaton on 〈T, V 〉 there is a one-to-one correspondence
between the nodes of the run and the nodes of the tree. The labels of a node
and its children have to satisfy the transition function. Formally, 〈Tr, r〉 is a
Σr-labeled tree where Σr = Υ ∗ ×Q and 〈Tr, r〉 satisfies the following:

1. ε ∈ Tr and r(ε) = (ε, q0), for some q0 ∈ Q0.
2. Let y ∈ Tr with r(y) = (x, q) and δ(q, V (x)) = θ. Then there is a (possibly

empty) set S = {(c0, q0), (c1, q1), . . . , (cn−1, qn−1)} ⊆ Υ ×Q, such that the
following hold:

104 O. Kupferman and M.Y. Vardi

• S satisfies θ, and
• for all 0 ≤ i < n, we have y · i ∈ Tr and r(y · i) = (x · ci, qi).

For example, if 〈T, V 〉 is a {0, 1}-tree with V (ε) = a and δ(q0, a) = ((0, q1) ∨
(0, q2))∧ ((0, q3)∨ (1, q2)), then the nodes of 〈Tr, r〉 at level 1 include the label
(0, q1) or (0, q2), and include the label (0, q3) or (1, q2). Note that if θ = true,
then y need not have children. This is the reason why Tr may have leaves.
Also, since there exists no set S as required for θ = false, we cannot have a
run that takes a transition with θ = false.

Each infinite path ρ in 〈Tr, r〉 is labeled by a word r(ρ) in Qω. Let inf (ρ)
denote the set of states in Q that appear in r(ρ) infinitely often. A run 〈Tr, r〉
is accepting iff all its infinite paths satisfy the acceptance condition. In Büchi
alternating tree automata, α ⊆ Q, and an infinite path ρ satisfies α iff inf (ρ)∩
α �= ∅. In parity alternating tree automata, α = 〈F1, F2, . . . , F2k〉, with F1 ⊂
F2 ⊂ · · · ⊂ F2k = Q, and and infinite path ρ satisfies α iff the minimal index
i for which inf (ρ) ∩ Fi �= ∅ is even. As with nondeterministic automata, an
automaton accepts a tree iff there exists an accepting run on it. We denote by
L(A) the language of the automaton A; i.e., the set of all labeled trees that
A accepts. We say that an automaton is nonempty iff L(A) �= ∅.

Formulas of branching temporal logic can be translated to alternating tree
automata [11, 33]. Since the modalities of conventional temporal logics, such
as CTL� and the µ-calculus, do not distinguish between the various successors
of a node (that is, they impose requirements either on all the successors of
the node or on some successor), the alternating automata that one gets by
translating formulas to automata are of a special structure, in which whenever
a state q is sent to direction υ, the state q is sent to all the directions υ ∈ Υ , in
either a disjunctive or conjunctive manner. Formally, following the notations
in [17], the formulas in B+(Υ × Q) that appear in the transitions of such
alternating tree automata are members of B+({�,�} ×Q), where �q stands
for

∧
υ∈Υ (υ, q) and �q stands for

∨
υ∈Υ (υ, q). As we shall see in Sect. 3, this

structure of the automata is crucial for solving the robust model-checking
problem. We say that an alternating tree automaton is symmetric if it has
the special structure described above. Theorem 1 below reviews the known
constructions.

Theorem 1. [11, 33]

(1) A CTL or an alternation-free µ-calculus formula ψ can be translated to a
symmetric alternating Büchi automaton with O(|ψ|) states.

(2) A µ-calculus formula ψ can be translated to a symmetric alternating parity
automaton with O(|ψ|) states and index O(|ψ|).

(3) A CTL� formula ψ can be translated to a symmetric alternating parity
automaton with 2O(|ψ|) states and index 3.

Verification of Open Systems 105

2.2 Modules

A module is a tuple M = 〈I,O,W,win, ρ, π〉, where I is a finite set of Boolean
input variables, O is a finite set of Boolean output variables (we assume that
I ∩O = ∅), W is a (possibly infinite) set of states, win ∈W is an initial state,
ρ : W ×2I → 2W \{∅} is a nondeterministic transition function, and π : W →
2O is a labeling function that assigns to each state its output. Note that we
require that for all w ∈ W and σ ∈ 2I , the set ρ(w, σ) is not empty. Thus, the
module can always respond to external inputs, though the response might be
to enter a “bad” state. The module M starts its execution in win. Whenever
M is in state w and the input is σ ⊆ I, it moves nondeterministically to one
of the states in ρ(w, σ). A module is open if I �= ∅. Otherwise, it is closed.
The degree of M is the minimal integer k such that for all w and σ, the set
ρ(w, σ) contains at most k states. If for all w and σ the set ρ(w, σ) contains
exactly k states, we say that M is of exact degree k.

Consider two modules M = 〈I,O,W,win, ρ, π〉 and M ′ =
〈I ′, O′,W ′, w′

in, ρ
′, π′〉, such that I ⊆ O′ and I ′ ⊆ O. Note that the all the

inputs of M are the outputs of M ′ and vice versa. The composition of M and
M ′ is the closed module M‖M ′ = 〈∅, O ∪O′,W ′′, w′′

in, ρ
′′, π′′〉, where

• W ′′ = W ×W ′.
• w′′

in = 〈win, w
′
in〉.

• For every state 〈w,w′〉 ∈ W ′′, we have ρ′′(〈w,w′〉, ∅) = ρ(w, π′(w′) ∩ I)×
ρ′(w′, π(w) ∩ I ′).

• For every state 〈w,w′〉 ∈ W ′′, we have π′′(〈w,w′〉) = π(w) ∪ π′(w′).

Note that since we assume that for all w ∈ W and σ ∈ 2I , the set ρ(w, σ) is not
empty, the composition of M with M ′ is deadlock free, thus every reachable
state has at least one successor. Note also that the restriction to M ′ that
closes M does not effect the answer to the robust-model-checking problem.
Indeed, if there is some M ′ such that M‖M ′ is open and does not satisfy ψ,
we can easily extend M ′ so that its composition with M would be closed and
would still not satisfy ψ.

We now define when a closed module M satisfies a formula. A closed
module M = 〈∅, O,W,win, ρ, π〉 can be induces an enabling tree 〈T, V 〉. The
enabling tree of M is a full infinite {",⊥}-labeled W -tree, thus T = W ∗.
Intuitively, 〈T, V 〉 indicates which behaviors of M are enabled by labeling
with " nodes that correspond to computations that M can traverse, and
labeling other

Every closed module M = 〈∅, O,W,win, ρ, π〉 induces an enabling tree
〈T, V 〉. The enabling tree of M is a full infinite {",⊥}-labeled W -tree, thus
T = W ∗. Intuitively, 〈T, V 〉 indicates which behaviors of M are enabled by
labeling with " nodes that correspond to computations that M can traverse,
and labeling other computations with ⊥. Formally, we define dir(ε) to be
win, and we label ε by ". Consider a node x ∈ T such that dir(x) = w and
V (x) = ". For every state w′ ∈W , we define

106 O. Kupferman and M.Y. Vardi

V (x.w′) =
[
" if w′ ∈ ρ(w, ∅).
⊥ otherwise.

Consider a node x = w1, w2, . . . , wm ∈ T . By the definition of V , the module
M can traverse the computation win, w1, w2, . . . , wm iff all the prefixes y of
x have V (y) = ". Indeed, then and only then we have w1 ∈ ρ(win, ∅), and
wi+1 ∈ ρ(wi, ∅) for all 1 ≤ j ≤ m− 1.

Following the definition of a product between two modules, the enabling
tree of M1‖M2 is a {",⊥}-labeled (W1 ×W2)-tree. Intuitively, M2 supplies
to M1 its input (and vice versa). Note that while every state in M1 may read
2|I1| different inputs and move to |W1| successors, every state in M1‖M2 may
have |W1| · |W2| successors. Note also that M2 may be nondeterministic. Ac-
cordingly, M2 cannot only prune transitions of M1 (by not providing the input
with which this transition is taken, causing the transition not to contribute
to a transition in the product); it can also split transitions of M1 (by reacting
nondeterministically to some output, causing a transition of M1 to contribute
several transitions in the product).

We now define when a closed module M satisfies a formula. Recall that the
enabling tree of M is a full infinite {",⊥}-labeled W -tree. As we shall see in
Sect. 3, the fact that the tree is full circumvents some technical difficulties. In
order to define when M satisfies a formula, we prune from the full tree nodes
that correspond to unreachable states of M . Since each state of M has at least
one successor, every node in the pruned tree also has at least one successor.
Consequently, we are able, in Sect. 3, to duplicate subtrees and go back to
convenient full trees. For an enabling tree 〈T, V 〉, the "-restriction of 〈T, V 〉
is the {"}-labeled tree with directions in W that is obtained from 〈T, V 〉 by
pruning subtrees with a root labeled ⊥. For a closed module M with output
signals in O, the computation tree of M is a 2O-labeled W -tree obtained from
the "-restriction of M ’s enabling tree by replacing the " label of a node with
direction w by the label π(w). We say that M satisfies a branching temporal
logic formula ψ over O iff M ’s computation tree satisfies ψ. The problem of
robust model checking is to determine, given M and ψ, whether for every M ′,
the composition M‖M ′ satisfies ψ (we assume that the reader is familiar with
branching temporal logic. We refer here to the logics CTL, CTL�, and the
µ-calculus [8, 26]).

3 Robust Model Checking

In this section we solve the robust-model-checking problem and study its
complexity. Thus, given a module M and a branching temporal logic formula
ψ, we check whether for every M ′, the composition M‖M ′ satisfies ψ. We
assume that M has finitely many states, but we allow M ′ to have infinitely
many states. Nevertheless, we show that if some environment that violates ψ
exists, then there exists also a violating environment with finitely many states

Verification of Open Systems 107

and a bounded branching degree. For a branching temporal logic formula ψ,
we denote by E(ψ) the number of existential subformulas (subformulas of
the form Eξ) in ψ. The “sufficient branching-degree” property for branching
temporal logics states that if a CTL� or a µ-calculus formula ψ is satisfiable,
then ψ is also satisfiable in a computation tree of branching degree E(ψ) + 1
[14, 9, 46]. We now extend this result and show that in robust model checking
of a module M with state space W it suffices to consider environments of
degree |W |(E(ψ) + 1). We note that while this bound is good enough for
obtaining tight complexity bounds for the robust satisfaction problem (other
factors of the problem dominate the complexity), we do not know whether
the bound is tight.

Note that, unlike the classical sufficient branching-degree property for
branching temporal logic, here we want to bound the branching degree of
the environment, rather than that of the composition M‖M ′. Consider, for
example, a module M with an initial state s0 that has two successors: a state
s1 with p ∈ π(s1) and a state s2 with p �∈ π(s2) In order for M to satisfy the
formula ψ = EX(p∧q)∧EX(p∧¬q), for an input variable q, we have to split
the state s1. Though E(ψ) = 2, such a split may result in a composition of
branching degree 4. It can, however, be achieved by composing M with an en-
vironment M ′ of branching degree 2, say ρ′(s′0, p) = {s′1, s′2}, with q ∈ π′(s1)
and q �∈ π(s2). Theorem 2 below shows that it is sufficient to compose M
with an environment of branching degree |W |(E(ψ)+1). Intuitively, it follows
from the fact that we never have to split a state into more than |W |(E(ψ)+1)
states.

Theorem 2. Consider a module M and a branching temporal logic formula
ψ over I ∪O. If there exists M ′ such that M‖M ′ |= ψ, then there also exists
M ′′ of exact degree |W |(E(ψ) + 1) such that M‖M ′′ |= ψ.

Proof (sketch): A temporal logic formula ψ is satisfiable iff there is a mod-
ule M of branching degree E(ψ) + 1 satisfying it. The proof is based on the
definition of a choice function, which maps each state and subformula that
is satisfied in the state and involves a disjunction (either an explicit disjunc-
tion like ϕ1 ∨ ϕ2 or an explicit disjunction like existential formulas or least
fixed-point) to the way it is satisfied (for example, to ϕ1 or ϕ2 in case of an
explicit disjunction, and to a particular successor in the case of an existential
formula). For CTL and the µ-calculus, it is shown in [9] and [46], respectively,
that the choice function may require a state s to have at most E(ψ) successors
in order to satisfy all the formulas that are satisfied in s. For CTL�, the need
is for E(ψ) + 1 successors [14], where the additional branch guarantees we do
not block the path along which path formulas are satisfied.

Our case is more complicated, as we need to bound the branching degree
of the model with which we compose M . By increasing the bound by a |W |
factor, we can use the techniques of [9, 46, 14]: the |W | factor guarantees that
if ψ is satisfied in M‖M ′ for some M ′, and the choice function with respect to
M‖M ′ maps different existential formulas that are associated with state 〈s, s′〉

108 O. Kupferman and M.Y. Vardi

to successors 〈t1, t′1〉, . . . , 〈tk, t′k〉 of 〈s, s′〉 with the same W -component (that
is, there is t ∈W such that ti = t for several i’s), then the choice function for
M‖M ′′ can use the same W -component as well.

We now use Theorem 2 to show that the robust-satisfaction problem for
branching temporal logics can be reduced to the emptiness problem for alter-
nating tree automata. For an integer k ≥ 1, let [k] = {1, . . . , k}.

Theorem 3. Consider a module M with state space W and branching tem-
poral logic formula ψ over I ∪ O. Let Aψ be the symmetric alternating tree
automaton that corresponds to ψ and let k = |W |(E(ψ) + 1). There is an
alternating tree automaton AM,ψ over 2I-labeled (2O × [k])-trees such that

1. L(AM,ψ) is empty iff M robustly satisfies ¬ψ.
2. AM,ψ and Aψ have the same acceptance condition.
3. The size of AM,ψ is O(|M | · |Aψ | · k).

Proof: Before we describe AM,ψ, let us explain the difficulties in the con-
struction and why alternation is so helpful solving them. The automatonAM,ψ

searches for a module M ′ of exact degree k for which M‖M ′ ∈ L(Aψ). The
modules M and M ′ interacts via the sets I and O of variables. Thus, M ′ does
not know the state in which M is, and it only knows M ’s output. Accordingly,
not all {",⊥}-labeled (W ×W ′)-trees are possible enabling trees of a product
M‖M ′. Indeed, AM,ψ needs to consider only trees in which the behavior of
M ′ is consistent with its incomplete information: if two nodes have the same
output history (history according toM ′’s incomplete information), then either
they agree on their label (which can be either ⊥ or a set of input variables), or
that the two nodes are outcomes of two different nondeterministic choices that
M ′ has taken along this input history. This consistency condition is nonregu-
lar and cannot be checked by an automaton [47]. It is this need, to restrict the
set of candidate enabling trees to trees that meet some non-regular condition,
that makes robust model checking in the branching paradigm so challenging.
The solution is to consider (2O × [k])-trees, instead of (W ×W ′)-trees. Each
node in such a tree may correspond to several nodes in a (W × W ′)-tree,
all with the same output history. Then, alternation is used in order to make
sure that while all these nodes agree on their labeling, each of them satisfy
requirements that together guarantee the membership in Aψ .

Let M = 〈I,O,W,win, ρ, π〉. For w ∈ W , σ ∈ 2I , and υ ∈ 2O, we define

s(w, σ, υ) = {w′ | w′ ∈ ρ(w, σ) and π(w′) = υ}.

That is, s(w, σ, υ) contains all the states with output υ that w moves to when
it reads σ. The definition of the automaton AM,ψ can be viewed as an exten-
sion of the product alternating tree automaton obtained in the alternating-
automata theoretic framework for branching time model checking [33]. There,
as we are concerned with model checking, there is a single computation tree

Verification of Open Systems 109

with respect to which the formula is checked, and the automaton obtained is a
1-letter automaton. The difficulty here, as we are concerned with robust model
checking, is that each environment induces a different computation tree, so
there are many computation trees to check, and a 1-letter automaton does
not suffice. Let Aψ = 〈2I∪O, Q, q0, δ, α〉. We define AM,ψ = 〈2I , Q′, q′0, δ′, α′〉,
where

• Q′ = W ×Q. Intuitively, when the automaton is in state 〈w, q〉, it accepts
all trees that are induced by an environment M ′ for which the composition
with M with initial state w is accepted by A with initial state q.

• q′0 = 〈win, q0〉.
• The transition function δ′ : Q′ × 2I → B+((2O × [k]) × Q′) is defined as

follows.
For all w, q, and σ, the transition δ′(〈w, q〉, σ) is obtained from δ(q, σ ∪
π(w)) by replacing:
– a conjunction �q′ by the conjunction

∧
υ∈2O

∧
j∈[k]

∧
w′∈s(w,σ,υ)(〈υ, j〉,

〈w′, q′〉), and
– a disjunction �q′ by the disjunction

∨
υ∈2O

∨
j∈[k]

∨
w′∈s(w,σ,υ)(〈υ, j〉,

〈w′, q′〉).
Consider, for example, a transition from the state 〈w, q〉. Let σ ∈ 2I be such
that δ(q, σ ∪ π(w)) = �s ∧�t. The successors of w that are enabled with
input σ should satisfy �s ∧�t. Thus, all these successors should satisfy s
and at least one successor should satisfy t. The state w may have several
successors in ρ(w, σ) with the same output υ ∈ 2O. These successors are
indistinguishable by M ′. Therefore, if M ′ behaves differently in such two
successors, it is only becauseM ′ is in a different state when it interacts with
these successors. The number k bounds the size of ρ(w, σ). Accordingly,M ′

can exhibit k different behaviors when it interacts with indistinguishable
successors of w. For each j ∈ [k], the automaton sends all the successors
of w in s(w, σ, υ) to the same direction 〈υ, j〉, where they are going to face
the same future. Since δ(q, σ∪π(w)) = �s∧�t, a copy in state s is sent to
all the successors, and a copy in state t is sent to some successor. Note that
as M is deadlock free, thus for all w ∈W and σ ∈ 2I , the set s(w, σ, υ) is
not empty for at least one υ ∈ 2O, the conjunctions and disjunctions in δ
cannot be empty.

• α′ is obtained from α by replacing every set participating in α by the set
W × α.

We now prove that L(AM,ψ) is empty iff M robustly satisfies ¬ψ. As-
sume first that L(AM,ψ) is not empty. We prove that there is an environ-
ment M ′ such that M‖M ′ |= ψ, thus M does not robustly satisfy ¬ψ.
Let 〈T, V 〉 be a 2I-labeled (2O × [k])-tree accepted by AM,ψ. We define
M ′ = 〈O, I, (2O × [k])∗, ε, ρ, π′〉, where for all states y ∈ (2O × [k])∗, we
have π′(y) = V (y), and for all υ ∈ 2O, we have ρ′(y, υ) = {y · 〈υ′, j〉 :
υ′ ∈ 2O and j ∈ [k]}. Thus, the output of the environment M ′ is induced

110 O. Kupferman and M.Y. Vardi

by 〈T, V 〉, and regardless of its input, M ′ branches to 2|O|k successor, each
extending the current state by a different pair in 2O × [k].

In order to prove that M‖M ′ satisfies ψ, we show how the accepting run
of AM,ψ on 〈T, V 〉 induces an accepting run of Aψ on the computation tree
of M‖M ′. Let 〈Tr, r〉 be the accepting run of AM,ψ on 〈T, V 〉. Consider the
((W × (2O× [k])∗)∗×Q)-labeled tree 〈Tr, r

′〉 in which for all x ∈ Tr, if r(x) =
〈y, 〈w, q〉〉, then r′(x) = 〈〈w, y〉, q〉. We claim that 〈Tr, r

′〉 is an accepting run of
Aψ on the computation tree of M‖M ′. In order to see that, note that the state
space of M‖M ′ is W × (2O × [k])∗ and its transition function ρ′′ is such that
ρ′′(〈w, y〉, ∅) = ρ(w, π′(y)) × ρ′(y, π(w)) =

⋃
υ∈2O(s(w, π′(y), υ)× {y · 〈υ′, j〉 :

υ′ ∈ 2O and j ∈ [k]}). Consider a node x ∈ Tr with r(x) = 〈y, 〈w, q〉〉. Let
υ ∈ 2O be such that dir(y) = 〈υ, j〉 for some j ∈ [k]. Each conjunction �q′ in
δ(q, υ ∪ π(w)) induces |ρ(w, υ)× 2O × [k]| successors to x, labeled by exactly
all the elements in {〈y · 〈υ′, j〉, 〈w′, q′〉〉 : υ′ ∈ 2O, j ∈ [k], and w′ ∈ ρ(w, υ)}.
Similarly, each disjunction �q′ in δ(q, υ ∪ π(w)) induces a single successor
to x, labeled by 〈y · 〈υ′, j〉, 〈w′, q′〉〉, for some υ′ ∈ 2O, j ∈ [k], and w′ ∈
ρ(w, υ). Now, in r′, we have r′(x) = 〈〈w, y〉, q〉, and each conjunction �q′ in
δ(q, υ ∪ π(w)) induces |ρ(w, υ)× 2O × [k]| successors to x, labeled by exactly
all the elements in {〈〈w′, y · 〈υ′, j〉〉, q′〉 : υ′ ∈ 2O, j ∈ [k], and w′ ∈ ρ(w, υ)}.
Similarly, each disjunction �q′ in δ(q, υ ∪ π(w)) induces a single successor to
x, labeled by 〈〈w′, y · 〈υ′, j〉〉, q′〉, for some υ′ ∈ 2O, j ∈ [k], and w′ ∈ ρ(w, υ).
Thus, r′ is a legal run of Aψ on the computation tree of M‖M ′. Finally, by
the definition of α′, the fact that 〈Tr, r〉 is accepting implies that so is 〈Tr, r

′〉.
For the other direction, assume that M does not robustly satisfy ¬ψ. Then,

by Theorem 2, there is an environment M ′ of branching degree k such that
M‖M ′ |= ψ. Let M ′ = 〈O, I,W ′, w′

in, ρ
′, π′〉. We define a 2I -labeled (2O× [k])-

tree 〈T, V 〉 accepted by AM,ψ. Intuitively, 〈T, V 〉 is an unwinding of M ′, and
we first define it as a W ′-labeled tree 〈T, f〉 as follows. For the root, we have
f(ε) = w′

in. For a node y · 〈υ, j〉, with f(y) = w′, let 〈w′
1, . . . , w

′
k〉 be an

ordering on the k successors of w′ in ρ′(w′, υ). We define f(y · 〈υ, j〉) = w′
j . In

order to get from 〈T, f〉 the 2I -labeled tree 〈T, V 〉, we define V (y) = π′(f(y))
for all y ∈ T . In the product of M with M ′, a node y in 〈T, V 〉 may be
paired with several states of M . In order to prove that 〈T, V 〉 is accepted by
AM,ψ, we show how an accepting run 〈Tr, r〉 of Aψ on the computation tree
of M‖M ′ induces an accepting run 〈Tr, r

′〉 of AM,ψ on 〈T, V 〉. Intuitively,
a copy of Aψ in state q that reads a node x ∈ (W × W ′)∗ with direction
〈w,w′〉 induces a copy of AM,ψ in state 〈w, q〉 that reads a node y ∈ T for
which f(y) = w′ and y is paired with w (and possibly with other states of
M , which induce additional copies that read y) in the product of M with
M ′. Let 〈T, g〉 be a 2W -labeling of T in which each node y is labeled by
the set of states that y is paired with in the product of M with M ′. Thus,
g(ε) = {w′

in} and g(y · 〈υ, j〉) =
⋃

w∈g(y) s(w, π
′(f(y)), υ). For a node y =

〈υ1, j1〉 · 〈υ2, j2〉 · 〈υl, jl〉 and 0 ≤ i ≤ l, let y[i] denote the prefix of length i of
y; thus y[i] = 〈υ1, j1〉·〈υ2, j2〉·〈υi, ji〉. We say that a node y ∈ T corresponds to

Verification of Open Systems 111

a node z = 〈w0, w
′
0〉, 〈w1, w

′
1〉, . . . , 〈wl, w

′
l〉 in the computation tree of M‖M ′

if |y| = l and for all 0 ≤ i ≥ l, we have that f(y[i]) = w′
i and wi ∈ g(y[i]).

In addition, for all 0 ≤ i ≤ l − 1, we have that wi+1 ∈ ρ(wi, π
′(wi)). Note

that y corresponds to |g(y)| nodes. On the other hand, only a single node
y ∈ T corresponds to z; indeed, w′

0, w
′
1, . . . , w

′
l fix a single sequence of output

signals (the 2O elements) and nondeterministic choices (the [k] elements). We
can now define the accepting run 〈Tr, r

′〉 of AM,ψ on 〈T, V 〉. Consider a node
x ∈ Tr with r(x) = 〈z, q〉. Let dir(z) = 〈w,w′〉 and let y be the single node in
T that corresponds to z. Then, r′(x) = 〈y, 〈w, q〉〉. The fact that 〈Tr, r

′〉 is a
legal run follows from the way we define the transition function of AM,ψ and
the labeling f and g. Finally, by the definition of α′, the fact that 〈Tr, r〉 is
accepting implies that so is 〈Tr, r

′〉.

We now consider the complexity bounds for various branching temporal
logics that follow from our algorithm.

Theorem 4. Robust model checking is

(1) EXPTIME-complete for CTL, µ-calculus, and the alternation-free µ-
calculus.

(2) 2EXPTIME-complete for CTL�.

Proof: Consider a branching temporal logic formula ψ of length n. Let Aψ

be the symmetric alternating tree automaton that corresponds to ψ. By The-
orem 1, Aψ is a Büchi automaton with O(n) states for ψ in CTL or in the
alternation-free µ-calculus, Aψ is a parity automaton with O(n) states and in-
dex O(n) for ψ in µ-calculus, and Aψ is a parity automaton with 2O(n) states
and index 3 for ψ in CTL�. In Theorem 3, we reduced the robust-model-
checking problem of M with respect to ¬ψ to the problem of checking the
nonemptiness of the automatonAM,ψ, which is of size |M |·|Aψ |·|W |·(E(ψ)+1),
and which has the same type as Aψ. The upper bounds then follow from the
fact the nonemptiness problem for alternating Büchi tree automata can be
solved in exponential time, whereas the one for an alternating parity automa-
ton with m states and index h can be solved in time mO(h) [40, 48, 31].

For the lower bounds, one can reduce the satisfiability problem for a
branching temporal logic to the robust-model-checking problem for that logic.
The details are similar to the reduction from satisfiability described for the re-
lated problem of module checking in [34]. Essentially, by the “bounded-degree
property” of branching temporal logic, a search for a satisfying model for ψ
can be reduced to a search for a satisfying 2I∪O-labeling of a tree with branch-
ing degree (E(ψ) + 1). Then, one can relate the choice of the labels to choices
made by the environment.

The implementation complexity of robust model checking is the complexity
of the problem in terms of the module, assuming that the specification is
fixed. As we discuss in Sect. 4, there are formulas for which robust model

112 O. Kupferman and M.Y. Vardi

checking coincide with module checking with incomplete information. Since
module checking with incomplete information is EXPTIME-hard already for
CTL formulas of that type, it follows that the implementation complexity of
robust model checking for CTL (and the other, more expressive, logics) is
EXPTIME-complete.

In our definition of robust satisfaction, we allow the environment to have
infinitely many states. We now claim that finite environments are strong
enough. The proof is based on a “finite-model property” of tree automata,
proven in [44] for nondeterministic tree automata and extended in [40, 30] to
alternating tree automata. As we discuss in Sect. 4, this result is of great im-
portance in the dual paradigm of supervisory control, where instead of hostile
environments we consider collaborative controllers.

Theorem 5. Given a module M and a branching temporal logic formula ψ,
if there is an infinite module M ′ of degree k such that M‖M ′ satisfies ψ, then
there also exists a finite module M ′′ of degree k such that M‖M ′′ satisfies ψ.

The alternating-automata-theoretic approach to CTL and CTL� model
checking is extended in [28] to handle Fair-CTL and Fair-CTL� [13]. Using
the same extension, we can solve the problem of robust model checking also
for handle modules augmented with fairness conditions.

4 Discussion

Different researchers have considered the problem of reasoning about open
systems. The distinction, in [22], between closed and open systems first led to
the realization that synthesis of open systems corresponds to a search for a
winning strategy in a game between the system and the environment [42], in
which the winning condition is expressed in terms of a linear temporal logic
formula. Transformation of the game-theoretic approach to model checking
and adjustment of verification methods to the open-system setting started,
for linear temporal logic, with the problem of receptiveness [7, 1, 16]. Essen-
tially, the receptiveness problem is to determine whether every finite prefix
of a computation of a given open system can be extended to an infinite com-
putation that satisfies a linear temporal property irrespective of the behavior
of the environment. In module checking [29, 34], the setting is again game-
theoretic: an open system is required to satisfy a branching temporal property
no matter how the environment disables its transitions. Verification of open
systems was formulated in terms of a game between agents in a multiagent
system in [2]. Alternating-time temporal logic, introduced there, enables path
quantifiers to range over computations that a team of agents can force the
system into, and thus enables the specification of multiagent systems.

Unlike [2], in which all the agents of the system are specified, our set-
ting here assumes that only one agent, namely the system, is given. We ask

Verification of Open Systems 113

whether there exists another agent, namely the environment, which is not yet
known, such that the composition of the system and the environment violates
a required property. Thus, while the outcome of the games that correspond to
alternating temporal logic are computations, here the outcomes are trees2. The
unknown environment may be nondeterministic, thus the branching structure
of the trees is not necessarily a restriction of the branching structure of the
system. Since the properties we check are branching, the latter point is crucial.

Robust satisfaction is closely related to supervisory control [45, 3]. Given a
finite-state machine whose transitions are partitioned into controllable and un-
controllable, and a specification for the machine, the control problem requires
the construction of a controller that chooses the controllable transitions so
that the machine always satisfies the specification. Clearly, checking whether
all the compositions M‖M ′ of a system M with an environment M ′ satisfies
a property ψ is dual to checking whether there is a controller M ′ such that
M‖M ′ satisfy the property ¬ψ. Thus, from a control-theory point of view,
the results of this paper generalize known supervisory-control methods to the
case where both the system and the controller are nondeterministic Moore
machines. In particular, our results imply that nondeterministic controllers
are more powerful than deterministic ones, and describe how to synthesize
finite-state controllers. An extension to our setting here, described from the
control-theory point of view, is the case where the controlled system may
work in a nonmaximal environment. Thus, we would like to know whether
M has a controller M ′ such that for all environments M ′′, the composition
M‖M ′‖M ′′ satisfies the specification. This setting is studied, for specifications
in CTL and CTL�, in [27], where it is shown that the additional requirement
makes the problem exponentially harder. Intuitively, the exponential increase
in the complexity follows from the extra nesting of alternating “exists” and
“for alls” in the description of the problem.

Recall that only nonuniversal specification formalisms are sensitive to the
distinction between open and closed systems. In particular, specifications in
linear temporal logic are not sensitive. One of the main advantages of branch-
ing temporal logics with respect to linear temporal logic is, however, the abil-
ity to mix universal and existential properties; e.g., in possibility properties
like AGEFp. Existential properties describe requirements that should hold in
some computations of the system. In [32], we show that nonuniversal proper-
ties can be partitioned into two classes, each with a different sensitivity to the
distinction between open and closed systems. We say that a temporal-logic
formula ϕ is existential if it imposes only existential requirements on the sys-
tem, thus ¬ϕ is universal. The formula ϕ is mixed if it imposes both existential
and universal requirements, thus ϕ is neither universal nor existential. While
universal formulas are insensitive to the system being open, we show that ex-
istential formulas are insensitive to the environment being nondeterministic.

2 Game logic [2] considers games in which the output are trees, yet both players
are known.

114 O. Kupferman and M.Y. Vardi

Thus, for such formulas, one can use the module-checking method. We study
the problems of determining whether a given formula is universal or mixed,
and show that they are both EXPTIME-complete. These result are relevant
also in the contexts of modular verification [19] and backwards reasoning [23].

Often, the requirement that M satisfies ψ in all environments is too restric-
tive, and we are really concerned in the satisfaction of ψ in compositions of M
with environments about which some assumptions are known. In the assume-
guarantee paradigm to verification, each specification is a pair 〈ϕ, ψ〉, and M
satisfies 〈ϕ, ψ〉 iff for every M ′, if M ||M ′ satisfies ϕ, then M‖M ′ also satisfies
ψ. When ϕ and ψ are given in linear temporal logic, M satisfies 〈ϕ, ψ〉 iff M
satisfies the implication ϕ→ ψ [41] (see also [25]). The situation is different in
the branching paradigm. For universal temporal logic, M satisfies 〈ϕ, ψ〉 iff ψ
is satisfied in the composition M‖Mϕ, of M with a module Mϕ that embodies
all the behaviors that satisfy ϕ [19, 28]. For general branching temporal logic,
the above is no longer valid. Robust model checking can be viewed as a special
case of the assume-guarantee setting, where ϕ is true. Robust model checking,
however, can be used to solve the general assume-guarantee setting. Indeed,
M satisfies 〈ϕ, ψ〉 iff M robustly satisfies the implication ϕ→ ψ. Thus, while
in the linear framework the assume-guarantee paradigm corresponds to usual
model checking, robustness is required in the branching framework.

Since assumptions about the environment and its interaction with the
systems are natural part of the specification in robust model checking, the
model studied in this chapter subsumes extensions that can be expressed in
terms properties of the environment and its interaction with the system. For
example, recall that our compositions here are deadlock free, thus deadlock
is modeled by entering some “bad” state. In order to check that M satisfies
a property ψ in all the compositions M‖M ′ in which this bad state is not
reachable, we have to perform robust model checking of M with respect to
the property (AGθ) → ψ, with θ = ¬bad , assuming that the bad state is
labeled by bad . In a similar way, we can specify in θ other global assumptions
about the composition, and thus model settings that support handshaking or
other forms of coordinations between processes, as well as more general global
actions, as in [20].

References

1. M. Abadi and L. Lamport. Composing specifications. ACM Transactions on
Programming Languages and Systems, 15(1):73–132, 1993.

2. R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
Journal of the ACM, 49(5):672–713, September 2002.

3. M. Antoniotti. Synthesis and verification of discrete controllers for robotics
and manufacturing devices with temporal logic and the Control-D system. PhD
thesis, New York University, New York, 1995.

Verification of Open Systems 115

4. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skele-
tons using branching time temporal logic. In Proc. Workshop on Logic of Pro-
grams, volume 131 of Lecture Notes in Computer Science, pages 52–71. Springer-
Verlag, 1981.

5. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244–263, January 1986.

6. E.M. Clarke, O. Grumberg, and M.C. Browne. Reasoning about networks with
many identical finite-state processes. In Proc. 5th ACM Symp. on Principles of
Distributed Computing, pages 240–248, Calgary, Alberta, August 1986.

7. D.L. Dill. Trace theory for automatic hierarchical verification of speed indepen-
dent circuits. MIT Press, 1989.

8. E.A. Emerson. Temporal and modal logic. In J. Van Leeuwen, editor, Hand-
book of Theoretical Computer Science, volume B, chapter 16, pages 997–1072.
Elsevier, MIT Press, 1990.

9. E.A. Emerson and J.Y. Halpern. Sometimes and not never revisited: On branch-
ing versus linear time. Journal of the ACM, 33(1):151–178, 1986.

10. E.A. Emerson and C. Jutla. On simultaneously determinizing and complement-
ing ω-automata. In Proc. 4th IEEE Symp. on Logic in Computer Science, pages
333–342, 1989.

11. E.A. Emerson and C. Jutla. Tree automata, µ-calculus and determinacy. In
Proc. 32nd IEEE Symp. on Foundations of Computer Science, pages 368–377,
San Juan, October 1991.

12. E.A. Emerson and C.-L. Lei. Modalities for model checking: Branching time
logic strikes back. In Proc. 20th ACM Symp. on Principles of Programming
Languages, pages 84–96, New Orleans, January 1985.

13. E.A. Emerson and C.-L. Lei. Temporal model checking under generalized fair-
ness constraints. In Proc. 18th Hawaii International Conference on System
Sciences, North Holywood, 1985. Western Periodicals Company.

14. E.A. Emerson and A. P. Sistla. Deciding branching time logic. In Proc. 16th
ACM Symp. on Theory of Computing, Washington, April 1984.

15. M.J. Fischer and L.D. Zuck. Reasoning about uncertainty in fault-tolerant dis-
tributed systems. In M. Joseph, editor, Proc. Symp. on Formal Techniques in
Real-Time and Fault-Tolerant Systems, volume 331 of Lecture Notes in Com-
puter Science, pages 142–158. Springer-Verlag, 1988.

16. R. Gawlick, R. Segala, J. Sogaard-Andersen, and N. Lynch. Liveness in timed
and untimed systems. In Automata, Languages, and Programming, Proc. 21st
ICALP, volume 820 of Lecture Notes in Computer Science, pages 166–177.
Springer-Verlag, 1994.

17. E. Graedel and I. Walukiewicz. Guarded fixed point logic. In Proc. 14th Symp.
on Logic in Computer Science, July 1999.

18. O. Grumberg and D.E. Long. Model checking and modular verification. In
Proc. 2nd Conference on Concurrency Theory, volume 527 of Lecture Notes in
Computer Science, pages 250–265. Springer-Verlag, 1991.

19. O. Grumberg and D.E. Long. Model checking and modular verification. ACM
Trans. on Programming Languages and Systems, 16(3):843–871, 1994.

20. J.Y. Halpern and R. Fagin. Modelling knowladge and action in distributed
systems. Distributed Computing, 3(4):159–179, 1989.

116 O. Kupferman and M.Y. Vardi

21. D. Harel, O. Kupferman, and M.Y. Vardi. On the complexity of verifying con-
current transition systems. In Proc. 8th Conference on Concurrency Theory,
volume 1243 of Lecture Notes in Computer Science, pages 258–272, Warsaw,
July 1997. Springer-Verlag.

22. D. Harel and A. Pnueli. On the development of reactive systems. In K. Apt, edi-
tor, Logics and Models of Concurrent Systems, volume F-13 of NATO Advanced
Summer Institutes, pages 477–498. Springer-Verlag, 1985.

23. T.A. Henzinger, O. Kupferman, and S. Qadeer. From pre-historic to post-
modern symbolic model checking. In Computer Aided Verification, Proc. 10th
International Conference, volume 1427 of Lecture Notes in Computer Science.
Springer-Verlag, 1998.

24. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
25. B. Jonsson and Y.-K. Tsay. Assumption/guarantee specifications in linear-time

temporal logic. In P.D. Mosses, M. Nielsen, and M.I. Schwartzbach, editors,
TAPSOFT ’95: Theory and Practice of Software Development, volume 915 of
Lecture Notes in Computer Science, pages 262–276, Aarhus, Denmark, May
1995. Springer-Verlag.

26. D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Sci-
ence, 27:333–354, 1983.

27. O. Kupferman, P. Madhusudan, P.S. Thiagarajan, and M.Y. Vardi. Open sys-
tems in reactive environments: Control and synthesis. In Proc. 11th Interna-
tional Conference on Concurrency Theory, volume 1877 of Lecture Notes in
Computer Science, pages 92–107. Springer-Verlag, 2000.

28. O. Kupferman and M.Y. Vardi. On the complexity of branching modular model
checking. In Proc. 6th Conference on Concurrency Theory, volume 962 of Lec-
ture Notes in Computer Science, pages 408–422, Philadelphia, August 1995.
Springer-Verlag.

29. O. Kupferman and M.Y. Vardi. Module checking. In Computer Aided Veri-
fication, Proc. 8th International Conference, volume 1102 of Lecture Notes in
Computer Science, pages 75–86. Springer-Verlag, 1996.

30. O. Kupferman and M.Y. Vardi. Module checking revisited. In Computer Aided
Verification, Proc. 9th International Conference, volume 1254 of Lecture Notes
in Computer Science, pages 36–47. Springer-Verlag, 1997.

31. O. Kupferman and M.Y. Vardi. Weak alternating automata and tree automata
emptiness. In Proc. 30th ACM Symp. on Theory of Computing, pages 224–233,
Dallas, 1998.

32. O. Kupferman and M.Y. Vardi. Robust satisfaction. In Proc. 10th Conference
on Concurrency Theory, volume 1664 of Lecture Notes in Computer Science,
pages 383–398. Springer-Verlag, August 1999.

33. O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach
to branching-time model checking. Journal of the ACM, 47(2):312–360, March
2000.

34. O. Kupferman, M.Y. Vardi, and P. Wolper. Module checking. Information and
Computation, 164:322–344, 2001.

35. L. Lamport. Sometimes is sometimes “not never” - on the temporal logic of
programs. In Proc. 7th ACM Symp. on Principles of Programming Languages,
pages 174–185, January 1980.

36. Z. Manna and A. Pnueli. Temporal specification and verification of reactive
modules. Technical report, Weizmann Institute, 1992.

Verification of Open Systems 117

37. A.K. McIver and C. Morgan. Demonic, angelic and unbounded probabilistic
choices in sequential programs. Acta Informatica, 37(4-5):329–354, 2001.

38. R. Milner. An algebraic definition of simulation between programs. In Proc. 2nd
International Joint Conference on Artificial Intelligence, pages 481–489. British
Computer Society, September 1971.

39. D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. Theoretical
Computer Science, 54:267–276, 1987.

40. D.E. Muller and P.E. Schupp. Simulating alternating tree automata by nonde-
terministic automata: New results and new proofs of theorems of Rabin, Mc-
Naughton and Safra. Theoretical Computer Science, 141:69–107, 1995.

41. A. Pnueli. In transition from global to modular temporal reasoning about pro-
grams. In K. Apt, editor, Logics and Models of Concurrent Systems, volume
F-13 of NATO Advanced Summer Institutes, pages 123–144. Springer-Verlag,
1985.

42. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th
ACM Symp. on Principles of Programming Languages, pages 179–190, Austin,
January 1989.

43. J.P. Queille and J. Sifakis. Specification and verification of concurrent systems
in Cesar. In Proc. 5th International Symp. on Programming, volume 137 of
Lecture Notes in Computer Science, pages 337–351. Springer-Verlag, 1981.

44. M.O. Rabin. Weakly definable relations and special automata. In Proc. Symp.
Math. Logic and Foundations of Set Theory, pages 1–23. North Holland, 1970.

45. P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems.
IEEE Transactions on Control Theory, 77:81–98, 1989.

46. R.S. Streett and E.A. Emerson. An automata theoretic decision procedure
for the propositional µ-calculus. Information and Computation, 81(3):249–264,
1989.

47. J.W. Thatcher. Tree automata: an informal survey. In A.V. Aho, editor, Cur-
rents in the theory of computing, pages 143–172. Prentice-Hall, Englewood Cliffs,
1973.

48. M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of
programs. Journal of Computer and System Science, 32(2):182–221, April 1986.

A Theory of Interactive Computation�

Jan van Leeuwen1 and Jǐŕı Wiedermann2

1 Utrecht University, Utrecht, The Netherlands
2 Academy of Sciences, Prague, Czech Republic

Summary. Many embedded systems behave very differently from classical machine
models: they interact with an unpredictable environment, they are “always on”, and
they change over time. This leads to the interesting question of what a computational
theory of interactive, evolving programs should look like. While the behavior of such
programs has been well-studied in concurrency theory, there has been much less
emphasis on their computational aspects. A theory of interactive computation must
necessarily lead beyond the classical, finitary models of computation.

We describe a simple model of interactive computing consisting of one compo-
nent C and an environment E, interacting using single streams of input and output
signals and with a number of realistic conditions in effect. The model enables us
to study the computational implications of interaction, building on the theory of
ω-automata. Viewing components as interactive transducers, we show that the in-
teractive capabilities of components for recognition and generation are equivalent.
We also show that all interactively computable functions are limit-continuous and
that interactively computable bijections have interactively computable inverses. The
model elegantly characterizes interactive computation in a stream setting.

1 Introduction

Modern computer systems are built from components that communicate and
compute, while interacting with their environment. Consequently, many inter-
active systems behave very differently from traditional models of computation:
their input is unpredictable and is not specified in advance, they never ter-
minate (unless a fault occurs), and they may even change over time. In this
chapter we derive some general results for the kind of interactive computing
behavior which (components of) interactive systems can exhibit.

� This research was partially supported by project BRICKS (Basic Research for
Creating the Knowledge Society), by Institutional Research Plan AV0Z10300504
and by grant No. 1ET100300517 within the National Research Program “Infor-
mation Society”.

120 J. van Leeuwen and J. Wiedermann

The purpose of an interactive system is usually not to compute some final
result, but to react to or interact with the environment in which the system
is placed and to maintain a well-defined action–reaction behavior. This is an
essential feature of e.g., embedded systems (cf. [18, 19]). In the late 1970s
and early 1980s, this reactive behavior of systems received much attention in
the theory of concurrent processes (see Manna and Pnueli [11] and Milner
[12, 13]). Pnueli [15] (p. 511) writes:

Reactivity characterizes the nature of interaction between the system
and its environment. It states that this interaction is not restricted to
accepting inputs on initiation and producing outputs on termination.
In particular, it allows some of the inputs to depend on intermediate
outputs.

Wegner [32, 33] called for a more computational view of reactive sys-
tems, claiming that “the intuition that computing corresponds to formal com-
putability by Turing machines . . . breaks down when the notion of what is
computable is broadened to include interaction” ([33], p. 318). Formal as-
pects of Wegner’s theory of interaction were studied in, e.g., Wegner and
Goldin [34, 35] and in Goldin et al. [5].

Irrespective of the claim, it is of great interest to study the computational
features of reactive, or interactive, systems. In [28] we argued that Turing ma-
chines indeed do not seem to fully adequately model the features of modern
computing systems anymore and that, under suitable but realistic assump-
tions, modern systems may have super-Turing capabilities, at least theoret-
ically (see also [36]). Stepney et al. [21] went even further and identified six
classical paradigms in computing that we should no longer take for granted,
including the Turing machine paradigm, posing it as a grand challenge for
computer science to develop a general theory of “nonclassical” computation.

In this chapter we give a simple model of interactive computing, consisting
of a component C and an environment E interacting using single streams of
input and output signals and with a number of realistic conditions in effect.
The notion of “component” that we use is very similar to Broy’s [1] but we
restrict ourselves to deterministic components. We identify a special condition,
called the interactiveness condition, which will be imposed throughout. The
condition states that C is guaranteed to always give a meaningful output
within a finite amount of time after receiving a meaningful input from E and
vice versa. The model is described in detail in Sect. 2. Our aim is only to
analyze the capabilities of the model from the perspective of computability
theory.

In the model we prove a number of general results for the interactive
computing behavior which a component C can exhibit, assuming that E can
behave arbitrarily and unpredictably. In most results we assume that C is a
program with unbounded memory, with a memory contents that is building
up over time and that is never erased unless the component explicitly does
so. This compares to the use of persistent Turing machines by Goldin [4] (see

A Theory of Interactive Computation 121

also [6]) and Kosub[9]. No special assumptions are made about the ‘speed’ at
which C and E operate and generate responses, except that they are using
some common underlying clock. In Sects. 3 and 4 we show how interactive
computing can lead to super-Turing behavior.

Viewing components as interactive transducers of the signals that they
receive we show in Sect. 5 that, using suitable definitions, recognition and
generation coincide just like they do for Turing machines. The proof is more
intricate than in the latter case and depends on the special operational as-
sumptions in the model. Finally, in Sect. 6 we define a general notion of
interactively computable functions. We prove that interactively computable
functions are limit-continuous, using a suitable extension of the notion of con-
tinuity known from the semantics of computable functions. We also prove an
interesting inversion theorem which states that interactively computable 1-1
functions have interactively computable inverses.

The study of machines working on infinite input streams or ω-words is by
no means new and has a sizable literature, with the first studies dating back to
the nineteen sixties and seventies (cf. Thomas [22], Staiger [20], or Perrin and
Pin [14]). The model studied in the present chapter exploits ideas from the
theory of ω-automata, but a number of features are added to better capture
the intuitive notions of interactiveness. We prove that, using analogs from
the classical theory of ω-languages, the recognition and generation capabili-
ties are equivalent for interactive components and e.g., that the interactively
recognizable languages are topologically closed, considering {0, 1}ω as a topo-
logical space with the normal product topology. These connections provide
the theory of interactive computing with a firm basis in the known frame-
work of ω-computations. A preliminary version of the material in this chapter
appeared in [25, 26].

2 A Model of Interactive Computation

Let C be a component (a software agent or a computational device) that
interacts with an environment E. We assume that C and E interact by ex-
changing signals (symbols). Although general interactive systems do not need
to have a limit on the nature and the size of the signals that they exchange,
we assume here that the signals are taken from a fixed and finite alphabet.
More precisely:

(Alphabet) C and E interact by exchanging symbols from the alphabet
Σ = {0, 1, τ, �}.

Here 0 and 1 are the classical bits, τ is the “silent” or empty symbol, and �
is the fault or error symbol. Instead of the bits 0 and 1, one could use any
larger, finite choice of symbols but this is easily coded back into bits.

In order to describe the interactions between C and E we assume a uni-
form time-scale of discrete moments. C and E are assumed to interact in the

122 J. van Leeuwen and J. Wiedermann

following sense. At any time t, E can send a symbol of Σ to C and C can send
a symbol of Σ to E. It is possible that E or C remains silent for a certain
amount a time, i.e., that either of them does not send any active signal during
some consecutive time moments. During these moments E or C is assumed to
send the symbol τ , just to record this. For the symbol � a special convention
is used:

(Fault rule) If C receives a symbol � from E, then C will output a �
within a finite amount of time after this as well (and vice versa).

If no �’s are exchanged, the interaction between E and C is called fault-free
(error-free).

Some further assumptions are necessary. First of all, we assume that when
E (C) sends a signal to C (E) during time t, then C (E) “knows” this signal
from the next time-moment onward. This does not necessarily mean that E or
C has processed the symbol in any meaningful way by time t+1, but we assume
that the signal has entered their circuitry somehow. Second, to disambiguate
the interaction, we assume that the interaction is always initiated by E, i.e.,
at any moment E sends its signal to C first and C sends its signal to E next.
It means that the communication between E and C can be described by two
sequences e = e0e1 . . . et . . . and c = c0c1 . . . ct . . ., with et denoting the signal
that E sends to C at time t and ct denoting the signal that C sends to E at
time t. Here e may also be regarded as the “interactive input stream” and c as
the corresponding “interactive output stream”. When E or C is silent at time
t, then the corresponding symbol is τ (“empty”). If two infinite sequences e
and c correspond to the actual interactions that take place over time, we say
that the sequences represent an interactive computation of C in response to
the (unpredictable) environment E. C is called an interactive component. We
let e and c denote the sequences e and c without the τ ’s.

In an interactive computation, we assume that C acts according to some
program that may evolve deterministically over time, in a way depending on
the history of its interaction with E. We assume likewise that the signal E
sends to C during time t depends on what E remembers from the interaction
with C and on ct−1, but also on its “mood” or the situation (which may vary
over time) which can lead it to send any symbol it wants. Thus, E can be
totally indeterministic and unpredictable in generating its next signal. For
later reference we write this as Et−1(ct−1) $ et, where Et−1 represents all
“knowledge” that E possesses at the moment that it generates the response
for output to C at time t and all situations that can lead it to generate et

(which will be an unpredictable choice from the symbols of Σ). The signal
C subsequently sends to E during time t depends deterministically on the
internal state of C at time t− 1 and on the signal C received at that time.

Note that at time t, E and C can in principle be assumed to know all
signals that were sent at previous times. Thus, C’s output at time t can
depend on C’s program, on e0e1 . . . et−1 and, implicitly, on c0c1 . . . ct−1. The
same holds for E, except that one would also have to know the “situations”

A Theory of Interactive Computation 123

of E that underly its unpredictable response at the earlier time moments. We
assume that E and C somehow generate their e0 and c0 signals spontaneously,
with C always generating c0 deterministically, e.g., always as τ .

We assume the following property as being characteristic for interactive
computations: E sends signals to C infinitely often, and C is guaranteed to
always send a nonempty (non-τ) output signal within a finite mount of time
after receiving a nonempty (non-τ) input signal from E.

(Interactiveness) For all times t, when E sends a non-τ signal to C at
time t, then C sends a non-τ signal to E at some time t′ with t′ > t
(and vice versa).

The condition of interactiveness is assumed throughout this chapter. Note
that, in the given definition, we do not assume any special causal relationship
between the signal sent (by E or C) at time t and the signal sent (by C or E
respectively) at time t′. Assuming interactiveness, the behavior of a compo-
nent C with respect to E is a relation on infinite sequences over Σ. It consists
of the (deterministic) responses that C may have to all possible behaviors
that E may exhibit. We assume that E sends a non-τ signal at least once,
thus always triggering an interaction sequence with infinitely many nonempty
signals. The question whether a given component fulfills the interactiveness
condition is in general undecidable (cf. Theorem 3).

Definition 1. An interaction pair of C and E is any pair (e, c) such that
e = e0e1 . . . et . . . and c = c0c1 . . . ct . . . represent an interactive computation
of C in response to E.

Sequences of τ ’s can be meaningful to C and E, e.g., for internal computa-
tion or timing purposes. A given infinite sequence of nonempty input signals
may lead to a multitude of different sequences c, depending on the way E
cares to intersperse the sequence with silent steps. Note again that E is fully
unpredictable in this respect. However, the assumed interactiveness forces E
to keep sequences of intermittent silent steps finite. For the purposes of this
chapter we assume that E sends a nonempty signal at every moment in time,
i.e., e = e for all sequences of environment input that we consider in the
model.

(Full environmental activity) At all times t, E sends a non-τ signal
to C.

We retain the possibility for C to emit τ ’s and do internal computations
for some time without giving nonempty output, even though interactiveness
forces C to give some nonempty output after some finite amount of time.

We assume that C’s behavior can be effectively simulated, in the context of
a simulation of any behavior of E. We make the following further assumptions
about C: it has only one channel of interaction with E, it admits multithread-
ing (allowing it to run several internal processes simultaneously), and it has a

124 J. van Leeuwen and J. Wiedermann

fixed but otherwise arbitrary speed of operation (i.e., any nonzero speed is al-
lowed which comes with the component). As a consequence it will be possible
for C to have a foreground process doing e.g., the I/O-operations very quickly
and have one or more background processes running, at a slower pace. The
following crucial assumption is made, as in classical computability theory:

(Unbounded component memory) C works without any a priori bounds
on the amount of available memory, i.e., its memory space is always
finite but potentially unbounded.

Thus C’s memory is never reset during an interactive computation, unless its
program explicitly does so. We allow C to build up an “infinite” database of
knowledge that it can consult in the course of its interactions with E.

Despite the assumed generality, it is conceivable that E is constrained in
some way and can generate at some or any given moment only a selection of
the possible signals from Σ. (We assume that the interactiveness is never in
danger, i.e., there should always be at least one allowable nonempty symbol
that E can send.) In this case a component may be acting on a very irregular
subset of the possible input sequences. If this is the case, one may wish to
assume that the constrained behavior of E can be checked algorithmically
afterwards (i.e., every time after E has generated a response).

(Algorithmicity of environmental input) When an arbitrary infinite
sequence over Σ is supplied as input to C, symbol after symbol, it can
be algorithmically verified alongside of it whether this sequence could
have been output by E, taking into account the stepwise interaction
of C and E and any constraint which may have restricted E’s choice
of signals at any given moment.

Algorithmicity means that there is some program E which evolves over time
and which answers, possibly after some finite delay, whether Et−1(ct−1) $ et

or not, given t and et as input and knowing the whole interaction history up
until t− 1 and assuming the given sequence was correct up until then.

The assumption of algorithmicity does not interfere with or change the
unpredictability of E as it generates its signals in any interactive computation.
The assumption only implies that, regardless of E’s actual behavior, there
is an algorithmic way to verify afterwards that a sequence could have been
generated by E, e.g., in a simulation. As soon as the sequence deviates and
becomes inconsistent with E’s possible actions, the verifier is assumed to
output an error message from that point onward. Without constraints there
is no need for a special verifier, but when constraints are in effect there is.

It will be helpful to describe an interactive computation of C and E also
as a mapping (transduction) of streams e (of environment inputs) to streams
c (of component responses). In this way C acts as an ω-transducer on infi-
nite sequences, with the additional interactive behavior as described. In the
following definition, recall that we assumed that e = e.

A Theory of Interactive Computation 125

Definition 2. The behavior of C with respect to E is the set TC = {(e, c)|(e, c)
is an interaction pair of C and E}. If (e, c) is an interaction pair of C and E,
then we also write TC(e) = c and say that c is the interactive transduction of
e by C.

Definition 3. A relation T on infinite sequences is called interactively com-
putable if and only if there is an interactive component C such that T = TC.

Seemingly simple transductions may be impossible in interactive computa-
tion, due to the strict requirement of interactiveness and the unpredictability
of the environment. Let 0� denote the set of finite sequences of 0’s (including
the empty sequence), {0, 1}� the set of all finite sequences over {0, 1}, and
{0, 1}ω the set of infinite sequences or streams over the alphabet {0, 1}.
Example. We claim that no (interactive) component C can exist that trans-
duces input streams of the form 1α1β1γ to output streams of the form 1β1α1γ,
with α, β ∈ 0� and γ ∈ {0, 1}ω. Note that the mapping would amount to swap-
ping the first and the second block of zeroes in a sequence starting with a 1,
empty blocks allowed. Suppose by way of contradiction that there was a com-
ponent C that could do this. Consider how C would respond to an input
100 . . . from E, assuming that E keeps sending 0’s until further notice. By
interactiveness, C must send a nonempty signal to E at some time, and we
may assume without loss of generality that the first nonempty signal it sends
is a 1. By interactiveness C must generate further nonempty signals. Denote
the second nonempty symbol it sends by σ. Now let E act as follows. If σ = 0
(meaning that C’s output starts with 10), then let E switch to sending 11 (im-
plying that β is empty) and anything it wants after that. If σ = 1 (meaning
that C’s output starts with 11), then let E switch to sending 101 (implying
that β = 0) and anything it wants after that. If σ = �, the computation clearly
is not fault-free. It follows that in all cases C has been fooled into sending the
wrong output.

3 Interactively Computable Relations

Given a stream y ∈ {0, 1}ω and t ≥ 0, let preft(y) be the length-t prefix of
y. For finite and infinite sequences y we write x ≺ y if x is a finite and strict
prefix of y. We write x & y if x ≺ y or x = y. We rephrase the common
definition of monotonic functions (cf. [37]) for the case of partial functions as
follows.

Definition 4. A partial function g : {0, 1}� → {0, 1}� is called monotonic if
for all x, y ∈ {0, 1}�, if x ≺ y and g(y) is defined then g(x) is defined as well
and g(x) & g(y).

The following observation captures that interactive computations can be
viewed as classical, monotonic computations taken to infinity.

126 J. van Leeuwen and J. Wiedermann

Theorem 1. If a relation T ⊆ {0, 1}ω × {0, 1}ω is interactively computable,
then there exists a classically computable, monotonic partial function g :
{0, 1}� → {0, 1}� such that (u, v) ∈ T if and only if for all t ≥ 0: g(preft(u))
is defined, limt→∞ |g(preft(u))| = ∞ and for all t ≥ 0, g(preft(u)) ≺ v.

Proof. Let T = TC . We define g by designing a Turing machine Mg for it.
Given an arbitrary finite sequence x = x0x1 . . . xt−1 ∈ {0, 1}� on its input
tape, Mg operates as follows. Mg simulates C using the program of C, feeding
it the consecutive symbols of x as input and checking every time it does so
whether the next symbol is an input signal that E could have given on the basis
of the interaction with C up until this moment. To check this, Mg employs
the verifier E which exists by the assumed algorithmicity of E (and which
adapts along with the simulation). As long as no inconsistency is detected,
Mg continues with the simulation of the interaction of E and C. Whenever
the simulation leads C to output a signal 0 or 1, Mg writes the corresponding
symbol to its output tape. When the simulation leads C to output a τ , Mg

writes nothing. When the simulation leads C to output a � or when the verifier
detects that the input is not consistent with E’s possible behavior, then Mg is
sent into an indefinite loop. If Mg has successfully completed the simulation
up to and including the processing of the final input symbol xt−1, then Mg

halts. It follows that Mg terminates if and only if x is a valid beginning of
an interaction of E with C, with C’s response appearing on the output tape
when it halts. The result now follows by observing what properties of g are
implied when (u, v) ∈ T . The constraints capture the interactiveness of C and
E and the fact that the interaction must be indefinite. It is clear from the
construction that g is monotonic. �

For at least one type of interactively computable relation can the given
observation be turned into a complete characterization. Let a relation T ⊆
{0, 1}ω×{0, 1}ω be called total if for every u ∈ {0, 1}ω there exists a v ∈ {0, 1}ω

such that (u, v) ∈ T . Behaviours of interactive components in environments
without constraints are always total relations. In the following result the
monotonicity of g is not assumed beforehand.

Theorem 2. Let T ⊆ {0, 1}ω × {0, 1}ω be a total relation. T is interactively
computable if and only if there exists a classically computable total function
g : {0, 1}� → {0, 1}� such that (u, v) ∈ T if and only if limt→∞ |g(preft(u))| =
∞ and for all t ≥ 0, g(preft(u)) ≺ v.

Proof. The “only if” part follows from the proof of Theorem 1. If T is total,
then the constructed function g is seen to be total and the stated conditions
are satisfied.

For the “if” part, assume that T ⊆ {0, 1}ω × {0, 1}ω is a total relation,
that g is a computable total function and that for all (u, v) ∈ {0, 1}ω×{0, 1}ω,
(u, v) ∈ T if and only if limt→∞ |g(preft(u))| = ∞ and for all integers t ≥
0, g(preft(u)) ≺ v. To prove that T is interactively computable, design a
component C that operates as follows.

A Theory of Interactive Computation 127

While E feeds input, a foreground process of C keeps buffering the input
symbols in a queue q = q0q1 . . . qt for t → ∞. Let r ∈ {0, 1}� be the finite
output generated by C at any given moment. We will maintain the following
invariant: q is a prefix of u and r a prefix of v, for some pair (u, v) ∈ T .
Letting q grow into “u” by the input from E, we let r grow into “v” by letting
C carry out the background process P explained below every once in a while.
C keeps a counter cq that is initialized to 1 before any call to P has occurred.
C outputs “empty” signals as long as a call to P is running.

When called, P copies the length-cq prefix of q into the variable x, it
increments cq by 1, and computes g(x) using the subroutine for g. (Note that
the sequence now in x extends the sequence on which the previous call of P
operated by precisely one symbol.) By totality of g the subroutine ends in
finitely many steps. Let y = g(x) be the output sequence. By totality of T
and the second condition on g only two cases can occur: r ≺ y or y & r. If
r ≺ y, then C outputs the symbols by which y extends r one after the other,
updates r to account for the new output, and calls P again after it has done
so. If y & r, C does not generate any special output and simply moves on
to another call of P , provided at least one further input symbol has entered
the queue in the meantime (which will be so by the assumed environmental
activity). Note that every call to P maintains the invariant.

Because limt→∞ |g(preft(u))| = ∞, there will be infinitely many calls to
P in which the case r ≺ y occurs. Thus r will grow to infinity, with the output
generated by C being precisely limt→∞ r = v. �

For total relations T ⊆ {0, 1}ω × {0, 1}ω, we say that T is implied in the
limit by g if T and g are related as in Theorem 2. Combining Theorems 1
and 2 we can express the relationship between interactive computability and
monotonicity very succinctly: the interactively computable total relations are
precisely the relations implied in the limit by classically computable, monotonic
total functions on {0, 1}�. We return to this characterization in Sect. 6.

It is realistic to assume that the initial specification of C is a program
written in some acceptable programming system. For example, the internal
operation of C might be modeled by a persistent Turing machine of some sort
(as in [4, 34]). In our model, the underlying program itself may evolve as well
but we assume that it does so only in a way that can be simulated. It is easily
argued that interactiveness, as a property of arbitrary component programs, is
recursively undecidable. The following stronger but still elementary statement
can be observed.

Theorem 3. The set of interactive programs is not recursively enumerable.

Proof. Let S = {π|π is the program of a component C that is interactive}.
Suppose that S is recursively enumerable. We use a simple diagonal argu-
ment to obtain a contradiction. Let π1, π2, . . . be a recursive enumeration of
S. Consider the programs πi and observe how they operate when the envi-
ronment just feeds 1’s to them (without empty signals). We now construct

128 J. van Leeuwen and J. Wiedermann

the following program π, designed to be different from all πi’s. We let π react
the same regardless of the input that it receives from E, but it is useful to
imagine it working under the same environment input of all 1’s. Let r and ri

denote the finite sequences of output generated by π and πi in the course of
the computation.

As soon as π receives signals from E, it starts. Now π proceeds in stages,
starting with stage 1. During stage i, π simulates the interactive computation
of πi until its output sequence ri has become longer than r (the output of π
so far). During the simulation π only outputs τ ’s. If, during the simulation of
πi, E would decide to stop inputting 1’s based on πi’s response and switch to
giving an input signal different from a 1, then the simulation is also stopped,
at this point.

Consider the cases that can occur in stage i. Assume that E could input
1’s all the way (in the simulation of πi). Then the situation that ri becomes
longer than r will occur. We can assume w.l.o.g. that, when this happens,
ri = αδ with |α| = |r| and δ ∈ {0, 1}. At this point, let π output a signal
δc ∈ {0, 1} different from δ (turning r into rδc). If E could not/did not input
1’s the whole way in the simulation, let π output any nonempty symbol, say
a 1. After this, π goes to stage i+ 1.

By interactiveness, every stage of π is finite and thus π itself is interactive.
The construction guarantees that π is different from every πi and thus π �∈ S.
This contradicts the definition of S. �

4 Interactive Recognition

Interactive systems typically perform tasks in monitoring, i.e., in the online
perception or recognition of patterns in infinite streams of signals from the
environment. The notion of recognition is well-studied in the theory of ω-
automata (cf. [10, 20, 22, 23]). It is usually based on the automaton passing
an infinite number of times through one or more accepting states during the
processing of the infinite input sequence. In interactive systems this is not de-
tectable and thus this kind of criterion is not applicable. Instead, a component
is normally placed in an environment that has to follow a certain specification
and the component has to observe that this specification is adhered to. This
motivates the following definition.

Definition 5. An infinite sequence α ∈ {0, 1}ω is said to be recognized by C
if (α, 1ω) ∈ TC.

The definition states that, in interactive computation, an infinite sequence
α is recognized if C outputs a 1 every once in a while and no other symbols
except τ ’s in between, where E generates the infinite sequence α as input
during the computation. The criterion is closely related to the notion of 1′-
acceptance for ω-sequences [10, 20] which requires an ω-automaton to accept

A Theory of Interactive Computation 129

by always staying in a designated subset of states while processing the infinite
input sequence.

In interactive computation, a recognized sequence can never contain a �
because in finite time it would lead C to output a � as well, causing C to
reject the input from E. We can also assume that C does not output any �
itself either for, if it did, we might as well have it output a 0 instead without
affecting the definition of recognition.

Definition 6. The set interactively recognized by C with respect to E is the
set JC = {α ∈ {0, 1}ω|α is recognized by C}.

Definition 7. A set J ⊆ {0, 1}ω is called interactively recognizable if there
exists an interactive component C such that J = JC.

Considering Wegner’s claim that interactive computing is more powerful
than classical computation (cf. Sect. 1), the question arises whether this is
somehow reflected in the recognition power of interactive components. To a
large extent the super-Turing power of interactive computation comes from
the infinite behavior, but at the same time there are new limitations. We prove
a number of results that all have their analogies for ω-automata but which we
show here for the case of interactive components.

Lemma 1. The following sets are interactively recognizable:
(i) J = {α ∈ {0, 1}ω|α contains at most k ones}, for any fixed integer k,
(ii) J = {α ∈ {0, 1}ω|α has a 1 only in the prime number positions}.
The following sets are not interactively recognizable:
(iii) J = {α ∈ {0, 1}ω|α contains finitely many 1’s},
(iv) J = {α ∈ {0, 1}ω|α contains infinitely many 1’s},
(v) J = {α ∈ {0, 1}ω|α contains precisely k ones}, for any fixed integer k ≥ 1,
(vi) J = {α ∈ {0, 1}ω|α contains at least k ones}, for any fixed integer k ≥ 1.

Proof. (i) Let C output a 1 with every 0 that it receives from E, and let it
continue doing so until after the k’th 1 that it sees. Let C switch to outputting
0’s after it receives the (k + 1)-st 1. C is interactive and precisely recognizes
the set J .
(ii) Left to the reader.
(iii) Suppose there was an interactive component C that recognized J . Let E
input 1’s. By interactiveness C must generate a nonempty signal σ sometime.
E can then fool C as follows. If σ = 0, then let E switch to inputting 0’s from
this moment onward: the resulting input belongs to J but C does not respond
with all 1’s. If σ = 1, then let E continue to input 1’s. Possibly C outputs a
few more 1’s but there must come a moment that it outputs a 0. If it didn’t
then C would recognize the sequence 1ω �∈ J . As soon as C outputs a 0, let
E switch to inputting 0’s from this moment onward: the resulting input still
belongs to J but C does not recognize it properly. Contradiction.
(iv) Suppose there was an interactive component C that recognized J . Let E
input 0’s. Now argue as in the preceding case.

130 J. van Leeuwen and J. Wiedermann

(v) Suppose there was an interactive component C that recognized J , the set
of infinite sequences with precisely k 1’s. Let E input k − 1 1’s followed by
all 0’s for a while from then onward. By interactiveness C must generate a
nonempty signal σ at some moment in time. E can now fool C as follows. If
σ = 0, then let E send a 1 followed by all 0’s from then onward: the input
sequence clearly belongs to J but isn’t recognized properly by C. If σ = 1,
then let E continue to send 0’s. Possibly C outputs a few more 1’s but there
must come a moment that it outputs a 0. If it didn’t then C would recognize
the sequence 1k−10ω �∈ J . As soon as C outputs a 0, let E switch to inputting
a 1 followed by all 0’s from then onward: the input sequence again clearly
belongs to J but isn’t recognized properly by C.
(vi) Analogous to (v). With k = 1 this example was shown not to be 1′-
definable in [2], Lemma 7.17 (b). �

The proof of Lemma 1 is based the following underlying fact: if J ⊆ {0, 1}ω

contains α0�1M as a sublanguage for some nonempty set M ⊆ {0, 1}ω but
does not contain α0ω for some finite α ∈ {0, 1}�, then J is not interactively
recognizable.

The power of interactive recognition is expressed in the following obser-
vations. We assume again that the internal operation of the components we
consider is specified by some program in an acceptable programming system.

Theorem 4. J = {0n1{0, 1}ω|n ∈ A} ∪ 0ω is interactively recognizable if and
only if A is the complement of a recursively enumerable set.

Proof. Let J be of the given form and let C interactively recognize the se-
quences of J . Observe that C must have the following behavior: if E has sent
input 0n1 at some point in time, then n ∈ A if and only C recognizes the
sequence no matter what further input signals follow. Likewise n �∈ A if and
only if C does not recognize the sequence, no matter what further signals
follow. Let π be the program of C.

Now recursively enumerate the complement of A as follows. Enumerate the
integers n and for every n simulate π on the input 0n1 from the environment,
using any extension of the sequence when these inputs are called for by π
(noting here that E must be able to generate any such extension). After
the simulation of C has received the complete 0n1 as input, output n if, or
otherwise as soon as, the simulation of C has led to an output symbol 0. The
latter happens only for the elements of the complement of A.

Conversely, let A be the complement of a recursively enumerable set. Let
π be the program enumerating A’s complement A. Design a component C
that operates as follows. If the first symbol that it receives is a 1, then C
outputs 0’s forever. (The case n = 0 cannot occur as we are only considering
subsets of N .) If the first symbol that it receives is a 0, then C outputs 1’s
until it receives a first 1. If no 1 is ever received, it effectively means that C
recognizes 0ω. If C does receive a 1, let n ≥ 0 be the number of 0’s that it has
received until this first 1. Now C switches to the program π that enumerates

A Theory of Interactive Computation 131

A. C continues to output 1’s while it is running π, until it encounters n in the
enumeration. If n is encountered, C stops running π and starts outputting 0’s
instead. Clearly C recognizes 0n1 . . . precisely if n �∈ A, i.e., if n ∈ A. This
shows that C recognizes J . �

For sets J ⊆ {0, 1}ω, let Init(J) be the set of all finite prefixes of sequences
from J . Theorem 4 leads to the observation that in interactive computation
the initial parts of an environment input do not necessarily hold any clue about
the recognizability of the input “in the limit”, just as one would expect. The
result parallels the one for 1′-definable ω-Turing machine languages by Cohen
and Gold [2], Theorem 7.22.

Corollary 1. There are interactively recognizable sets J such that Init(J) is
not recursively enumerable.

Proof. Consider the set J = {0n1{0, 1}ω|n ∈ A} ∪ 0ω for an arbitrary non-
recursively enumerable set A whose complement is recursively enumerable
(cf. Rogers [17]). By Theorem 4, J is interactively recognizable. Note that
Init(J) ∩ 0�1 = {0n1|n ∈ A}. Hence, if Init(J) were recursively enumerable,
then so would A be. Contradiction. �

A further characterization of interactive recognizability is implied by the
following result. For 1′-definable ω-Turing machine languages the correspond-
ing fact was shown Cohen and Gold [2], Theorem 7.16 (b).

Theorem 5. J ⊆ {0, 1}ω is interactively recognizable if and only if there
exists a recursively enumerable language A ⊆ {0, 1}� such that J = {u ∈
{0, 1}ω|u has no prefix in A}.

Proof. Let J ⊆ {0, 1}ω be interactively recognizable, and C a component
that interactively recognizes J . Let A consist of all sequences α ∈ {0, 1}�

that lead C to output a 0, after E has interactively fed it α and C has
output only τ ’s and 1’s so far. (Thus, α leads C to output its first 0.) By
simulating and dovetailing the interactive computations between E and C
on all possible finite input segments, A is seen to be recursively enumerable
(using our assumptions). J precisely consist of all sequences ∈ {0, 1}ω that do
not begin with a sequence in A.

Conversely, let A ⊆ {0, 1}� be recursively enumerable and J as defined.
Design a component C that operates as follows. As soon as C receives input, it
starts buffering the input in a queue q. At the same time it starts the recursive
enumeration of A and it starts outputting 1’s. Every time the enumeration
of A outputs a sequence α, C adds it to a list LA. Every once in a while, C
checks whether any prefix of the current q happens to occur in LA. If this is
the case, C stops the enumeration and switches to outputting 0’s from here
onwards. Otherwise C continues with the procedure, and keeps on outputting
1’s. Clearly C is interactive, and C recognizes precisely the set J . �

132 J. van Leeuwen and J. Wiedermann

The given characterization together with Cohen and Gold’s result show
that, with unconstrained environments and recursively evolving C’s, inter-
active recognizability and 1′-definability essentially coincide. Theorem 5 has
another consequence when we view {0, 1}ω as a topological space with the
usual product or Cantor topology (cf. [10]). The following result was observed
by Landweber [10] (cor. 3.2) for 1′-definable ω-regular languages and Staiger
(cf. [20]) for 1′-definable (deterministic) ω-Turing machine languages. Recall
that an open set ⊆ {0, 1}ω is said to have a (minimal) basis B ⊆ {0, 1}� if
L = B{0, 1}ω (and B is prefix-free).

Corollary 2. J ⊆ {0, 1}ω is interactively recognizable if and only if J is closed
and J has a recursively enumerable basis.

Finally we note some rules for constructing new interactively recognizable
sets from old ones. Again a similar result exists for 1′-definable ω-Turing
machine languages, see [2], Theorem 7.20 (a). The proofs here are tedious
because the outputs of a component may feed back to E.

Lemma 2. The family of interactively recognizable sets is
(i) closed under ∪ and ∩, but
(ii) not closed under ω-complement.

Proof. (i) We only prove closure under ∪, leaving the similar argument for
closure under ∩ to the reader. Let J1 and J2 be interactively recognized by
components C1 and C2, respectively. A component C recognizing J1 ∪ J2 is
obtained as follows. C buffers the input that it receives from E in a queue
q, symbol after symbol. In conjunction with this, C simulates the programs
of both C1 and C2 simultaneously, simulating the input from E by the con-
secutive symbols from q. C keeps C1 in the foreground and outputs what C1

outputs until the environment input (which can be influenced by C1’s output)
is about to be inconsistent with q or C1 is about to output a 0 for the first
time. (C outputs finitely many τ ’s to account for the simulation overhead).
If the simulation never reaches a point where this occurs, then C works com-
pletely like C1 all the way and recognizes the input as an element of J1. Every
element of J1 can be recognized this way.

If either one of the two special situations does occur during the simulation,
then C tries to switch to C2. In case the environment input was about to be-
come inconsistent with q (due to C1’s output and E’s response to it), C checks
whether the environment input in the simulation of C2 is still consistent with
q. If it is, it subsequently checks whether C2 (running in the background) has
output a 0 in the simulation so far. If not, C switches to the simulation of C2,
otherwise it switches to outputting 0’s from this moment onward, effectively
rejecting the whole input sequence. In case the simulation was interrupted
because C1 was about to output a 0 for the first time, then C does not output
the 0 but makes a similar check as described before, to see if it can bring
the simulation of C2 to the foreground and switch. If the simulation switches

A Theory of Interactive Computation 133

successfully to C2, then the same constraints continue to be observed. Clearly,
if no further exception is reached, C works completely like C2 all the way and
recognizes the input as an element of J2. Note that every element of J2\J1

can be recognized this way.
It is easily seen that C is interactive. Note also that, when C switches from

C1 to C2 as described, both C1 and C2 must have been outputting τ ’s and
1’s until this point and thus, when the simulation of C2 takes over, it is like
C2 has been running from the beginning as far as the recognition process is
concerned. C thus recognizes precisely J1 ∪ J2.
(ii) Consider the set J = 0ω ∪ 0�10ω. By Lemma 1 (i) the set is interactively
recognizable, but Lemma 1 (vi) shows that its ω-complement is not. �

5 Interactive Generation

Interactive components typically also perform tasks in controlling other com-
ponents. This involves the online processing of infinite streams into other,
more specific streams of signals. In this section we consider what infinite
streams of signals an interactive component can generate. The notion of gen-
eration is well-known in automata theory and related to matters of definability
and expressibility, but it seems not to have been studied extensively in the
theory of ω-automata (cf. Staiger [20]). Our aim is to prove that generation
and recognition are duals in our model.

Definition 8. An infinite sequence β ∈ {0, 1}ω is said to be generated by C
if there exists an environment input α ∈ {0, 1}ω such that (α, β) ∈ TC .

Unlike the case for recognition (cf. Sect. 4) one cannot simplify the output
capabilities for components C now. In particular one has to allow C to outputs
�-symbols, for example to signify that the generation process has gotten off
on some wrong track. If C outputs a �-symbol, E will produce a � some finite
amount of time later and thus invalidate the current run.

Definition 9. The set interactively generated by component C is the set LC =
{β ∈ {0, 1}ω|β is generated by C}.

Formally, the definition should constrain the sequences β to those sequences
that can be generated using allowable inputs α fromE only. Observe that, as in
recognition, C may need to make silent steps while generating. It means that
interactive generation is not necessarily a “real-time” process. Nevertheless,
the interactiveness condition implies that the generation process will output
nonempty signals, with finite delay only.

Definition 10. A set L ⊆ {0, 1}ω is called interactively generable if there
exists an interactive component C such that L = LC.

134 J. van Leeuwen and J. Wiedermann

In the context of generating ω-sequences, it is of interest to know what fi-
nite prefixes an interactive component C can generate. To this end we consider
the following problem:

(Reachability) Given an interactive component C and a finite sequence
γ ∈ {0, 1}�, is there an interactive computation of C such that the
sequence of nonempty symbols generated and output by C at some
finite moment equals γ.

Lemma 3. The reachability problem for interactive components C is effec-
tively decidable.

Proof. Let C and γ be given. Consider the (infinite) binary tree T with left
branches labeled 0 and right branches labeled 1. Every node q of T represents
a finite input of E, namely the sequence αq of 0’s and 1’s leading from the
root of T to q, and every finite input that E can provide is so represented.
Label/prune T as follows. Label the root by “n”. Work through the unlabeled
nodes q level by level down the tree and simulate C while E supplies αq as
input to C, halting the simulation when E reaches the end of αq or when E
wants to deviate from giving the next symbol of αq as input based on C’s
response. Then do the following:

- label q by “Y” and prune the tree below it if the simulation at q leads C
to output a sequence r such that γ is a prefix of r;

- label q by “N” and prune the tree below it if the simulation at q leads C
to output a sequence r of which γ is not a prefix (which certainly can be
decided as soon as |r| ≥ |γ|);

- label q by “N” and prune the tree below it if the simulation halts before
E could input all of αq; and

- just label q by “n” otherwise (and thus the subtree at q is Not pruned yet
in this case).

Denote the pruned tree by T . Clearly the reachability problem is equivalent
to the problem of deciding whether there exists a Y-labeled node in T .

We claim that T is finite and, hence, that the algorithm terminates in
finitely many steps. Suppose T was infinite. By König’s Unendlichkeitslemma
([7, 8]) it follows that in this case T must contain an infinite path from the
root down. But by interactiveness the simulations of C along this path must
eventually either halt or lead to output sequences r with |r| exceeding any
fixed bound. This means that some node on the path must lead the algorithm
to prune the tree below it, contradicting the fact that the remainder of the
path is still in T .

Because T is finite, it can be decided in finite time whether there exists a
Y-labeled node in it and thus whether γ can be obtained as output of C. �

We now show that the fundamental law that “what can be generated can
be recognized and vice versa” holds in our model of interactive computing.
We prove it in two steps.

A Theory of Interactive Computation 135

Lemma 4. For all sets J ⊆ {0, 1}ω, if J is interactively generable then J is
interactively recognizable.

Proof. Let J be interactively generated by means of some component C, i.e.,
J = LC . To show that J can be interactively recognized, design the following
component C′. Let the input from E be β. C′ buffers the input that it receives
from E symbol after symbol, and goes through the following cycle of activity:
it takes the sequence γ that is currently in the buffer, decides whether γ is
reachable for C by applying the procedure of Lemma 3, and outputs a 1 if it
is and a 0 if it is not. This cycle is repeated forever, each time taking the new
(and longer) sequence γ that is in the buffer whenever a new cycle is executed.

Because the reachability problem is decidable in finite time, C′ is an inter-
active component. Clearly, if an ω-sequence β belongs to J then all its prefixes
are reachable for C, and C′ recognizes it. Conversely, if an ω-sequence β is rec-
ognized by C′ then it must be interactively generated by C and hence belong
to J . We argue this point somewhat more precisely.

Suppose that β is recognized by C′. Take a new instance S of the infinite
binary tree and label its nodes as follows. Every time C′ carries out its cycle on
a next sequence γ (a longer prefix of β) it runs the labeling/pruning algorithm
of Lemma 3 on a copy of T to completion and identifies one or more nodes that
are to be labeled Y. (This follows because, by assumption, C′ identifies every
prefix that it checks as reachable.) Copy the labels ‘Y’ to the corresponding
nodes of S. Do not label a node again if it was already labeled at an earlier
stage. This process will lead to infinitely many Y-labeled nodes in S, because
the prefixes of β that C′ checks and finds reachable have a length going to
infinity (and this leads to Y-labeled nodes lower and lower in the tree even
though some overlaps may occur). By König’s Unendlichkeitslemma, S must
contain an infinite path from the root down with the property that every
node on the path has a Y-labeled node as descendent. Let α ∈ {0, 1}ω be the
infinite sequence corresponding to this path. It follows from the definition of
the Y-label that C transduces α to β and hence that β ∈ J . �

Lemma 5. For all sets J ⊆ {0, 1}ω, if J is interactively recognizable then J
is interactively generable.

Proof. Let J be interactively recognizable. Let C be an interactive component
such that J = JC . To show that J can be interactively generated, design the
following component C′. C′ buffers the input that receives from E symbol
after symbol, and copies it to output as well (at a slower pace perhaps). At
the same time C′ runs a simulation of C in the background, inputting the
symbols from the buffer to C one after the other as if they were directly input
from E. By algorithmicity it can be checked alongside of this whether the
input is indeed a sequence that E could input when taking the responses of
C into account.

Let C′ continue to copy input to output as long as (a) no inconsistency
between the buffered input and the verification of E arises and (b) the sim-
ulation of C outputs only τ ’s and 1’s. If anything else occurs, C′ switches

136 J. van Leeuwen and J. Wiedermann

to outputting �’s. C′ is clearly interactive, and the generated sequence are
precisely those that C recognizes. �

The lemmas lead to the following basic result, showing that the concepts
of interactive recognition and generation as defined are well-chosen.

Theorem 6. For all sets J ⊆ {0, 1}ω, J is interactively generable if and only
if J is interactively recognizable.

6 Interactive Translations

As an additional task, interactive components typically perform the online
translation of infinite streams into other infinite streams of signals. We con-
sider this in more detail, viewing components as interactive transducers and
viewing the translations (or: transductions) they realize as interactive map-
pings defined on infinite sequences of 0’s and 1’s. The related notion of ω-
transduction in the theory of ω-automata has received quite some attention
before (cf. Staiger [20]). In this section we present some basic observations on
interactive mappings. Let C be an interactive component, and let TC be the
behavior of C.

Definition 11. The interactive mapping computed by C is the partial func-
tion fC : {0, 1}ω → {0, 1}ω such that fC(α) = β if and only if (α, β) ∈ TC.

If fC(α) = β is defined, then in response to input α, C outputs a sequence
r ∈ {0, 1, τ}ω such that r = β.

Definition 12. A partial function f : {0, 1}ω → {0, 1}ω is called interactively
computable if there exists an interactive component C such that f = fC .

Computable functions on infinite sequences should be continuous in the
sense that, any time after some finite sequence has been input, any further
extension of the input should only lead to an extension of the output gener-
ated so far and vice versa, without retraction of any earlier output signals.
Interactively computable functions clearly all have this property on defined
values, which can be more precisely formulated as follows. We rephrase the
classical definition of continuous functions (cf. [37]) for the case of functions
on infinite sequences.

Definition 13. A partial function f : {0, 1}ω → {0, 1}ω is called limit-
continuous if there exists a classically computable partial function g : {0, 1}� →
{0, 1}� such that the following conditions are satisfied: (1) g is monotonic, and
(2) for all strictly increasing chains u1 ≺ u2 ≺ . . . ≺ ut ≺ . . . with ut ∈ {0, 1}�

for t ≥ 1, one has f(limt→∞ ut) = limt→∞ g(ut).

A Theory of Interactive Computation 137

In condition (2) the identity is assumed to hold as soon as the left- or right-
hand side is defined.

Clearly, monotonic functions map chains into chains, if they are defined
on all elements of a chain. However, monotonic functions do not necessarily
map strictly increasing chains into strictly increasing chains again. Definition
13 implies however that if a total function f is limit-continuous, then the
underlying g must be total as well and map strictly increasing chains into
ultimately increasing chains. In the terminology of [20], Sect. 2.2, g is ‘totally
unbounded’. Using Theorem 1 and 2, one easily concludes the following facts.

Theorem 7. If f : {0, 1}ω → {0, 1}ω is interactively computable, then f is
limit-continuous.

Theorem 8. Let f : {0, 1}ω → {0, 1}ω be a total function. Then f is interac-
tively computable if and only if f is limit-continuous.

Several other properties of interactively computable functions are of inter-
est. The following observation is elementary but is spelled out in some detail so
as to show how the assumptions in our model of interactive computing play a
role and how only generic properties of the internal functioning of components
are needed. In the following results we do not assume any of the interactively
computable functions to be total. Let ◦ denote composition of functions.

Theorem 9. If f and g are interactively computable, then so is f ◦ g.

Proof. Let f = fC′ and g = fC . To show that f ◦g is interactively computable,
design a component C′′ that works as follows. C′′ runs a foreground process
that works exactly like C. On top of that it runs a verifier that observes the
incoming symbols and the output of C and verifies that the input is consistent
with the behavior E would or could have (which can be done by algorithmic-
ity). Note that this is necessary, because the output of the foreground process
is not visible to E directly, and we have to make sure that the interaction
between E and C is simulated correctly. If the verifier ever observes an incon-
sistency, C′′ immediately stops the foreground process and outputs �’s from
this moment onward.

The foreground process feeds its output into an internal buffer B, which
only records the non-τ symbols. C′′ runs a background process that takes
its inputs from B and simulates the operation of C′ just like the foreground
process did with C. In particular it (also) runs the verifier to see that the
input taken from B is consistent with the behavior of E, including its response
to the output of C′ (which can be done by algorithmicity of E again). The
background process cannot make steps with every time-tick like C′ would.
Instead it has to follow/operate on the time-ticks defined by the appearance
of symbols in B, to adequately simulate the environmental activity and keep
the same timing relationships between E’s input and the action of C′. The
output of the background process, i.e., of the simulation of C′, is the output
of C′′.

138 J. van Leeuwen and J. Wiedermann

It is easily verified that C′′ must be interactive. Whenever an inconsis-
tency in the simulated actions of C and C′ is discovered, a � is generated and
fed into the further simulation and thus eventually to output. Note that the
whole process is triggered by the input from E to C′′, i.e., to the simulation
of C and only this input has a variable aspect. Internally everything runs
deterministically (aside from any unpredictable time-delays). It is easily seen
that C′′ correctly computes the value of f ◦ g on the input stream from E. �

The following result is more tedious and relies on the machinery which we
developed in the previous section.

Theorem 10. Let f be interactively computable and 1 − 1. Then f−1 is in-
teractively computable as well.

Proof. Let f = fC and assume f is 1−1. If f(α) = β (defined) then f−1(β) =
α. Design a component C′ to realize the mapping of β’s into α’s as follows.

Let the input supplied so far be γ, a finite prefix of “β”. Assume the
environment supplies further input symbols in its own way, reveiling to C′

the longer and longer prefixes γ of the β to which an original under f is
sought. Let C′ buffer γ internally. We want the output σ of C′ at any point to
be a finite (and growing) prefix of “α” (ignoring any τ ’s in σ). Let this be the
case at some point. Let C′ do the following, as more and more symbols are
coming in and reveal more and more of β and outputting τ ’s until it knows
better.

The dilemma C′ faces is whether to output a 0 or a 1 (or, of course, a �).
In other words, C′ must somehow decide whether σ0 or σ1 is the next longer
prefix of the original α under f as β is unfolding. We argue that this is indeed
decidable in finite time. The idea is to look “into the future” and see which of
the two possibilities survives. To achieve it, create a process Pb that explores
the future for σb, for every b ∈ {0, 1}. Remember that symbols continue to
come into γ.

Pb works on the infinite binary tree T defined in Lemma 3. Remember that
every node q of T corresponds to a finite sequence αq, consisting of the 0’s
and 1’s on the path from the root down to q. Pb labels the root by “Y”. Then
it works through the unlabeled nodes q level by level down the tree, testing for
every node q whether the sequence σbαq is output (i.e., is reached) by C as it
operates on (a prefix of) the sequence γ, i.e., on a prefix of β. (Pb does this in
the usual way, by running the simulation of the interactive computation of C
and E and using the algorithmicity of E to properly test for the corresponding
behavior of E on C’s output.) If σbαq is reached, then label q by “Y”. If the
output of C does not reach the end of σbαq but is consistent with it as far
as it gets, then Pb waits (at q) and only continues the simulation when more
symbols have come into γ. (By interactivity, γ will eventually be long enough
for C to give an output at least as long as σbαq.) If the output of C begins to
differ from σbαq before the end of σbαq is reached, then label q by “N” and
prune the tree below it. If the simulation runs into an inconsistency between

A Theory of Interactive Computation 139

E’s behavior and the γ that is input, then label q by “N” and prune the tree
below it as well. If Pb reaches a tree level where all nodes have been pruned
away, it stops. Denote the tree as it gets labeled by Pb by Tb.

Let C′ run P0 and P1 “in parallel”. We claim that one of the two processes
must stop in finite time. Suppose that neither of the two stopped in finite time.
Then T0 and T1 would both turn into infinite trees as γ extends to “infinity”
(i.e., turns into the infinite sequence β). By the Unendlichkeitslemma, T0 will
contain an infinite path δ0 and likewise T1 will contain an infinite path δ1.
This clearly implies that both σ0δ0 and σ1δ1 would be mapped by C to β,
which contradicts that f is 1− 1. It follows that at least one of the processes
P0 and P1 must stop in finite time. (Stated in another way, the process that
explores the wrong prefix of α will die out in finite time.) Note that both
processes could stop, which happens at some point in case the limit sequence
β has no original under f .

Thus letting C′ run P0 and P1 in parallel, do the following as soon as one
of the processes stops. If both processes stop, C′ outputs �. If P0 stopped but
P1 did not, then output 1. If P1 stopped but P0 did not, then output 0. If
C′ output a b (0 or 1), then it repeats the whole procedure with σ replaced
by σb. If it output a � it continues to output �’s from this moment onwards
and does not repeat the above procedure anymore. It is easily seen that C′ is
interactive and that it computes precisely the inverse of f . �

7 Conclusions

Interactive computing and its formal study have received much attention since
the late 1960s, usually within the framework of reactive and concurrent sys-
tems. In this chapter we considered a simple model of interactive compution,
consisting of one component and an environment acting together on infinite
streams of input and output symbols that are exchanged in an on-line man-
ner and with a number of realistic assumptions into effect. The motivation
stems from the interest in capturing the computation-theoretic capabilities of
interactive computing.

In the model we have identified a number of properties which one would
intuitively ascribe to a component of any system that interacts with the en-
vironment in which it is placed. In [28] we have carried this further, to model
some interactive features of the Internet and of ‘global computing’. In the
latter case, the model includes the possibility of letting external information
enter into the interaction process and of many components influencing each
other. In the present study we have concentrated purely on the property of
interactiveness for a single component, implying that both the component
and its environment always react within some (unspecified) finite amount of
time. As components operate on infinite streams, there are various intimate
connections to the classical theory of ω-automata.

140 J. van Leeuwen and J. Wiedermann

We have given definitions of interactive recognition, generation and trans-
lation that are inspired by realistic considerations of how the various tasks
would proceed in an interactive setting. The definition of interactive recog-
nition leads to a useful, machine-independent analogue of the notion of 1′-
definability as known for ω-automata. The definitions allow a proof that in-
teractive recognition and interactive generation are equally powerful in the
given model of interactive computation. We also proved that (total) functions
are interactively computable if and only they are limit-continuous, using a
simple extension of the common definitions of continuity. Among the further
results we showed that interactively computable (partial) functions that are
1-1 have interactively computable inverses. Many interesting computational
problems seem to remain in the further analysis of the model.

In this chapter we have attempted to capture the power of reactive compu-
tation in a simple model. Regarding the claims concerning the greater compu-
tational power of interactive computations and insofar as our model captures
real interactive systems, the results can be interpreted as follows. When con-
sidering only finite computations, there is no difference between the power
of classical and interactive computations. Keeping the classical computation
time-bounded on the one hand and considering infinite interactive computa-
tions on the other, is to draw a comparison between two incomparable things:
while the former computes with finite objects (finite streams), the latter oper-
ates on infinite objects. Thus, the two modes are incomparable; each of them
computes with different entities. Therefore it is not possible to say which of
the two has a greater computational power. However, our results show that in
the limit the computational power in both modes tends to coincide. The fur-
ther analysis of the model quickly leads to the consideration of nonuniformly
evolving, interactive machines and programs. The prospects of a theory that
takes this into account are sketched in [28] and in a different, general frame-
work also in [29].

References

1. M. Broy. A logical basis for modular software and systems engineering, in:
B. Rovan (Ed.), SOFSEM’98: Theory and Practice of Informatics, Proc. 25th
Conference on Current Trends, Lecture Notes in Computer Science, Vol. 1521,
Springer-Verlag, Berlin, 1998, pp. 19-35.

2. R.S. Cohen, A.Y. Gold. ω-Computations on Turing machines, Theor. Comput.
Sci. 6, 1978, pp. 1-23.

3. J. Engelfriet, H.J. Hoogeboom. X-automata on ω-words, Theor. Comput. Sci.
110, 1993, pp. 1-51.

4. D.Q. Goldin. Persistent Turing machines as a model of interactive computa-
tion, in: K-D. Schewe and B. Thalheim (Eds.), Foundations of Information and
Knowledge Systems, Proc. First Int. Symposium (FoIKS 2000), Lecture Notes
in Computer Science, vol. 1762, Springer-Verlag, Berlin, 2000, pp. 116-135.

A Theory of Interactive Computation 141

5. D.Q. Goldin, S.A. Smolka, P.C. Attie, E.L. Sonderegger. Turing machines, tran-
sition systems, and interaction, Information and Computation 192, 2004, pp.
101-128.

6. D. Goldin, P. Wegner. Persistence as a form of interaction, Techn. Report CS-
98-07, Dept. of Computer Science, Brown University, Providence, RI, 1998.

7. D. König. Sur les correspondances multivoques des ensembles, Fundam. Math.
8, 1926, pp. 114-134.

8. D. König. Über eine Schlussweise aus dem endlichen ins Unendliche (Punktmen-
gen. – Kartenfärben. — Verwantschaftsbeziehungen. – Schachspiel), Acta Litt.
Sci. (Sectio Sci. Math.) 3, 1927, pp. 121-130.

9. S. Kosub. Persistent computations, Techn. Report No. 217, Institut für Infor-
matik, Julius-Maximilians-Universität Würzburg, 1998.

10. L.H. Landweber. Decision problems for ω-automata, Math. Systems Theory 3,
1969, pp. 376-384.

11. Z. Manna, A. Pnueli. Models for reactivity, Acta Informatica 30, 1993, pp. 609-
678.

12. R. Milner. A calculus of communicating systems, Lecture Notes in Computer
Science, Vol. 92, Springer-Verlag, Berlin, 1980.

13. R. Milner. Elements of interaction, Comm. ACM 36:1, 1993, pp. 78-89.
14. D. Perrin, J-E. Pin. Infinite words: automata, semigroups, logic and games,

Academic Press, New York, 2003.
15. A. Pnueli. Applications of temporal logic to the specification and verification

of reactive systems: a survey of current trends, in: J.W. de Bakker, W.-P. de
Roever and G. Rozenberg, Current Trends in Concurrency, Lecture Notes in
Computer Science, Vol. 224, Springer-Verlag, Berlin, 1986, pp. 510-585.

16. A. Pnueli. Specification and development of reactive systems, in: H.-J. Ku-
gler (Ed.), Information Processing 86, Proceedings IFIP 10th World Computer
Congress, Elsevier Science Publishers (North-Holland), Amsterdam, 1986, pp.
845-858.

17. H. Rogers. Theory of recursive functions and effective computability, McGraw-
Hill, New York, 1967.

18. G. Rozenberg, F.W. Vaandrager (Eds.). Lectures on embedded systems, Lecture
Notes in Computer Science, Vol. 1494, Springer-Verlag, Berlin, 1998.

19. L. Sekanina, V. Drábek. Theory and applications of evolvable embedded sys-
tems, in: Proc. 11th IEEE Int. Conference and Workshop on the Engineering of
Computer-Based Systems, IEEE press, Los Alamitos, 2004, pp. 186-193.

20. L. Staiger. ω-Languages, in: G. Rozenberg and A. Salomaa (Eds.), Handbook of
Formal Languages, Vol. 3: Beyond Words, Chapter 6, Springer-Verlag, Berlin,
1997, pp. 339-387.

21. S. Stepney et al.. Journeys in non-classical computation I: A grand challenge
for computing research, Int. J. Parallel, Emergent and Distributed Systems 20,
2005, pp. 5-19.

22. W. Thomas. Automata on infinite objects, in: J. van Leeuwen (Ed.), Handbook
of Theoretical Computer Science, Vol. B: Models and Semantics, Elsevier Science
Publishers, Amsterdam, 1990, pp. 135-191.

23. W. Thomas. Languages, automata, and logic, in: G. Rozenberg and A. Salo-
maa (Eds.), Handbook of Formal Languages, Vol. 3: Beyond Words, Chapter 7,
Springer-Verlag, Berlin, 1997, pp. 389-455.

142 J. van Leeuwen and J. Wiedermann

24. B.A. Trakhtenbrot. Automata and their interaction: definitional suggestions, in:
G. Ciobanu and G. Păun (Eds.), Fundamentals of Computation Theory, Proc.
12th International Symposium (FCT’99), Lecture Notes in Computer Science,
Vol. 1684, Springer-Verlag, Berlin, 1999, pp. 54-89.

25. J. van Leeuwen, J. Wiedermann. On the power of interactive computing, in:
J. van Leeuwen et al (Eds), Theoretical Computer Science - Exploring New
Frontiers of Theoretical Computer Science, Proc. IFIP TCS 2000 Conference,
Lecture Notes in Computer Science Vol. 1872, Springer-Verlag, Berlin, 2000, pp.
619-623.

26. J. van Leeuwen, J. Wiedermann. A computational model of interaction in em-
bedded systems, Techn. Report UU-CS-2001-02, Dept of Computer Science,
Utrecht University, 2001.

27. J. van Leeuwen, J. Wiedermann. On algorithms and interaction, in: M. Nielsen
and B. Rovan (Eds), Mathematical Foundations of Computer Science 2000, 25th
Int. Symposium (MFCS 2000), Lecture Notes in Computer Science Vol. 1893,
Springer-Verlag, Berlin, 2000, pp. 99-112.

28. J. van Leeuwen, J. Wiedermann. The Turing machine paradigm in contemporary
computing, in: B. Enquist and W. Schmidt (Eds), Mathematics Unlimited - 2001
and Beyond, Springer-Verlag, Berlin, 2001, pp. 1139-1155.

29. P. Verbaan, J. van Leeuwen, J. Wiedermann. Complexity of evolving interactive
systems, in: J. Karhumaki et al. (Eds.), Theory is forever, Festschrift, Lecture
Notes in Computer Science Vol. 3113, Springer-Verlag, Berlin, 2004, pp. 268-281.

30. K. Wagner, L. Staiger. Recursive ω-languages, in: M. Karpinsky (Ed.), Fun-
damentals of Computation Theory, Proc. 1977 Int. FCT-Conference, Lecture
Notes in Computer Science, Vol. 56, Springer-Verlag, Berlin, 1977, pp. 532-537.

31. P. Wegner. Interaction as a basis for empirical computer science, Comput. Surv.
27, 1995, pp. 45-48.

32. P. Wegner. Why interaction is more powerful than algorithms, Comm. ACM 40,
1997, pp. 80-91.

33. P. Wegner. Interactive foundations of computing, Theor. Comp. Sci. 192, 1998,
pp. 315-351.

34. P. Wegner, D. Goldin. Co-inductive models of finite computing agents, in: B.
Jacobs and J. Rutten (Eds.), CMCS’99-Coalgebraic Methods in Computer Sci-
ence, TCS: Electronic Notes in Theoretical Computer Science, Vol. 19, Elsevier,
1999.

35. P. Wegner, D. Goldin. Interaction as a framework for modeling, in: P. Chen et
al. (Eds.), Conceptual Modeling - Current Issues and Future Directions, Lecture
Notes in Computer Science, Vol. 1565, Springer-Verlag, Berlin, 1999, pp. 243-
257.

36. P. Wegner, D. Goldin. Computation beyond Turing machines, Comm. ACM 46,
2003, pp. 100-102.

37. G. Winskel. The formal semantics of programming languages: an introduction,
The MIT Press, Cambridge (Mass.), 1993.

Online Algorithms

Susanne Albers

University of Freiburg, Freiburg, Germany

1 Introduction

This chapter reviews fundamental concepts and results in the area of online
algorithms. We first address classical online problems and then study various
applications of current interest.

Online algorithms represent a theoretical framework for studying prob-
lems in interactive computing. They model, in particular, that the input in
an interactive system does not arrive as a batch but as a sequence of input
portions and that the system must react in response to each incoming por-
tion. Moreover, they take into account that at any point in time future input
is unknown. As the name suggests, online algorithms consider the algorith-
mic aspects of interactive systems: We wish to design strategies that always
compute good output and keep a given system in good state. No assumptions
are made about the input stream. The input can even be generated by an
adversary that creates new input portions based on the system’s reactions to
previous ones. We seek algorithms that have a provably good performance.

Formally, an online algorithm receives a sequence of requests
σ = σ(1), . . . , σ(m). These requests must be served in the order of occur-
rence. When serving request σ(t), an online algorithm does not know requests
σ(t′) with t′ > t. Serving requests incurs cost and the goal is to minimize the
total cost paid on the entire request sequence. This process can be viewed as
a request answer game. An adversary generates requests and an online algo-
rithm has to serve them one at a time. The performance of online algorithms
is usually evaluated using competitive analysis [65]. Here an online algorithm
ALG is compared to an optimal offline algorithm OPT that knows the entire
request sequence σ in advance and can serve it with minimum cost. Given
a sequence σ, let ALG(σ) and OPT (σ) denote the costs incurred by ALG
and OPT , respectively. Algorithm ALG is called c-competitive if there exists
a constant b such that ALG(σ) ≤ c · OPT (σ) + b, for all sequences σ. The
constant b must be independent of the input σ. We note that competitive
analysis is a strong worst-case performance measure.

144 S. Albers

Over the past 15 years online algorithms have received tremendous re-
search interest. Online problems have been studied in many application ar-
eas including resource management in operating systems, data structuring,
scheduling, networks, and computational finance. In the following sections
we first survey fundamental results. We address the paging problem, self-
organizing lists, the k-server problem as well as metrical task systems. Then
we review a number of new results in application areas of current interest. We
focus on algorithmic problems in large networks and competitive auctions. Fi-
nally we present refinements of competitive analysis and conclude with some
remarks.

2 Basic Results

Paging is an extensively studied problem and perhaps one of the oldest exam-
ples of an interactive computing problem. It arises when a CPU communicates
with the underlying memory hierarchy. Paging is also an excellent problem to
illustrate basic concepts in the theory of online algorithms and we therefore
study it in the rest of this section.

In paging we have to maintain a two-level memory system consisting of
a small fast memory and a large slow memory. The memory is partitioned
into pages of equal size. The system receives a sequence of requests, where
each request specifies a page in the memory system. A request can be served
immediately if the referenced page is available in fast memory. If the requested
page is not in fast memory, a page fault occurs. The missing page is then loaded
from slow memory into fast memory so that the request can be served. At the
same time a page is evicted from fast memory to make room for the missing
one. A paging algorithm decides which page to evict on a fault. This decision
must usually be made online, i.e., without knowledge of any future requests.
The cost to be minimized is the number of page faults.

The two most popular online paging algorithms are LRU and FIFO.
LRU (Least Recently Used): On a fault, evict the page in fast memory that
was requested least recently.
FIFO (First-In First-Out): Evict the page that has been in fast memory
longest.
Sleator and Tarjan [65] analyzed the performance of the two algorithms. Let
k be the number of pages that can simultaneously reside in fast memory.

Theorem 1. [65] LRU and FIFO are k-competitive.

There exists a more general class of algorithms that achieve a competitiveness
of k.
Marking: A Marking strategy processes a request sequence in phases. At
the beginning of each phase all pages in the memory system are unmarked.
Whenever a page is requested, it is marked . On a fault, an arbitrary unmarked

Online Algorithms 145

page in fast memory is evicted. A phase ends when all pages in fast memory
are marked and a page fault occurs. Then all marks are erased and a new
phase is started.

It is not hard to see that LRU is in fact a Marking algorithm. Marking
strategies were considered in [24, 37]. Torng [67] explicitly observed that any
Marking strategy is k-competitive. This factor is best possible for determin-
istic paging algorithms.

Theorem 2. [65] No deterministic online algorithm for the paging problem
can achieve a competitive ratio smaller than k.

An optimal offline algorithm for the paging problem was presented by
Belady [17]. The algorithm is called MIN and works as follows.
MIN: On a fault, evict the page whose next request occurs furthest in the
future.
Belady showed that on any sequence of requests, MIN incurs the minimum
number of page faults.

In many problems, such as paging, online algorithms can achieve a better
performance if they are allowed to make random choices. The competitive
ratio of a randomized online algorithm ALG is defined with respect to an
adversary. The adversary generates a request sequence σ and also has to serve
σ. When constructing σ, the adversary always knows the description of ALG .
The crucial question is: When generating requests, is the adversary allowed
to see the outcome of the random choices made by A on previous requests?
Oblivious adversaries do not have this ability while adaptive adversaries do.
In the literature there exist three kinds of adversaries, which were introduced
by Ben-David et al. [19].
Oblivious adversary: The oblivious adversary has to generate the entire request
sequence in advance before any requests are served by the online algorithm.
The adversary is charged the cost of the optimum offline algorithm for that
sequence.
Adaptive online adversary: This adversary may observe the online algorithm
and generate the next request based on the algorithm’s (randomized) answers
to all previous requests. The adversary must serve each request online, i.e.,
without knowing the random choices made by the online algorithm on the
present or any future request.
Adaptive offline adversary: This adversary also generates a request sequence
adaptively. However, it may serve the sequence offline and hence is charged
the optimum offline cost for that sequence.
A randomized online algorithm ALG is called c-competitive against oblivious
adversaries if there is a constant b such that, for all request sequences σ gener-
ated by an oblivious adversary, E[ALG(σ)] ≤ c ·OPT (σ)+b. The expectation
is taken over the random choices made by ALG.

146 S. Albers

Given a randomized online algorithm ALG and an adaptive online (adap-
tive offline) adversary ADV , let E[ALG(σ)] and E[ADV (σ)] denote the ex-
pected costs incurred by ALG and ADV in serving a request sequence gener-
ated by ADV . Algorithm ALG is called c-competitive against adaptive online
(adaptive offline) adversaries if there is a constant b such that, for all adaptive
online (adaptive offline) adversaries ADV , E[ALG(σ)] ≤ c · E[ADV (σ)] + b
where the expectation is taken over the random choices made by ALG.

Ben-David et al. [19] investigated the relative strength of the adversaries
and proved the following results.

Theorem 3. [19] If there is a randomized online algorithm that is c-competi-
tive against adaptive offline adversaries, then there also exists a c-competitive
deterministic online algorithm.

Theorem 4. [19] If ALG is a c-competitive randomized algorithm against
adaptive online adversaries and if there is a d-competitive algorithm against
oblivious adversaries, then ALG is (c · d)-competitive against adaptive offline
adversaries.

Theorem 3 implies that randomization does not help against adaptive
offline adversaries, and we can ignore them when in search for improved com-
petitive ratios. An immediate consequence of the two theorems above is:

Corollary 1. If there exists a c-competitive randomized algorithm against
adaptive online adversaries, then there is a c2-competitive deterministic al-
gorithm.

A result by Raghavan and Snir [61] implies that against adaptive on-
line adversaries, no randomized online paging strategy can be better than
k-competitive. Hence we concentrate on oblivious adversaries and show that
we can achieve an exponential improvement over the deterministic bound of
k. The most popular randomized online paging algorithm is the Randomized-
Marking strategy presented by Fiat et al. [37]. It is optimal up to a constant
factor.
Randomized-marking: The algorithm is a Marking strategy. On a fault, a
page is chosen uniformly at random from among the unmarked pages in fast
memory, and that page is evicted.

Let Hk =
∑k

i=1 1/i be the k-th harmonic number, which is closely approx-
imated by ln k, i.e., ln(k + 1) ≤ Hk ≤ ln k + 1.

Theorem 5. [37] Randomized-Marking is 2Hk-competitive against oblivious
adversaries.

Theorem 6. [37] The competitive ratio of randomized online paging algo-
rithms against oblivious adversaries is not smaller than Hk.

More complicated algorithms achieving an optimal competitiveness of Hk were
presented in [1, 58].

Online Algorithms 147

3 Self-Organizing Data Structures

Data structuring is a classical field where many online problems arise. We
have to maintain a given structure not knowing which items in the structure
will be accessed next. There has been a lot of research on self-organizing lists
and trees.

The problem of self-organizing lists, also called the list update problem,
consists in maintaining a set of items as an unsorted linear list. We are given
an unsorted linear linked list of items. As input we receive a sequence of
requests, where each request specifies an item in the list. To serve a request,
we have to access the requested item. We start at the front of the list and
search linearly through the items until the desired item is found. Serving a
request to an item that is currently stored at position i in the list incurs a
cost of i. Immediately after a request, the referenced item may be moved at
no extra cost to any position closer to the front of the list. This can lower
the cost of subsequent requests. However, the decision where to move an item
must be made online, without knowledge of any future requests. At any time,
two adjacent items in the list may be exchanged at a cost of 1. The goal is to
serve the request sequence so that the total cost is as small as possible.

Self-organizing lists are useful when maintaining a small dictionary consist-
ing of only a few dozens of items and, moreover, have interesting applications
in data compression [5, 20, 27].

With respect to the list update problem we require that a c-competitive
online algorithm has a performance ratio of c, for all size lists. There exist
three very well-known deterministic algorithms.
Move-to-front: Move the requested item to the front of the list.
Transpose: Exchange the requested item with the immediately preceding
item in the list.
Frequency-count: Maintain a frequency count for each item in the list.
Whenever an item is requested, increase its count by 1. Maintain the list
so that the items always occur in nonincreasing order of frequency count.

Sleator and Tarjan analyzed these three algorithms. It shows that Move-
To-Front achieves an optimal competitiveness of 2 while the other strategies
are not competitive at all.

Theorem 7. [65] The Move-To-Front algorithm is 2-competitive.

Theorem 8. [50] The competitive ratio of any deterministic online algorithm
is not smaller than 2.

Proposition 1. The algorithms Transpose and Frequency-Count are not c-
competitive, for any constant c.

Ambühl [8] showed that the offline variant of the list update problem is NP-
hard. Thus, there is no efficient algorithm for computing an optimal service
schedule.

148 S. Albers

We next consider the influence of randomization. Against adaptive online
adversaries no randomized strategy can be better than 2-competitive [62].
However, against oblivious adversaries we can improve the factor of 2. A
number of randomized strategies have been proposed in the literature. We
mention here only the two most important ones. Reingold et al. [62] presented
counter-based algorithms, which move an item to the front of the list if its
counter takes a certain value. Using mod 2 counters, we obtain the elegant
Bit algorithm.
Bit: Each item in the list maintains a bit that is complemented whenever the
item is accessed. If an access causes a bit to change to 1, then the requested
item is moved to the front of the list. Otherwise the list remains unchanged.
The bits of the items are initialized independently and uniformly at random.

Theorem 9. [62] The bit algorithm is 1.75-competitive against oblivious ad-
versaries.

The best randomized algorithm known to date combines Bit with a determin-
istic 2-competitive online algorithm called Timestamp proposed in [2].
Timestamp (TS): Insert the requested item, say x, in front of the first item
in the list that precedes x and that has been requested at most once since the
last request to x. If there is no such item or if x has not been requested so
far, then leave the position of x unchanged.

Combination: With probability 4/5 serve a request sequence using Bit , and
with probability 1/5 serve it using TS .

Theorem 10. [6] The algorithm Combination is 1.6-competitive against obliv-
ious adversaries.

This factor of 1.6 is close to the best lower bound known.

Theorem 11. [9] Let A be a randomized online algorithm for the list update
problem. If A is c-competitive against oblivious adversaries, then c ≥ 1.50084.

The latest results on the list update problem are by Blum et al. [21]. Using
techniques from learning theory, they gave a randomized online algorithm
that, for any ε > 0, is (1.6 + ε)-competitive and at the same time (1 + ε)-
competitive against an offline algorithm that is restricted to serving a request
sequence with a static list. The main open problem with respect to the list
update problem is to develop tight upper and lower bounds on the performance
of randomized algorithms.

Many of the concepts shown for self-organizing linear lists can be extended
to binary search trees. The most popular version of self-organizing binary
search trees are the splay trees presented by Sleator and Tarjan [66]. In a
splay tree, after each access to an element x in the tree, the node storing x is
moved to the root of the tree using a special sequence of rotations that depends
on the structure of the access path. Sleator and Tarjan [66] showed that on

Online Algorithms 149

any sequence of accesses a splay tree is as efficient as the optimum static
search tree. The famous splay tree conjecture is still open: It is conjectured
that on any sequence of accesses splay trees are as efficient as any dynamic
binary search tree.

4 The k-Server Problem

The k-server problem is one of the most famous online problems. It has re-
ceived a lot of research interest, partly because proving upper bounds on the
performance of k-server algorithms is a very challenging task. The k-server
problem generalizes paging as well as other caching problems. It can also be
viewed as an online vehicle routing problem.

In the k-server problem we are given a metric space S and k mobile servers
that reside on points in S. As usual we receive a sequence of requests, where
each request specifies a point x ∈ S. In response, a server must be moved to
the requested point, unless a server is already present. Moving a server from
point x to point y incurs a cost equal to the distance between the two points.
The goal is to minimize the total distance traveled by all servers.

It is easy to see that the k-server problem models paging: Consider a
metric space in which the distance between any two points in 1. Each point
in the metric space represents a page in the memory system and the pages
covered by servers are those that reside in fast memory. The k-server problem
was introduced in 1988 by Manasse et al. [57] who showed a lower bound for
deterministic k-server algorithms.

Theorem 12. [57] Let A be a deterministic online k-server algorithm in an
arbitrary metric space. If A is c-competitive, then c ≥ k.

Manasse et al. also conjectured that there exist k-competitive determinis-
tic online algorithms. This conjecture essentially is still open. In 1995, how-
ever, Koutsoupias and Papadimitriou [53] achieved a breakthrough. They
showed that the Work Function algorithm is (2k− 1)-competitive. Before, k-
competitive algorithms were known only for special metric spaces (e.g., trees
[29] and resistive spaces [31]) and special values of k (k = 2 and k = n − 1,
where n is the number of points in the metric space [57]).

The Work Function algorithm tries to mimic the optimal offline algorithm
and at the same time incorporates aspects of the Greedy strategy. Let X be a
configuration of the servers. Given a request sequence σ = σ(1), . . . , σ(t), the
work function w(X) is the minimal cost of serving σ and ending in configura-
tion X . For any two points x and y in the metric space, let dist(x, y) be the
distance between x and y.
Work Function: Suppose that the algorithm has served σ = σ(1), . . . , σ(t−1)
and that a new request r = σ(t) arrives. Let X be the current configuration
of the servers and let xi be the point where server si, 1 ≤ i ≤ k, is located.

150 S. Albers

Serve the request by moving the server si that minimizes w(Xi) + dist(xi, r),
where Xi = X − {xi}+ {r}.

Theorem 13. [53] The Work Function algorithm is (2k − 1)-competitive in
an arbitrary metric space.

An interesting open problem is to show that the Work Function algorithm
is indeed k-competitive or to develop an other deterministic online k-server
algorithm that achieves a competitive ratio of k.

Next we turn to randomized k-server algorithms. Against adaptive online
adversaries, no randomized strategy can be better than k-competitive. Against
oblivious adversaries the best lower bound currently known is due to Bartal
et al. [15].

Theorem 14. [15] The competitive ratio of a randomized online algorithm in
an arbitrary metric space is Ω(log k/ log2 log k) against oblivious adversaries.

The bound can be improved to Ω(log k) if the metric space consists of at least
klogε k points, for any ε > 0 [15]. It is conjectured that Θ(log k) is the true com-
petitiveness of randomized algorithms against oblivious adversaries. Bartal et
al. [14] presented an algorithm that has a competitive ratio of O(c6 log6 k) in
metric spaces consisting of k + c points. Seiden [64] gave an algorithm that
achieves a competitive ratio polylogarithmic in k for metric spaces that can
be decomposed into a small number of widely separated subspaces. A very
challenging open problem is to develop randomized online algorithms that
have a competitive ratio of c < k in an arbitrary metric space.

5 Metrical Task Systems

So far we have presented a number of online problems and related results.
A natural question is if there exists a more general framework for studying
online algorithms. Borodin et al. [25] developed metrical task systems that
can model a very large class of online problems.

A metrical task system is defined by a metric space (S, d) and an associated
set T of tasks. The space (S, d) consists of a finite set S of, say, n states and
a distance function d : S × S −→ IR+

0 , where d(i, j) ≥ 0 denotes the cost of
changing from state i to state j. Since the space is metric, d is symmetric,
satisfies the triangle inequality and d(i, i) = 0, for all states i. The set T is the
set of allowable tasks. A task T ∈ T is a vector T = (T (1), T (2), . . . , T (n)),
where T (i) ∈ IR+

0 ∪ {∞} denotes the cost of processing the task while in
state i. A request sequence is a sequence of tasks σ = T 1, T 2, T 3, . . . , Tm that
must be served starting from some initial state s(0). When receiving a new
task, an algorithm may serve the task in the current state or may change
states at a cost. Thus the algorithm must determine a schedule of states
s(1), s(2), . . . , s(m), such that task T i is processed in state s(i). The cost of

Online Algorithms 151

serving a task sequence is the sum of all state transition costs and all task
processing costs:

∑m
i=1 d(s(i−1), s(i))+

∑m
i=1 T

i(s(i)). The goal is to process
a given task sequence so that the cost is as small as possible.

Borodin et al. [25] settled the competitiveness of deterministic online algo-
rithms. Interestingly, the best competitiveness is achieved by a Work Function
algorithm. Given a request sequence σ = σ(1), . . . , σ(t), let the work function
wt(s) be the minimum cost to process σ starting from s(0) and ending in state
s.
Work Function: Suppose that the algorithm has served the first t requests
σ(1), . . . , σ(t) of a request sequence and that it is currently in state st. To
process the next task T t+1, move to state the st+1 = s that minimizes
wt+1(s) + d(st, s).

Theorem 15. [23, 25] The Work Function algorithm is (2n− 1)-competitive
for any metrical task system with n states.

Theorem 16. [25] Any deterministic online algorithm for the metrical task
systems problem has a competitive ratio of at least 2n − 1, where n is the
number of task system states.

Unfortunately, the competitive factor of 2n− 1 often does not provide mean-
ingful bounds when special online problems are investigated. Consider the list
update problem. Here the given list can be in n! states. Hence, we obtain a
bound of (2n!−1) on the competitive factor of a deterministic online algorithm
for the list update problem. However, Move-To-Front achieves a competitive
factor of 2.

For randomized algorithms against oblivious adversaries, the known bounds
are tight up to a logarithmic factor.

Theorem 17. [39] There exists a randomized online algorithm that is
O(log2 n/ log2 logn)-competitive against oblivious adversaries, for any met-
rical task system with n states.

Theorem 18. [15] Any randomized online algorithm for the metrical task sys-
tems problem has a competitive ratio of at least Ω(log n/ log2 logn) against
oblivious adversaries, where n is the number of task system states.

Better bounds hold for uniform metrical task systems, where the cost d(i, j)
of changing states is equal to 1, for all i �= j. Borodin et al. [25] gave a
lower bound of Hn, where Hn is the n-th harmonic number. The best upper
bound currently known was presented by Irani and Seiden [46] and is equal
to Hn +O(

√
logn).

6 Application Areas

In the previous sections we presented a selection of important results for
classical online problems. In this section we study two application areas that

152 S. Albers

have received a lot of research interest recently, namely large networks and
competitive auctions.

6.1 Large Networks

With the advent of the Internet, researchers started investigating algorithmic
problems that arise in large networks. There exists a host of interesting online
problems addressing, e.g., the construction of networks, the maintenance of
TCP connections or the management of local caches and buffers. Due to space
limitations we only address a few recent problems here.

Network Switches

The performance of high-speed networks critically depends on switches that
route data packets arriving at the input ports to the appropriate output ports
so that the packets can reach their correct destinations in the network. To
reduce packet loss when the traffic is bursty, ports are equipped with buffers
where packets can be stored temporarily. However the buffers are of lim-
ited capacity so that effective buffer management strategies are important to
maximize the throughput at a switch. As a result there has recently been
considerable research interest in various single and multibuffer management
problems.

We first study single buffer problems, which arise, e.g., when maintaining
an output port queue. Consider a buffer that can simultaneously store up to B
data packets. Packets arrive online and can be buffered if space permits. More
specifically, at any time step t let Q(t) be the set of packets currently stored
in the buffer and let A(t) be the set of newly arriving packets. Each packet p
has a value v(p) that represents a QoS parameter. If |Q(t)|+ |A(t)| ≤ B, then
all new packets can be admitted to the buffer; otherwise |Q(t)| + |A(t)| − B
packets from Q(t)∪A(t) must be dropped. In the time step we can select one
packet from the buffer and transmit it through the output port. We assume
that the packet arrival step precedes the transmission step. The goal is to
maximize the total value of the transmitted packets.

Several problem variants are of interest. In a FIFO model packets must
be transmitted in the order they arrive. If packet p is transmitted before p′,
then p must not have arrived later than p′. In a non-FIFO model there is no
such restriction. In a preemptive model we may drop packets from the buffer,
while in a nonpreemptive model this is not allowed.

Kesselman et al. [51] analyzed a natural Greedy algorithm in the preemp-
tive FIFO model and proved that it is 2-competitive.
Greedy: In the event of buffer overflow, drop the packets with the smallest
values.
In the following let α be the ratio of the largest to smallest packet value.

Online Algorithms 153

Theorem 19. [51] Greedy achieves a competitive ratio of min{2 − 1
B+1 , 2 −

2
α+1}.
Recently Bansal et al. [13] gave an algorithm that achieves an improved com-
petitiveness of 1.75. Kesselman et al. [52] showed a lower bound of 1.419.

Aiello et al. [7] investigated nonpreemptive single buffer problems. In this
case the buffer can simply be maintained as a FIFO queue. Andelman et
al. [10] gave asymptotically tight bounds for this scenario. They analyzed the
following algorithm. Suppose that the packet values are in the range [1, α].
Exponential-Interval-Round-Robin: Divide the buffer into k partitions
of size B/k, where k =)lnα*. Split the interval [1, α] into k subintervals
[α0, α1), [α1, α2), . . . , [αk−1, αk), where αj = αj/k. Each partition of the buffer
is associated with one of the subintervals, accepting in a greedy manner pack-
ets from that subinterval. The partitions take turn in sending packets. If a
partition is empty, its turn is passed to the next partition.

Theorem 20. [10] Exponential-Interval-Round-Robin achieves a competitive
ratio of e)lnα*.

Theorem 21. [10] No online algorithm can achieve a competitive ratio smaller
than 1 + lnα in the nonpreemptive model.

Kesselman et al. [51] also introduced a bounded delay model where packets
have deadlines. A packet that has not been transmitted by its deadline is
lost. There is no bound on the buffer size and packets may be reordered.
Kesselman et al. analyzed a Greedy strategy which at any time transmits the
packet of highest value among those with unexpired deadlines. This strategy
is 2-competitive.

Azar and Richter [12] extended many of the results mentioned so far to
multibuffer problems. Consider a switch with m input ports, each of which is
equipped with a buffer that can simultaneously store up to B packets. These
buffers serve a common output port. At any time t, let Qi(t) be the set of
packets stored in buffer i and let Ai(t) be the set of packets arriving at that
buffer. If |Qi(t)| + |Ai(t)| ≤ B, then all arriving packets can be admitted to
buffer i; otherwise |Qi(t)|+ |Ai(t)|−B packets must be dropped. At any time,
the switch can select one nonempty buffer and transmit the packet at the
head through the output port. The goal is to maximize the total value of the
transmitted packets.

Azar and Richter presented a general technique that transforms a buffer
management strategy for a single queue (for both the preemptive and non-
preemptive models) into an algorithm for m queues. The technique is based
on the algorithm Transmit-Largest that works in the preemptive non-FIFO
model.
Transmit-Largest (TL):
1. Admission control: Use Greedy for admission control in any of the m

buffers. More precisely, enqueue a packet arriving at buffer i if buffer i

154 S. Albers

is not full or if the packet with the smallest value in the buffer has a lower
value than the new packet. In the latter case the packet with the smallest
value is dropped.

2. Transmission: In each time step transmit the packet with the largest value
among all packets in the m queues.

Using this algorithm, Azar and Richter designed a technique Generic-Switch
that takes a single buffer management algorithm A as input parameter. We
are interested in the preemptive FIFO and the nonpreemptive models. Here
packets are always transmitted in the order they arrive (w.l.o.g., in the non-
preemptive model) and only A’s admission control strategy is relevant to us.

Generic-Switch:

1. Admission control: Apply admission control strategy A to any of the m
buffers.

2. Transmission: Run a simulation of TL (in the preemptive non-FIFO model)
with online paket arrival sequence σ. In each time step transmit the packet
from the head of the queue served by TL.

The main result by Azar and Richter is as follows.

Theorem 22. [12] If A is a c-competitive algorithm, then Generic-Switch is
2c-competitive.

Using this statement, one can derive a number of results for multiqueue prob-
lems. In the preemptive FIFO model Greedy achieves a competitiveness of
min{4− 2

B+1 , 4−
4

α+1}. The improved algorithm by Bansal et al. [13] gives a
3.5-competitive strategy. In the nonpreemptive setting we obtain a 2e)lnα*-
competitive strategy.

TCP Acknowledgement

In large networks data transmission is performed using the Transmission Con-
trol Protocol (TCP). If two network nodes wish to exchange data, then there
has to exist an open TCP connection between these two nodes. The data is
partitioned into packets which are then sent across the connection. A node
receiving data must acknowledge the receipt of each incoming packet so that
the sending node is aware that the transmission was successful. In most TCP
implementations today data packets do not have to be acknowledged indi-
vidually. Instead, there is some delay mechanism which allows the TCP to
acknowledge multiple packets with a single acknowledgement and, possibly,
to piggyback the acknowledgement on an outgoing data packet. This reduces
the number of acknowledgements sent and hence the network congestion as
well as the overhead at the network nodes for sending and receiving acknowl-
edgements. On the other hand, by reducing the number of acknowledgements,
we add latency to the TCP connection, which is not desirable. Thus, the goal

Online Algorithms 155

is to balance the reduction in the number of acknowledgements with the in-
crease in latency.

Dooly et al. [34] formulated the following TCP acknowledgement problem.
A network node receives a sequence of m data packets. Let ai denote the
arrival time of packet i, 1 ≤ i ≤ m. At time ai, the arrival times aj, j > i,
are not known. We have to partition the sequence σ = (a1, . . . , am) of packet
arrival times into n subsequences σ1, . . . , σn, for some n ≥ 1, such that each
subsequence ends with an acknowledgement. We use σi to denote the set of
arrivals in the partition. Let ti be the time when the acknowledgement for σi is
sent. We require ti ≥ aj , for all aj ∈ σi. If data packets are not acknowledged
immediately, there are acknowledgement delays. Dooley et al. [34] considered
the objective function that minimizes the number of acknowledgements and
the sum of the delays incurred for all of the packets, i.e., we wish to minimize
f = n +

∑n
i=1

∑
aj∈σi

(ti − aj). It turns out that a simple Greedy strategy is
optimal for this problem.
Greedy: Send an acknowledgement whenever the total delay of the unac-
knowledged packets is equal to 1, i.e., equal to the cost of an acknowledge-
ment.

Theorem 23. [34] The Greedy algorithm is 2-competitive and no determinis-
tic online algorithm can achieve a smaller competitive ratio.

Noga [59] and independently Seiden [63] showed that no randomized algo-
rithm can achieve a competitive ratio smaller than e/(e − 1) ≈ 1.58 against
oblivious adversaries. Karlin et al. [48] presented a randomized strategy that
achieves this factor. Let P (t, t′) be the set of packets that arrive after time
t but up to (and including) time t. The following algorithm works for pos-
itive real numbers between 0 and 1. It sends an acknowledgement when, in
hindsight, z time units of latency could have been saved by sending an earlier
acknowledgement.
Save(z): Let t be the time when the last acknowledgement was sent. Send
the next acknowledgement at the first time t′ > t such that there is a time τ
with t ≤ τ ≤ t′ and P (t, t′)(t′ − τ) = z.

Theorem 24. [48] If z is chosen according to the probability density function
p(z) = ez/(e− 1), Save(z) achieves a competitive ratio of e/(e− 1).

Albers and Bals [3] investigate another family of objective functions that
penalize long acknowledgement delays of individual data packets more heavily.
When TCP is used for interactive data transfer, long delays are not desirable
as they are noticeable to a user. Hence we wish to minimize the function
g = n+ max1≤i≤n di, where di = maxaj∈σi(ti − aj) is the maximum delay of
any packet in σi. The following family of algorithms is defined for any positive
real z.
Linear-Delay(z): Initially, set d = z and send the first acknowledgement at
time a1 + d. In general, suppose that the i-th acknowledgement has just been

156 S. Albers

sent and that j packets have been processed so far. Set d = (i+ 1)z and send
the (i+ 1)-st acknowledgement at time aj+1 + d.

Theorem 25. [3] Setting z = π2/6− 1, Linear-Delay(z) achieves a competi-
tive ratio of π2/6 ≈ 1.644 and no deterministic strategy can achieve a smaller
competitiveness.

It is well known that π2/6 =
∑∞

i=1 1/i2. Additionally, Albers and Bals [3]
investigate a generalization of the objective function g where delays are taken
to the p-th power and hence are penalized even more heavily. They proved
that the best competitive ratio is an alternating sum of Riemann’s zeta func-
tion. The ratio is decreasing in p and tends to 1.5 as p→∞. Frederiksen and
Larsen [41] studied a variant of the TCP acknowledgement problem, where it
is required that there is some minimum delay between sending two acknowl-
edgements to reflect the physical properties of the network.

6.2 Competitive Auctions

In electronic markets goods are often sold using protocols that resemble clas-
sical auctions. The goods available for distribution are not physical but digital
and may include, e.g., electronic books, software and digital copies of music
or movies. The players who are interested in buying such goods send bids to
an auctioneer, who then decides which bidders receive goods at which price.
The mechanisms by which resources are transferred should be truthful and
competitive, i.e., players should place bids which reflect their true valuations
of the goods and the revenue of the auction should be close to the optimal one.
There has recently been considerable research interest in designing truthful
competitive auctions [22, 35, 42, 43, 44, 55, 56] and we consider two basic
settings here.

Lavi and Nisan [56] were among the first who studied truthful auction
mechanisms. In their model k identical invisible goods are to be sold. The
players arrive online. When player i arrives he has valuations for buying var-
ious quantities of the good. More precisely, let vi(q) be the additional benefit
gained from a q-th item of the good. The total valuation from receiving q
goods is

∑q
j=1 vi(j). We assume vi(q + 1) ≤ vi(q), which is a common as-

sumption in economics. The valuations are only known to the player himself.
To buy goods the player sends bids bi(q), q = 1, . . . , k, where bi(q) is the bid
made for receiving a q-th item. The auctioneer then determines a quantity
qi to be sold to the player as well as a price pi. The utility of player i is
Ui(qi, pi) =

∑qi

j=1 vi(j) − pi. As mentioned already before, we are interested
in mechanisms where bidders declare their true valuations. More formally a
bidding strategy bi(q) of player i is dominant if Ui(qi, pi) ≥ Ui(q′i, p

′
i), for any

other strategy b′i(q) that results in quantity q′i and price p′i. Using this defini-
tion, an auction is called truthful if, for each player, declaring true valuations
bi(q) = vi(q) is a dominant strategy.

Online Algorithms 157

Lavi and Nisan give an exact characterization of truthful auctions in the
setting under consideration. An auction is based on supply curves if before
receiving the i-th bids bi(q), the auctioneer fixes prices Pi(q). The quantity
qi sold to player i is the value q that maximizes

∑q
j=1(bi(j)− Pi(j)) and the

prize to be paid is
∑qi

i=1 Pi(j).

Theorem 26. [56] An auction is truthful if and only if it is based on supply
curves.

Lavi and Nisan consider two performance measures of an auction, namely
revenue and social efficiency. Suppose that the valuations are in the range
[pmin, pmax]. For any auction A and valuation sequence σ, the revenue RA(σ)
to the auctioneer is defined as RA(σ) =

∑
i pi + pmin(k −

∑
i qi), i.e., we sum

up the prices paid by the players and the minimum value of the unsold items.
The social efficiency is EA(σ) =

∑
i

∑qi

j=1 vi(j)+pmin(k−
∑

i qi), i.e., we sum
up the valuations of all players and the auctioneer. Lavi and Nisan compare
an auction to the k-item Vickrey auction. This offline truthful auction sells
the k items to the k highest bids at the price of the (k + 1)-st highest bid.
An online auction A is c-competitive with respect to revenue if, for every
valuation sequence σ, RA(σ) ≥ RV IC(σ)/c. Similarly, A is c-competitive with
respect to social efficiency if, for every σ, EA(σ) ≥ EV IC(σ)/c.

Based on these definitions Lavi and Nisan present a truthful competitive
auction for selling k identical invisible goods. We only have to specify the
supply curve.
Discrete-Online-Auction: Let Φ = pmax/pmin. Use the supply curve P (j) =
pminΦ

j
k+1 .

Theorem 27. [56] The Discrete-Online-Auction achieves a competitive ratio
of kΦ

1
k+1 with respect to revenue and social efficiency.

Theorem 28. [56] The competitive ratio of any truthful online auction with
respect to revenue and social efficiency is at least max{Φ 1

k+1 , c}, where c is
the solution of the equation c = ln(Φ−1

c−1).

The second scenario we study here are single-round, sealed-bid competitive
auctions as introduces by Goldberg et al. [43]. We first consider the offline
problem, which is interesting and instructive in itself. Then we discuss the
online variant. There are n players, each of whom is interested in buying
one item of a given good. An auctioneer has available n items so that each
player can potentially receive one copy. Player i, 1 ≤ i ≤ n, submits a bid bi
representing the maximum amount that he is willing to pay for an item. Given
the vectorB of bids, the auctioneer computes an allocationX = (x1, . . . , xn) ∈
{0, 1}n and prices P = (p1, . . . , pn). If xi = 1, then player i receives an item,
i.e., he wins , and pays a cost of pi. We assume 0 ≤ pi ≤ bi. If xi = 0, then the
player does not receive an item, i.e., he loses, and pi = 0. The utility of player
i is vixi − pi. The profit of the auction is

∑
i pi. An auction is truthful if, for

158 S. Albers

each player i and any choice of bid values of the other players, the utility of
the i-th player is maximized by setting bi = vi.

Given a bid vectorB and an auctionA, let A(B) be the profit ofA on input
B. If A is randomized, then A(B) is a random variable. Goldberg et al. [43]
define competitiveness with respect to the optimal single price omniscient
auction F , which is defined as follows. In a bid vector B, let li be i-th largest
bid. Auction F determines the largest k such that k�k is maximized. All
players with bi ≥ lk win; the remaining players lose. The profit of F on B
is F (B) = max1≤i≤n i�i. A truthful auction is called c-competitive against F
if, for all bid vectors B, the expected profit of A on B satisfies E[A(B)] ≥
F (B)/c.

Goldberg et al. give an exact characterization of truthful auctions based
on the notion of bid-independence. Let fi, 1 ≤ i ≤ n, be a family of functions
from bid vectors to prices. The deterministic bid-independent auction defined
by functions fi has the following property for each player i.

Let pi = fi(B−i), where B−i = (b1, . . . , bi−1, bi+1, . . . , bn). If bi ≥ pi,
player i wins at a price of pi; otherwise player i loses.

Theorem 29. [43] An auction is truthful if and only if it is bid-independent.

Goldberg et al. presented an elegant randomized 4-competitive truthful auc-
tion which is based on the following cost-sharing mechanism.
Cost-Share(C): Given bid vector B, find the largest k such that the highest
k bidders can equally share the cost of C. Charge each C/k.
The actual auction then works as follows.
Sampling-Cost-Sharing:
1. Partition B uniformly at random into two sets, resulting in bid vectors B′

and B′′.
2. Compute F ′ = F (B′) and F ′′ = F (B′′).
3. Compute the auction results by running Cost-Share(F ′) on B′′ and Cost-

Share(F ′′) on B′.

Theorem 30. [43] Sampling-Cost-Sharing is a truthful 4-competitive auction.

Recently Goldberg and Hartline [42] presented a randomized auction that
achieves a competitiveness of 3.39 and uses only two random bits.

Bar-Yossef et al. [16] investigated the online variant of the above problem
setting where players arrive one by one. A player has access to all prior bids in
determining his own bid. When player i has submitted his bid, the auctioneer
must fix a price pi before any other player arrives. If pi ≤ bi, player i wins; oth-
erwise he loses. In the online scenario an auction A is called bid-independent
if the price for player i depends only on the previous bids and not on bi. That
is, for any sequence of bids b1, . . . , bi−1 and for any two choices of the i-th bid
bi and b′i, fi(b1, . . . , bi−1, bi) = fi(b1, . . . , bi−1, b

′
i). Bar-Yossef et al. show that

an online auction is truthful if and only if it is bid-independent.

Online Algorithms 159

Assume that all bids are in the range [1, h]. Furthermore, let B<i =
(b1, . . . , bi−1) be the bids up to player i. Bar-Yossef et al. presented the fol-
lowing randomized auction. The parameter d will be determined later.
Weighted-Interval-Auction(d): Partition the range [1, h] into l = +log h,+
1 subintervals I0, . . . , Il−1 with Ik = [2k, 2k+1). When player i arrives, deter-
mine the set of previous players with bids in Ik, for any k. More precisely, let
Sk = {j | j ≤ i − 1, bj ∈ Ik} and compute the weight wk(B<i) =

∑
j∈Sk

bj .
Choose the price pi = 2k with probability

Prob[pi = 2k] =
wk(B<i)d∑l−1

r=0wr(B<i)d
.

Theorem 31. [16] Weighted-Interval-Auction(d) is a truthful auction. Re-
stricting to bidding sequences with F (B) ≥ 9h and setting d =

√
log log h, the

competitive ratio is O(exp(
√

log log h)).

Using methods from learning theory, Blum et al [22] developed a constant
competitive truthful auction.

7 Refinements of Competitive Analysis

Competitive analysis is a worst-case performance measure. Unfortunately, for
some online problems, the competitive ratios of online algorithms are much
higher than the performance ratios observed in practice. The reason is, typ-
ically, that a competitive algorithm considers arbitrary request sequences
whereas in practice only restricted classes of input occur.

We consider the paging problem in more detail. In Sect. 2 we saw that the
best competitiveness of deterministic online algorithms is equal to k, where k
is the number of pages that can be stored in fast memory. Both LRU and FIFO
achieve this bound. From a practical point of view the bound of k is not very
meaningful as a fast memory can usually store several hundreds or thousands
of pages. On the other hand, the performance ratios of LRU and FIFO in
practice are much lower. An experimental study by Young [68] reports ratios
in the range between 1.5 and 4. Moreover, in practice, LRU performs better
than FIFO. This is not evident in competitive analysis, either. In the paging
problem standard competitive analysis ignores the fact that request sequences
generated by real programs exhibit locality of reference: Whenever a page is
requested, the next request is to an associated page.

Borodin et al. [24] introduced access graphs for modeling locality of ref-
erence. In an access graph the nodes represent the memory pages. Whenever
a page p is requested, the next request must be to a page that is is adjacent
to p in the access graph. A number of results have been developed in this
model [24, 30, 36, 38, 45]. It has been shown that, for any access graph, LRU
is never worse than FIFO. For access graphs that are trees, LRU is in fact an

160 S. Albers

optimal algorithm. Moreover, a number of improved paging algorithms have
been proposed that take into account the structure of the access graph.

Karlin et al. [49] modeled locality of reference by assuming that request
sequences are generated by a Markov chain. They evaluate paging algorithms
in terms of their fault rate which is the performance measure preferred by
practitioners. In particular, they developed an algorithm that achieves an
optimal fault rate, for any Markov chain. Torng [67] analyzed the total access
time of paging algorithms. He assumes that the service of a request to a page
in fast memory costs 1, whereas a fault incurs a penalty of p, p > 1. In his
model a request sequence exhibits locality of reference if the average length
of a subsequence containing requests to m distinct pages is much larger than
m.

Recently, Albers et al. [4] proposed another framework for modeling local-
ity of reference that goes back to the working set concept by Denning [32, 33].
In practice, during any phase of execution, a process references only a rela-
tively small fraction of its pages. The set of pages that a process is currently
using is called the working set . Determining the working set size in a window
of size n at any point in a request sequence, one obtains, for variable n, a func-
tion that is increasing and concave. Albers et al. restrict the input to request
sequences in which the maximum or the average number of distinct pages ref-
erenced in windows of size n is bounded by f(n), f being a concave function.
They give tight upper and lower bounds on the page fault rates achieved by
popular paging algorithms. It shows that LRU is an optimal online algorithm
whereas other algorithms, such as FIFO, are not optimal in general.

With respect to arbitrary online problems, other refinements of competi-
tive analysis include extra resource analyses, see e.g., [47, 65], statistical ad-
versaries [28, 60], accomodating functions [26] and the max/max ratio [18].
Koutsoupias and Papadimitriou [54] introduced the diffuse adversary model .
An adversary must generate an input according to a probability distribution
D that belongs to a class ∆ of possible distributions known to the online
algorithm. We wish to determine, for the given class ∆ of distributions, the
performance ratio

R(∆) = min
A

max
D∈∆

ED[A(σ)]
ED[OPT (σ)]

.

Secondly, Koutsoupias and Papadimitriou [54] introduced comparative analy-
sis , which compares the performance of online algorithms from given classes
of algorithms.

8 Concluding Remarks

In this chapter we have presented a number of fundamental results in the area
of online algorithms and studied some applications that have received a lot of
research attention lately. There are several important application areas that

Online Algorithms 161

we have not addressed here. Online bin packing is a fundamental problem
where we have to pack a sequence of items into bins so that the number of
bins is minimized. Problems in online scheduling are still actively investigated.
Here a sequence of jobs has to be scheduled on a number of machines so that
a given objective function is optimized. Online coloring and online matching
are two classical online problems related to graph theory. In these problems,
the vertices of a graph arrive online and must be colored respectively matched
immediately. The book by Fiat and Woeginger [40] contains a collection of
survey articles on these and many other topics. More generally, an excellent
text book on online algorithms was written by Borodin and El-Yaniv [23].

References

1. D. Achlioptas, M. Chrobak, J. Noga. Competitive analysis of randomized pag-
ing algorithms. Theoretical Computer Science, 234:203–218, 2000.

2. S. Albers. Improved randomized on-line algorithms for the list update problem.
SIAM J. Computing 27:670–681, 1998.

3. S. Albers, H. Bals. Dynamic TCP acknowledgement: Penalizing long delays.
Proc. 14th ACM-SIAM Symp. on Theory of Computing, 47–55, 2003.

4. S. Albers, L. M. Favrholdt, O. Giel On paging with locality of reference. Proc.
34th ACM Symp. on Theory of Computing, 258–268, 2002.

5. S. Albers, M. Mitzenmacher. Average case analyses of list update algorithms,
with applications to data compression. Algorithmica 21:312–329, 1998.

6. S. Albers, B. von Stengel, R. Werchner. A combined BIT and TIMESTAMP
algorithm for the list update problem. Information Processing Letters 56:135–
139, 1995.

7. W. Aiello, Y. Mansour, S. Rajagopolan, A. Rosén. Competitive queue policies
for differentiated services. Proc. INFOCOM, 431–440, 2000.

8. C. Ambühl. Offline list update is NP-hard. Proc. 8th Annual European Symp.
on Algorithms, Springer LNCS 1879, 42–51, 2001.

9. C. Ambühl, B. Gärtner, B. von Stengel. Towards new lower bounds for the list
update problem. Theoretical Computer Science 268:3–16, 2001.

10. N. Andelman, Y. Mansour, A. Zhu. Competitive queueing policies in QoS
switches. Proc. 14th ACM-SIAM Symp. on Discrete Algorithms, 761–770, 2003.

11. A. Archer, C. Papadimitriou, K. Talwar, E. Tardos. An approximate truthful
mechanism for combinatorial auctions with single parameter agents. Proc. 14th
ACM-SIAM Symp. on Discrete Algorithms, 205–214, 2003.

12. Y. Azar, Y. Richter. Management of multi-queue switches in QoS networks.
Proc. 35th Annual ACM Symp. on Theory of Computing, 82–89, 2003.

13. N. Bansal, L. Fleischer, T. Kimbrel, M. Mahdian, B. Schieber, M. Sviridenko.
Further improvements in competitive guarantees for QoS buffering. Proc. 31st
Int’l Colloquium on Automata, Languages and Programming, Springer LNCS
3142, 196-207, 2004.

14. Y. Bartal, A. Blum, C. Burch, A. Tomkins. A polylog(n)-competitive algo-
rithm for metrical task systems. Proc. 29th Annual ACM Symp. on Theory of
Computing, 711–719, 1997.

162 S. Albers

15. Y. Bartal, B. Bollobás, M. Mendel. A Ramsey-type theorem for metric spaces
and its applications for metrical task systems and related problems. Proc. 42nd
IEEE Annual Symp. on Foundations of Computer Science, 396–405, 2001.

16. Z. Bar-Yossef, K. Hildrum, F. Wu. Incentive-compatible online auctions for
digital goods. Proc. 13th Annual ACM-SIAM Symp. on Discrete Algorithms,
964–970, 2002.

17. L. A. Belady. A study of replacement algorithms for virtual storage computers.
IBM Systems J. 5:78–101, 1966.

18. S. Ben-David, A. Borodin. A new measure for the study of on-line algorithms.
Algorithmica 11:73–91, 1994.

19. S. Ben-David, A. Borodin, R. M. Karp, G. Tardos, A. Wigderson. On the power
of randomization in on-line algorithms. Algorithmica 11:2–14, 1994.

20. J. L. Bentley, D. S. Sleator, R. E. Tarjan, V. K. Wei. A locally adaptive data
compression scheme. Comm. ACM 29:320–330, 1986.

21. A. Blum, S. Chawla, A. Kalai. Static optimality and dynamic search-optimality
in lists and trees. Algorithmica 36:249–260, 2003.

22. A. Blum, V. Kumar, A. Rudra, F. Wu. Online learning in online auctions. Proc.
14th Annual ACM-SIAM Symp. on Discrete Algorithms, 202–204, 2003.

23. A. Borodin, R. El-Yaniv. Online computation and competitive analysis. Cam-
bridge University Press, Cambridge, 1998.

24. A. Borodin, S. Irani, P. Raghavan, B. Schieber. Competitive paging with local-
ity of reference. J. Computer and System Sciences 50:244–258, 1995.

25. A. Borodin, N. Linial, M. Saks. An optimal online algorithm for metrical task
systems. J. ACM 39:745–763, 1992.

26. J. Boyar, K. S. Larsen, M. N. Nielsen. The accommodating function: A gener-
alization of the competitive ratio. SIAM J. on Computing 31:233–258, 2001.

27. M. Burrows, D. J. Wheeler. A block-sorting lossless data compression algo-
rithm. DEC SRC Research Report 124, 1994.

28. A. Chou, J. Cooperstock, R. El Yaniv, M. Klugerman, T. Leighton. The sta-
tistical adversary allows optimal money-making trading strategies. Proc. 6th
Annual ACM-SIAM Symp. on Discrete Algorithms, 467–476, 1995.

29. M. Chrobak, L. L. Larmore. An optimal online algorithm for k servers on trees.
SIAM J. on Computing 20:144–148, 1991.

30. M. Chrobak, J. Noga. LRU is better than FIFO. Algorithmica 23:180–185, 1999.
31. D. Coppersmith, P. Doyle, P. Raghavan, M. Snir. Random walks on weighted

graphs, and applications to on-line algorithms. J. ACM 40:421–453, 1993.
32. P. J. Denning. The working set model of program behavior. Comm. ACM

11:323–333, 1968.
33. P. J. Denning. Working sets past and present. IEEE Trans. Software Engineer-

ing 6:64–84, 1980.
34. D. R. Dooly, S. A. Goldman, D. S. Scott. On-line analysis of the TCP acknowl-

edgment delay problem. J. ACM 48:243–273, 2001.
35. A. Fiat, A. Goldberg, J. Hartline, A. Karlin. Competitive generalized auctions.

Proc. 34th Annual ACM Symp. on Theory of Computing, 72–81, 2002.
36. A. Fiat, A. Karlin. Randomized and multipointer paging with locality of refer-

ence. Proc. 27th Annual ACM Symp. on Theory of Computing, 626–634, 1995.
37. A. Fiat, R. M. Karp, L. A. McGeoch, D. D. Sleator, N. E. Young. Competitive

paging algorithms. J. Algorithms 12:685–699, 1991.
38. A. Fiat, M. Mendel. Truly online paging with locality of reference. Proc. 38th

Annual Symp. on Foundations of Computer Science, 326–335, 1997.

Online Algorithms 163

39. A. Fiat, M. Mendel. Better algorithms for unfair metrical task systems and
applications. Proc. 32nd Annual ACM Symp. on Theory of Computing, 725–
734, 2000.

40. A. Fiat, G. Woeginger. Online Algorithms: The State of the Art, Springer LNCS
1442, 1998.

41. J. S. Frederiksen, K. S. Larsen. Packet bundling. Proc. 8th Scandinavian Work-
shop on Algorithm Theory, Springer LNCS 2368, 328–337, 2002.

42. A. Goldberg, J. Hartline. Competitiveness via consensus. Proc. 14th Annual
ACM-SIAM Symp. on Discrete Algorithms, 215–222, 2003.

43. A. V. Goldberg, D. S. Hartline, A. Karlin, A. Wright. Competitive auctions.
Extended version of [44], 2001.

44. A. V. Goldberg, D. S. Hartline, A. Wright. Competitive auctions of digital
goods. Proc. 12th Annual ACM-SIAM Symp. on Discrete Algorithms, 735–744,
2001.

45. S. Irani, A. R. Karlin, S. Phillips. Strongly competitive algorithms for paging
with locality of reference. SIAM J. on Computing 25:477–497, 1996.

46. S. Irani, D. S. Seiden. Randomized algorithms for metrical task systems. The-
oretical Computer Science 194:163–182, 1998.

47. B. Kalyanasundaram, K. Pruhs. Speed is as powerful as clairvoyance. J. ACM
47:617–643, 2000.

48. A. R. Karlin, C. Kenyon, D. Randall. Dynamic TCP acknowledgement and
other stories about e/(e − 1). Algorithmica 36:209–224, 2003.

49. A. Karlin, S. Phillips, P. Raghavan. Markov paging. SIAM J. on Computing
30:906–922, 2000.

50. Karp R, Raghavan P From a personal communication cited in [62], 1990.
51. A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, M. Sviri-

denko. Buffer overflow management in QoS switches. In: Proc. 33rd Annual
ACM Symp. on Theory of Computing, 520–529, 2001.

52. A. Kesselman, Y. Mansour, R. van Stee. Improved competitive guarantees for
QoS buffering. Proc. 11th European Symp. on Algorithms, Springer LNCS 2832,
361–372, 2003.

53. E. Koutsoupias, C. H. Papadimitriou. On the k-server conjecture. J. ACM
42:971–983, 1995.

54. E. Koutsoupias, C. H. Papadimitriou. Beyond competitive analysis. SIAM J.
on Computing 30:300–317, 2000.

55. R. Lavi, A. Mu’alem, N. Nisan. Towards a characterization of truthful combi-
natorial auctions. Proc. 44th Annual IEEE Symp. on Foundations of Computer
Science, 574-583, 2003.

56. R. Lavi, N. Nisan. Competitive analysis of incentive compatible on-line auc-
tions. Proc. 2nd ACM Conf. on Electronic Commerce, 2000.

57. M. S. Manasse, L. A. McGeoch, D. D. Sleator. Competitive algorithms for
on-line problems. Proc. 20th Annual ACM Symp. on Theory of Computing,
322–333, 1988.

58. L. A. McGeoch, D. D. Sleator. A strongly competitive randomized paging al-
gorithm. Algorithmica 6:816–825, 1991.

59. J. Noga. Private communication, 2001.
60. P. Raghavan. A statistical adversary for on-line algorithms. On-Line Algo-

rithms, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, 79–83, 1991.

164 S. Albers

61. P. Raghavan, M. Snir. Memory versus randomization in on-line algorithms.
IBM J. of Research and Development 38:683–708, 1994.

62. N. Reingold, J. Westbrook, D. D. Sleator. Randomized competitive algorithms
for the list update problem. Algorithmica 11:15–32, 1994.

63. S. S. Seiden. A guessing game and randomized online algorithms. Proc. 32nd
Annual ACM Symp. on Theory of Computing, 592–601, 2000.

64. S. S. Seiden. A general decomposition theorem for the k-server problem. Proc.
9th Annual Symp. on Algorithms, Springer LNCS 2161, 86–97, 2001.

65. D. D. Sleator, R. E. Tarjan. Amortized efficiency of list update and paging
rules. Comm. ACM 28:202–208, 1985.

66. D. D. Sleator, R. E. Tarjan. Self-adjusting binary search trees. J. ACM 32:652–
686

67. E. Torng. A unified analysis of paging and caching. Algorithmica 20:175–200,
1998.

68. N. Young. The k-server dual and loose competitiveness for paging. Algorithmica
11:525–541, 1994.

Interactive Algorithms 2005
with Added Appendix

Yuri Gurevich

Microsoft Research, Redmond, WA, USA

Summary. A sequential algorithm just follows its instructions and thus cannot
make a nondeterministic choice all by itself, but it can be instructed to solicit outside
help to make a choice. Similarly, an object-oriented program cannot create a new
object all by itself; a create-a-new-object command solicits outside help. These are
but two examples of intrastep interaction of an algorithm with its environment. Here
we motivate and survey recent work on interactive algorithms within the Behavioral
Computation Theory project.

1 Introduction

This is essentially article [14] except that we have added an appendix called
“What is interaction anyway?” that can be read independently.

In 1982, the University of Michigan hired this logician on his promise
to become a computer scientist. The logician eagerly wanted to become a
computer scientist. But what is computer science? Is it really a science? What
is it about?

After thinking a while, we concluded that computer science is largely about
algorithms. Operating systems, compilers, programming languages, etc. are all
algorithms, in a wide sense of the word. For example, a programming language
can be seen as a universal algorithm that applies the given program to the
given data. In practice, you may need a compiler and a machine to run the
compiled program on, but this is invisible on the abstraction level of the
programming language.

A problem arises: What is an algorithm? To us, this is a fundamental
problem of computer science, and we have been working on it ever since.

But didn’t Turing solve the problem? The answer to this question depends
on how you think of algorithms. If all you care about is the input-to-output
function of the algorithm, then yes, Turing solved the problem. But the behav-
ior of an algorithm may be much richer than its input-to-output function. An
algorithm has its natural abstraction level, and the data structures employed

166 Y. Gurevich

by an algorithm are intrinsic to its behavior. The parallelism of a parallel
algorithm is an inherent part of its behavior. Similarly, the interactivity of an
interactive algorithm is an inherent part of its behavior as well.

Is there a solution à la Turing to the problem of what an algorithm is? In
other words, is there a state-machine model that captures the notion of algo-
rithm up to behavioral equivalence? Our impression was, and still is, that the
answer is yes. In [11], we defined sequential abstract state machines (ASMs)
and put forward a sequential ASM thesis: for every sequential algorithm, there
is a sequential ASM with the same behavior. In particular, the ASM is sup-
posed to simulate the given algorithm step-for-step. In [12], we defined parallel
and distributed abstract state machines and generalized the ASM thesis for
parallel and distributed algorithms. Parallel ASMs gave rise to a specification
(and high-level programming) language AsmL [2] developed by the group of
Foundations of Software Engineering of Microsoft Research.

At this point, the story forks. One branch leads to experimental evidence
for the ASM thesis and to applications of ASMs [1, 2, 7]. Another branch
leads to behavioral computation theory. We take the second branch here and
restrict attention to sequential time algorithms that compute in a sequence of
discrete steps.

In Sect. 2 we discuss a newer approach to the explication of the notion
of algorithm. The new approach is axiomatic, but it also involves a machine
characterization of algorithms. This newer approach is used in the rest of the
article.

In Sect. 3 we sketch our explication of sequential (or small-step) algorithms
[13]. We mention also the explication of parallel (or wide-step) algorithms in
[3] but briefly. In either case, the algorithms in questions are isolated-step
algorithms that abstain from intrastep interaction with the environment. They
can interact with the environment in the interstep manner, however.

Section 4 is a quick introduction to the study of intrastep interaction of
an algorithm with its environment; much of the section reflects [5, Part I].
We motivate the study of intrastep interaction and attempt to demonstrate
how ubiquitous intrastep interaction is. Numerous disparate phenomena are
best understood as special cases of intrastep interaction. We discuss various
forms of intrastep interaction, introduce the query mechanism of [5, Part I]
and attempt to demonstrate the universality of the query mechanism: the
atomic interactions of any mechanism are queries. In the rest of the article,
we concentrate on intrastep interaction; by default interaction means intrastep
interaction. To simplify the exposition, we consider primarily the small-step
(rather than wide-step) algorithms; by default algorithms are small-step al-
gorithms.

Section 5 is devoted to the explication of ordinary interactive algorithms
[5]. Ordinary algorithms never complete a step until all queries from that step
have been answered. Furthermore, the only information from the environment
that an ordinary algorithm uses during a step is answers to its queries.

Interactive Algorithms 2005 with Added Appendix 167

Section 6 is devoted to the explication of general interactive algorithms [6,
Article 1-3]. Contrary to ordinary interactive algorithms, a general interactive
algorithm can be impatient and complete a step without waiting for all queries
from that step to have been answered. It also can be time sensitive, so that its
actions during a step depend not only on the answers to its queries but also on
the order in which the answers have arrived. We mention also the explication
of general wide-step algorithms [6, Article 4] but briefly.

Section 7 is a concluding remark to the main part of this article, that is
the whole article minus the appendix.

Finally the appendix compares our approach to interactive computing with
that of the Wegner school presented in this volume by article [10].

Much of this article reflects joint work with Andreas Blass, Benjamin Ross-
man and Dean Rosenzweig.

2 Explication of Algorithms

The theses mentioned in the introduction equate an informal, intuitive notion
with a formal, mathematical notion. You cannot prove such a thesis mathe-
matically but you can argue for it. Both Church and Turing argued for their
theses. While their theses are equivalent, their arguments were quite different
[4]. The ASM theses, mentioned in the introduction, have the following form.

ASM Thesis Form

1. Describe informally a class A of algorithms.
2. Describe the behavioral equivalence of A algorithms. Intuitively two algo-

rithms are behaviorally equivalent if they do the same thing in all circum-
stances. Since A is defined informally, the behavioral equivalence may be
informal as well.

3. Define a class M of abstract state machines.
4. Claim that M ⊆ A and that every A ∈ A is behaviorally equivalent to

some M ∈M.

The thesis for a class A of algorithms explicates algorithms in A as abstract
state machines in M. For example, sequential algorithms are explicated as
sequential ASMs. The thesis is open to criticism. One can try to construct
an ASM in M that falls off A or an algorithm in A that is not behaviorally
equivalent to any ASM in M.

Since the ASM thesis for A cannot be proven mathematically, experi-
mental confirmation of the thesis is indispensable; this partially explains the
interest in applications of ASMs in the ASM community. But one can argue
for the thesis, and we looked for the best way to do that. Eventually we arrived
at a newer and better explication procedure.

168 Y. Gurevich

Algorithm Explication Procedure

1. Axiomatize the class A of the algorithms of interest. This is the hardest
part. You try to find the most convincing axioms (or postulates) possible.

2. Define precisely the notion of behavioral equivalence. If there is already
an ASM thesis T for A, you may want to use the behavioral equivalence
of T or a precise version of the behavioral equivalence of T .

3. Define a class M of abstract state machines. If there is already an ASM
thesis T for A, you may want to use the abstract state machines of T .

4. Prove the following characterization theorem for A: M ⊆ A and every
A ∈M is behaviorally equivalent to some M ∈M.

The characterization provides a theoretical programming language for A and
opens a way for more practical languages for A. Any instance of the explication
procedure is open to criticism of course. In particular, one may criticize the
axiomatization and the behavioral equivalence relation.

If an explication procedure for A uses (a precise version of) the behavioral
equivalence and the machines of the ASM thesis for A, then the explication
procedure can be viewed as a proof of the thesis given the axiomatization.

A priori it is not obvious at all that a convincing axiomatization is possi-
ble. But our experience seems to be encouraging. The explication procedure
was used for the first time in [13] where sequential algorithms were axioma-
tized and the sequential ASM thesis proved; see more about that in the next
section. In [3], parallel algorithms were axiomatized and the parallel ASM the-
sis was proved, except that we slightly modified the notion of parallel ASM.
Additional uses of the explication procedure will be addressed in Sects. 4–6.

In both, [13] and [3], two algorithms are behaviorally equivalent if they
have the same states, initial states and transition function. It follows that
behaviorally equivalent algorithms simulate each other step-for-step. We have
been criticized that this behavioral equivalence is too fine, that step-for-step
simulation is too much to require, that appropriate bisimulation may be a
better behavioral equivalence. We agree that in some applications bisimula-
tion is the right equivalence notion. But notice this: the finer the behavioral
equivalence, the stronger the characterization theorem.

3 Isolated-Step Algorithms

As we mentioned above, sequential algorithms were explicated in [13]. Here
we recall and motivate parts of that explication needed to make our story
self-contained.

Imagine that you have some entity E. What does it mean that E is a
sequential algorithm? A part of the answer is easy: every algorithm is a (not
necessarily finite-state) automaton.

Interactive Algorithms 2005 with Added Appendix 169

Postulate 1 (Sequential time) The entity E determines

• a nonempty collection of states,
• a nonempty collection of initial states, and
• a state-transition function.

The postulate does not say anything about final states; we refer the interested
reader to [13, Sect. 3.3.2] in this connection. This single postulate allows us to
define behavioral equivalence of sequential algorithms.

Definition 1. Two sequential algorithms are behaviorally equivalent if they
have the same states, initial states and transition function.

It is harder to see what else can be said about sequential algorithms in full
generality. Of course, every algorithm has a program of one kind or another,
but we don’t know how to turn this into a postulate or postulates. There are
so many different programming notations in use already, and it is bewildering
to imagine all possible programming notations.

Some logicians, notably Andrey A. Markov [18], insisted that the input to
an algorithm should be constructive, like a string or matrix, so that you can
actually write it down. This excludes abstract finite graphs for example. How
would you put an abstract graph on the Turing machine tape? It turned out,
however, that the constructive input requirement is too restrictive. Relational
databases for example represent abstract structures, in particular graphs, and
serve as inputs to important algorithms.

Remark 1 You can represent an abstract graph by an adjacency matrix. But
this representation is not unique. Note also that it is not known whether there
is a polynomial-time algorithm that, given two adjacency matrices, determines
whether they represent the same graph.

A characteristic property of sequential algorithms is that they change their
state only locally in any one step. Andrey N. Kolmogorov, who looked into
this problem, spoke about “steps whose complexity is bounded in advance”
[15]. We prefer to speak about bounded work instead; the amount of work
done by a sequential algorithm in any one step is bounded, and the bound
depends only on the algorithm and not on the state or the input. But we don’t
know how to measure the complexity of a step or the work done during a step.
Fortunately we found a way around this difficulty. To this end, we need two
additional postulates.

According to the abstract state postulate, all states of the entity E are
structures (that is first-order structures) of a fixed vocabulary. If X is an (ini-
tial) state of A and a structure Y is isomorphic to X then Y is an (initial)
state of A. The abstract state postulate allows us to introduce an abstract
notion of location and to mark locations explored by an algorithm during a
given step. The bounded exploration postulate bounds the number of loca-
tions explored by an algorithm during any step; the bound depends only on
the algorithm and not on the state or the input. See details in [13].

170 Y. Gurevich

Definition 2. A sequential algorithm is any entity that satisfies the sequential-
time, abstract-state and bounded-exploration postulates.

A sequential abstract state machine is given is by a program, a nonempty
isomorphism-closed collection of states and a nonempty isomorphism-closed
subcollection of initial states. The program determines the state transition
function.

Like a Turing machine program, a sequential ASM program describes only
one step of the ASM. It is presumed that this step is executed over and over
again. The machine halts when the execution of a step does not change the
state of the machine. The simplest sequential ASM programs are assignments:

f(t1, . . . , tj) := t0

Here f is a j-ary dynamic function and every ti is a ground first-order term.
To execute such a program, evaluate every ti at the given state; let the result
be ai. Then set the value of f(a1, . . . , aj) to a0. Any other sequential ASM
program is constructed from assignments by means of two constructs: if-then-
else and do-in-parallel. Here is a sequential ASM program for the Euclidean
algorithm: given two natural numbers a and b, it computes their greatest
common divisor d.

Example 1 (Euclidean algorithm 1).

if a = 0 then d := b
else do in-parallel

a := b mod a
b := a

The do-in-parallel constructs allows us to compose and execute in parallel two
or more programs. In the case when every component is an assignment, the
parallel composition can be written as a simultaneous assignment. Example 1
can be rewritten as

if a = 0 then d := b
else a, b := b mod a, a

A question arises what happens if the components perform contradictory ac-
tions in parallel, for example,

do in-parallel
x := 7
x := 11

The ASM breaks down in such a case. One can argue that there are better
solutions for such situations that guarantee that sequential ASMs do not break
down. In the case of the program above, for example, one of the two values, 7 or
11, can be chosen in one way or another and assigned to x. Note, however, that
some sequential algorithms do break down. That is a part of their behavior.

Interactive Algorithms 2005 with Added Appendix 171

If sequential ASMs do not ever break down, then no sequential ASM can be
behaviorally equivalent to a sequential algorithm that does break down.

In the Euclidean algorithm, all dynamic functions are nullary. Here is a
version of the algorithm where some of dynamic functions are unary. Initially
mode = s = 0.

Example 2 (Euclidean algorithm 2).

if mode = 0 then a(s), b(s), mode := Input1(s), Input2(s), 1
elseif mode = 1 then

if a(s) = 0 then d(s), s, mode := b(s), s+1, 0
else a(s), b(s) := b(s) mod a(s), a(s)

Theorem 1 (Sequential characterization theorem). Every sequential
ASM is a sequential algorithm, and every sequential algorithm is behaviorally
equivalent to a sequential ASM.

We turn our attention to parallel algorithms and quote from [4]: “The term
‘parallel algorithm’ is used for a number of different notions in the literature.
We have in mind sequential-time algorithms that can exhibit unbounded par-
allelism but only bounded sequentiality within a single step. Bounded sequen-
tiality means that there is an a priori bound on the lengths of sequences of
events within any one step of the algorithm that must occur in a specified
order. To distinguish this notion of parallel algorithms, we call such paral-
lel algorithms wide-step. Intuitively the width is the amount of parallelism.
The ‘step’ in ‘wide-step’ alludes to sequential time.” Taking into account the
bounded sequentiality of wide-step algorithms, they could be called “wide and
shallow step algorithms”.

4 Interaction

4.1 Interstep Interaction

One may have the impression that the algorithms of the previous section
do not interact at all with the environment during the computation. This
is not necessarily so. They do not interact with the environment during a
step; we call such algorithm isolated step algorithms. But the environment
can intervene between the steps of an algorithm. The environment preserves
the vocabulary of the state but otherwise it can change the state in any way. It
makes no difference in the proofs of the two characterization theorems whether
interstep interaction with the environment is or is not permitted.

In particular, Euclidean algorithm 2 could be naturally interstep interac-
tive; the functions Input1 and Input2 do not have to be given ahead of time.
Think of a machine that repeatedly applies the Euclidean algorithm and keeps
track of the number s of the current session. At the beginning of session s,

172 Y. Gurevich

the user provides numbers Input1(s) and Input2(s), so that the functions In-
put1(s) and Input2(s) are external. The interstep interactive character of the
algorithm becomes obvious if we make the functions Input1, Input2 nullary.

Example 3 (Euclidean algorithm 3).

if mode = 0 then a(s), b(s), mode := Input1, Input2, 1
elseif mode = 1 then

if a(s) = 0 then d(s), s, mode := b(s), s+1, 0
else a(s), b(s) := b(s) mod a(s), a(s)

4.2 Intrastep Interaction

In applications, however, much of the interaction of an algorithm with its
environment is intrastep. Consider for example an assignment

x := g(f(7))

where f(7) is a remote procedure call whose result is used to form another
remote procedure call. It is natural to view the assignment being done within
one step. Of course, we can break the assignment into several steps so that
interaction is interstep but this forces us to a lower abstraction level. Another
justification of intrastep interaction is related to parallelism.

Example 4. This example reflects a real-world AsmL experience. To paint a
picture, an AsmL application calls an outside paint applications. A paint agent
is created, examines the picture and repeatedly calls the algorithm back: what
color for such and such detail? The AsmL application can make two or more
such paint calls in parallel. It is natural to view parallel conversations with
paint agents happening intrastep.

Proviso 1 In the rest of this article, we concentrate on intrastep interaction
and ignore interstep interaction. By default, interaction is intrastep interac-
tion.

4.3 The Ubiquity of Interaction

Intrastep interaction is ubiquitous. Here are some examples.

• Remote procedure calls.
• Doing the following as a part of expression evaluation: getting input, re-

ceiving a message, printing output, sending a message, using an oracle.
• Making nondeterministic choices among two or more alternatives.
• Creating new objects in the object-oriented and other paradigms.

Interactive Algorithms 2005 with Added Appendix 173

The last two items require explanation. First we address nondeterminis-
tic choices. Recall that we do not consider distributed algorithms here. A
sequential-step algorithm just follows instructions and cannot nondeterminis-
tically choose all by itself. But it can solicit help from the environment, and
the environment may be able to make a choice for the algorithm. For example,
to evaluate an expression

any x | x in {0, 1, 2, 3, 4, 5} where x > 1

an AsmL program computes the set {2, 3, 4, 5} and then uses an outside pseu-
dorandom number generator to choose an element of that set. Of course an
implementation of a nondeterministic algorithm may incorporate a choosing
mechanism, so that there is no choice on the level of the implementation.

Re new object creation. An object-oriented program does not have the
means necessary to create a new object all by itself: to allocate a portion
of the memory and format it appropriately. A create-a-new-object command
solicits outside help. This phenomenon is not restricted to the object-oriented
paradigm. We give a non-object-oriented example. Consider an ASM rule

import v
NewLeaf := v

that creates a new leaf say of a tree. The import command is really a query to
the environment. In the ASM paradigm, a state comes with an infinite set of
so-called reserve elements. The environment chooses such a reserve elements
and returns it as a reply to the query.

4.4 Interaction Mechanisms

One popular interaction form is exemplified by the Remote Procedure Call
(RPC) mechanism. One can think of a remote procedure call as a query to
the environment where the caller waits for a reply to its query in order to
complete a step and continue the computation. This interaction form is often
called synchronous or blocking. Another popular interaction form is message
passing. After sending a message, the sender proceeds with its computation;
this interaction form is often called asynchronous or nonblocking. The syn-
chronous/asynchronous and blocking/nonblocking terminologies may create
an impression that every atomic intrastep interaction is in one of the two
form. This is not the case. There is a spectrum of possible interaction forms.
For example, a query may require two replies: first an acknowledgment and
then an informative reply. One can think of queries with three, four or arbi-
trarily many replies.

Nevertheless, according to [5, Part I], there a universal form of atomic
intrastep interaction: not-necessarily-blocking single-reply queries. In the pre-
vious paragraph, we have already represented a remote procedure call as a
query. Sending a message can be thought of as a query that gets an immediate

174 Y. Gurevich

automatic reply, an acknowledgment that the query has been issued. Produc-
ing an output is similar. In fact, from the point of view of an algorithm issuing
queries, there is no principal difference between sending a message and pro-
ducing an output; in a particular application of course messages and outputs
may have distinct formats.

What about two-reply queries mentioned above? It takes two single-reply
queries to get two answers. Consider an algorithm A issuing a two-reply query
q and think of q as a single-reply query. When the acknowledgment comes
back, A goes to a mode where it expects an informative answer to q. This
expectation can be seen as implicitly issuing a new query q′. The informative
reply ostensibly to q is a usual reply to q′. In a similar way, one can explain
receiving a message. It may seem that the incoming message is not provoked
by any query. What query is it a reply to? An implicit query. That implicit
query manifests itself in A’s readiness to accept the incoming message. Here
is an analogy. You sleep and then wake up because of the alarm clock buzz.
Have you been expecting the buzz? In a way you were, in an implicit sort
of way. Imagine that, instead of producing a buzz, the alarm clock quietly
produces a sign “Wake up!” This will not have the desired effect, would it?

In general we do not assume that the query issuer has to wait for a reply
to a query in order to resume its computation. More about that in Sect. 6.

What are potential queries precisely? This question is discussed at length
in [5, Part I]. It is presumed that potential answers to a query are elements
of the state of the algorithm that issued the query, so that an answer makes
sense to the algorithm.

5 Ordinary Interactive Small-Step Algorithms

Proviso 2 To simplify the exposition, in the rest of the article we speak
primarily about small-step algorithms. By default, algorithms are small-step
algorithms.

Informally speaking, an interactive algorithm is ordinary if it has the fol-
lowing two properties.

• The algorithm cannot successfully complete a step while there is an unan-
swered query from that step.

• The only information that the algorithm receives from the environment
during a step consists of the replies to the queries issued during the step.

Ordinary interactive algorithms are axiomatized in [5, Part I]. Some postulates
of [5, Part I] refactor those of [13]. One of the new postulates is this:

Postulate 2 (Interaction Postulate) An interactive algorithm determines,
for each state X, a causality relation -X between finite answer functions and
potential queries.

Interactive Algorithms 2005 with Added Appendix 175

Here an answer function is a function from potential queries to potential
replies. An answer function α is closed under a causality relation -X if every
query caused by α or by a subfunction of α is already in the domain of α.
Minimal answer functions closed under -X are contexts at X .

As before, behaviorally equivalent algorithms do the same thing in all
circumstances. To make this precise, we need a couple of additional definitions.
Given a causality relation -X and an answer function α, define an α-trace to
be a sequence 〈q1, . . . , qn〉 of potential queries such that each qi is caused by
the restriction αi of α to {qj : j < k} or by some subfunction of αi. A
potential query q is reachable from α under -X if it occurs in some α-trace.
Two causality relations are equivalent if, for every answer function α, they
make the same potential queries reachable from α.

Definition 3. Two ordinary interactive algorithms are behaviorally equivalent
if

• they have the same states and initial states,
• for every state, they have equivalent causality relations, and
• for every state and context, they both fail or they both succeed and pro-

duce the same next state. ��

We turn our attention to ordinary abstract state machines. Again, a ma-
chine is given by a program, a collection of states and a subcollection of initial
states. We need only to describe programs.

The syntax of ordinary ASM programs is nearly the same as that of iso-
lated state algorithms, the algorithms of [13]. The crucial difference is in the
semantics of external functions. In the case of isolated step algorithms, an
invocation of an external function is treated as a usual state-location lookup;
see Euclidean algorithm 2 or 3 in this connection. In the case of interactive
algorithms, an invocation of an external function is a query.

The new interpretation of external functions gives rise to a problem. Sup-
pose that you have two distinct invocations f(3) of an external function f()
in your program. Should the replies be necessarily the same? In the case of
an isolated-step program, the answer is yes. Indeed, the whole program de-
scribes one step of an algorithm, and the state does not change during the
step. Two distinct lookups of f(3) will give you the same result. In the case
of an interactive program, the replies don’t have to be the same. Consider

Example 5 (Euclidean algorithm 4).

if mode = 0 then a, b, mode := Input, Input, 1
elseif mode = 1 then

if a = 0 then d, mode := b, 0
else a, b := b mod a, a

The two invocations of input are different queries that may have different re-
sults. Furthermore, in the object-oriented paradigm, two distinct invocations

176 Y. Gurevich

of the same create-a-new-object command with the same parameters necessar-
ily result in two distinct objects. We use a mechanism of template assignment
to solve the problem in question [5, Parts II and III].

The study of ordinary interactive algorithms in [5] culminates in

Theorem 2 (Ordinary interactive characterization theorem). Every
ordinary interactive ASM is an ordinary interactive algorithm, and every ordi-
nary interactive algorithm is behaviorally equivalent to an ordinary interactive
ASM.

6 General Interactive Algorithms

Call an interactive algorithm patient if it cannot finish a step without having
the replies to all queries issued during the step. While ordinary interactive
algorithms are patient, this does not apply to all interactive algorithms. The
algorithm

Example 6 (Impatience).

do in parallel
if α or β then x:=1
if ¬α and ¬β then x:=2

issues two Boolean queries α and β. If one of the queries returns “true” while
the other query is unanswered, then the other query can be aborted.

Call an interactive algorithm time insensitive if the only information that
it receives from the environment during a step consists of the replies to the
queries issued during the step. Ordinary algorithms are time insensitive. Since
our algorithms interact with the environment only by means of queries, it is
not immediately obvious what information the algorithm can get from the
environment in addition to the replies. For example, time stamps, reflecting
the times when the replies were issued, can be considered to be parts of the
replies.

The additional information is the order in which the replies come in. Con-
sider for example an automated financial broker with a block of shares to sell
and two clients bidding for the block of shares. If the bid of client 1 reaches
the broker first, then the broker sells the shares to client 1, even if client 2
happened to issue a bid a tad earlier.

An algorithm can be impatient and time sensitive at the same time. Con-
sider for example a one-step algorithm that issues two queries, q1 and q2, and
then does the following. If qi is answered while q3−i is not, then it sets x to
i and aborts q3−i. And if the queries are answered at the same time, then it
sets x to 0.

The following key observation allowed us to axiomatize general interactive
algorithms. Behind any sequential-step algorithm there is a single executor of

Interactive Algorithms 2005 with Added Appendix 177

the algorithm. In particular, it is the executor who gets query replies from
the environment, in batches, one after another. It follows that the replies
are linearly preordered according to the time or arrival. In [6, Article 1], we
successfully execute the algorithm explication procedure of Sect. 2 in the case
of general interactive algorithms.

Theorem 3 (Interactive characterization theorem). Every interactive
ASM is an interactive algorithm, and every interactive algorithm is behav-
iorally equivalent to an interactive ASM.

A variant of this theorem is proved in [6, Article 2]. The twist is that,
instead of interactive algorithms, we speak about their components there.

Patient (but possibly time sensitive) interactive algorithms as well as time
insensitive (but possibly impatient) interactive algorithms are characterized
in [6, Article 3].

These variants of the interactive characterization theorem as well as the
theorem itself are about small-step algorithms. The interactive characteriza-
tion theorem is generalized to wide-step algorithms in [6, Article 4].

7 Perspective

The behavioral theory of small-isolated-step algorithms [13] was an after-the-
fact explanation of what those algorithms were. Small-isolated-step algorithms
had been studied for a long time.

The behavioral theory of wide-isolated-step algorithms was developed in
[3]. Wide-isolated-step algorithms had been studied primarily in computa-
tional complexity where a number of wide-isolated-step computation mod-
els had been known. But the class of wide-isolated-step algorithms of [3] is
wider. The theory was used to develop a number of tools [1], most notably
the specification language AsmL [2]. Because of the practical considerations
of industrial environment, intrastep interaction plays a considerable role in
AsmL. That helped us to realize the importance and indeed inevitability of
intrastep interaction.

The behavioral theory of intrastep interactive algorithms is developed in
[5, 6]. While intrastep interaction is ubiquitous, it has been studied very little if
at all. We hope that the research described above will put intrastep interaction
on the map and will give rise to further advances in specification and high-level
programming of interactive algorithms.

Appendix: What Is Interaction Anyway?

The main part of this article presented our approach to interactive comput-
ing. There is another approach to interactive computing pioneered by Peter

178 Y. Gurevich

Wegner [21, 20], developed in particular in article [9], and presented in this
volume by Dina Goldin and Peter Wegner [10]. The editors of this volume
suggested that a comparison of the two approaches would be useful; hence
this appendix. The appendix refers to the main part of this article but can
be read independently. The version of article [10] available to us when this
appendix is being written (the first part of December 2005) does not have
references to the ASM approach.

What is an Algorithm?

The two schools use the term algorithm differently. The Wegner school uses the
term algorithm in the classical sense of Turing’s article [19]. This is perfectly
legitimate. But Turing explicated the notion of string-to-string computable
function rather than the notion of algorithm. Even in Turing’s time, the term
algorihm had a wider meaning; recall the Gauss elimination procedure or
geometric compass-and-ruler constructions. And the meaning of the term al-
gorithm in computer science has been expanding. People speak of parallel and
distributed algorithms; see [16, 17] for example. Our usage of the term algo-
rithm is the convergence point for that expansion. For us, an algorithm is a
(real or imaginable, physical or abstract) computer system at an abstraction
level where its behavior—possibly interactive, possibly parallel, etc.—is given
or can be given by a program. We devoted much attention to explicating the
notion of algorithm [4].

Can an Algorithm be Interactive?

Our answer to the title question is positive of course. The title “Why Inter-
action is More Powerful than Algorithms” of [21] may suggest the opposite.
Wegner’s school speaks about interactive computing but not about interac-
tive algorithms. Taking into account the philosophical character of article [10],
we note that the discrepancy is terminological, not philosophical. The term
interactive algorithm is used in the rest of this appendix.

Note 1 Even classical Turing machines are somewhat interactive because it is
the environment that provides the input and presumably consumes the ouput.
Nondeterministic Turing machines, which seem to be accepted as algorithms
by the Wegner school [9], need additional interaction to resolve nondetermin-
istic choices; see Sect. 4.3 above in this connection. ��

We distinguish between two kinds of interaction of an algorithm with the
envrionment. One kind is interstep interaction, when the environment modifies
the state of the algorithm (to a legitimate state) before, after, or between the
steps of the algorithm. The other kind is intrastep interaction that takes place
during a step. An algorithm that is not intrastep interactive is an isolated-step
algorithm. Abstract state machines have been intrastep interactive (by means
of external functions) from the beginning [11].

Interactive Algorithms 2005 with Added Appendix 179

Two Distinct Theses

Can one capture the behavior of interactive algorithms in the same way that
Church and Turing captured the computability of string-to-string functions?
Both, the ASM school and the Wegner school, attempt to meet the challenge.
Article [9] defines persistent Turing machines (PTMs). A PTM is a non-
deterministic Turing machine with three one-way-infinite tapes: a read-only
input tape, a read/write work tape, and a write-only output tape. PTMs are
interstep interactive in the following sense. The computation of a PTM splits
into macrosteps, and the environment intervenes between the macrosteps. The
environment

• puts a new input on the input tape and resets the input-tape head to the
initial position,

• removes the output from the output tape and resets the output-tape head
to the initial position,

• but leaves the work tape intact (that is the persistent aspect of PTMs).

Article [10] asserts that “any sequential interactive computation can be per-
formed by a persistent Turing machine.”

We put forward a similar thesis where the role of persistent Turing ma-
chines is played by interactive abstract state machines (interactive ASMs);
see the main part of this article. Either thesis is meaningful but they are not
equivalent. Interactive ASMs are more powerful and more interactive than
PTMs.

Interactive ASMs Faithfully Simulate PTMs

A simulation of an interactive algorithm A by an interactive algorithm B is
faithful ifB can replaceA in every legal enviroment ofA. In other words, every
legal enviroment E ofA is a legal enviroment ofB, and the interactive behavior
of B in E coincides with that of A. In the case of PTMs, interactive behaviors
are defined as interactive streams [9]. An interactive stream is essentially the
first input followed by the first output, followed by the second input, and so
on.

Claim 1 For every PTM P , there is an interactive ASM A that faithfully
simulates P .

Proof. Employ bounded-choice ASMs of [13, Sect. 9.2]. Bounded choice gives
the necessary nondeterminism, and interactive runs [13, Sect. 8.2] provide the
necessary intermacrostep interaction. The simulation is step-for-step (that is
microstep for microstep) and preserves the interaction stream. ��

Alternatively we can employ the ordinary ASMs of [5] that don’t have the
bounded-choice construct and do not need interstep interaction. Instead two
external functions are used, one to resolve nondeterminism, and another to
access input. Again the simulation is step for step and preserves the interaction
stream.

180 Y. Gurevich

PTMs Cannot Faithfully Simulate Interactive ASMs

Claim 2 There is a sequential ASM A1 such that (i) A1 is noninteractive (ex-
cept that the environment provides input and consumes output) and (ii) there
is no PTM with the same input/output behavior.

Proof Sketch. We exploit the higher abstraction level of ASMs. For exam-
ple, the desired A1 may express the Euclidean algorithm that works with any
Euclidean domain. A1 has a variety of initial states. One initial state of A1

could include the ring of integers and two distinguished integers (whose great-
est common divisor A1 is supposed to find), and another initial state of A1

could include the ring of polynomials over some field K and two distinguished
polynomials. ��

But let’s concentrate on interaction. In most cases, a legal environment
E of an interactive ASM A is not a legal environment of any PTM B. The
messages that E sends to A are illegible to B. Even if there is a canonic
translation of messages to input string, somebody should do that translation
work. In other words, B requires a more hardworking environment. We will
return to this issue in Note 2 below.

Besides, the interactive behaviors of ASMs [6, Article 1] are more compli-
cated than PTM interaction streams. Here is a simple example. Consider an
interactive ASM

do in parallel
if α ≺ β then x := 1
if β & α then x := 2

Call it A2. It makes only one step. It issues two queries α and β but cares only
about the reply times; otherwise it does not care about the returned values
(so that there is no problem of transforming those values to PTM input). The
symbols ≺ and & compare the times when the answers are returned. If α is
answered before β then β is ignored and x gets 1; it will make no difference
whether β is eventually answered or not. If β is answered before or simulta-
neously with α then x gets 2 (and α is ignored in case β is answered earlier).
In our terms, this ASM is time (that is message arrival time) sensitive. Time
sensitivity is important in applications. See the automated broker example in
Sect. 6 above in this connection.

An appropriate PTM can simulate A2 in two macrosteps. It writes the
two queries on the output tape and then examines the input provided by the
environment. But this simulation is not faithful. No PTM B can faithfully
simulate A2. Consider an environment that provides A2 with one or two an-
swers. A2 realizes immediately how many replies are there, and, in the case
of single reply, what query is this reply to. In order for a PTM to understand
this information, it should be transformed into a PTM input, and somebody
should do the transformation job.

Interactive Algorithms 2005 with Added Appendix 181

Note 2 Classical Turing machines suffer from a similar limitation. Consider
a noninteractive algorithm A that takes graphs as inputs. No Turing machine
can simulate A directly. Somebody has to transform the input graph into a
string. Interaction exacerbates the problem for PTMs. Consider an interactive
algorithm A and a PTM that is supposed to simulate A. Not only inputs
should be coded and outputs decoded, but also every message sent to A should
in general be coded and every information sent by A should in general be
decoded. In addition, as we have seen in the example above, there may be need
to code some information related to the arrival times of various messages. ��

Thesis Justification

In [4], we mentioned how differently Church and Turing arrived at their re-
spective theses. Church made a good guess, but Turing convincingly argued
his thesis. In particular, Gödel was not convinced by Church’s guess but was
convinced by Turing’s analysis. Inspired by Turing’s analysis, we have been
trying hard to justify the interactive ASM thesis from first principles; see the
main part of this article. It would be interesting to see a justification of the
PTM thesis from first principles.

Of course nothing can replace experimental evidence for a thesis, but we
will not address that issue here.

Acknowledgment This appendix benefited from discussions with Andreas
Blass and Satya Lokam.

References

1. ASM Michigan webpage, http://www.eecs.umich.edu/gasm/, maintained by
J. K. Huggins.

2. The AsmL webpage, http://research.microsoft.com/foundations/AsmL/.
3. A. Blass and Y. Gurevich. “Abstract State Machines Capture Parallel Algo-

rithms,” ACM Trans. on Computational Logic, 4:4, 2003, pp. 578–651.
4. A. Blass and Y. Gurevich. “Algorithms: A Quest for Absolute Definitions,”

Bull. Euro. Assoc. for Theor. Computer Science Number 81, October 2003, pp.
195–225. Reprinted in Current Trends in Theoretical Computer Science: The
Challenge of the New Century, Vol. 2, eds. G. Paun et al., World Scientific,
2004, pp. 283–312.

5. A. Blass and Y. Gurevich. “Ordinary Interactive Small-Step Algorithms”, parts
I, II, III, ACM Trans. on Computational Logic, to appear. Microsoft Research
Technical Reports MSR-TR-2004-16 and MSR-TR-2004-88.

6. A. Blass, Y. Gurevich, D. Rosenzweig and B. Rossman. Four articles on in-
teractive algorithms, in preparation. Article 1: “General Interactive Small-Step
Algorithms”. Article 2: “Composite Interactive Algorithms”. Article 3: “Inter-
active Algorithms: Impatience and Time Sensitivity”. Article 4: “Interactive
Wide-Step Algorithms”. The last three titles are tentative.

182 Y. Gurevich

7. E. Börger and R. Stärk. “Abstract State Machines: A Method for High-Level
System Design and Analysis”, Springer-Verlag, 2003.

8. T. H. Cormen, C. E. Leiserson and R. L. Rivest. “Introduction to Algorithms”
MIT Press, 1990.

9. D. Q. Goldin, S. A. Smolka, P. C. Attie, E. L. Sonderegger. “Turing Ma-
chines, Transition Systems, and Interaction”, Information and Computation
194:2, 2004, pp. 101–128.

10. D. Q. Goldin and P. Wegner. “Principles of Interactive Computation”, this
volume.

11. Y. Gurevich. “Evolving Algebras: An Introductory Tutorial”, Bull. Euro. Assoc.
for Theor. Computer Science 43, February 1991, pp. 264–284. A slightly revised
version is published in Current Trends in Theoretical Computer Science, eds. G.
Rozenberg and A. Salomaa, World Scientific, 1993, pp. 266–292.

12. Y. Gurevich. “Evolving Algebra 1993: Lipari Guide,” in Specification and Vali-
dation Methods, ed. E. Börger, Oxford University Press, 1995, pp. 9–36.

13. Y. Gurevich. “Sequential Abstract State Machines Capture Sequential Algo-
rithms,” ACM Trans. on Computational Logic 1:1, 2000, pp. 77–111.

14. Y. Gurevich. “Interactive Algorithms 2005”, Proceedings of the 2005 conference
on Mathematical Foundations of Computer Science, Springer Lecture Notes in
Computer Science 3618, 2005, pp. 26–38, eds. J. Jedrzejowicz and A. Szepi-
etowski.

15. A. N. Kolmogorov. “On the Concept of Algorithm”, Uspekhi Mat. Nauk 8:4,
1953, pp. 175–176, Russian.

16. F. T. Leighton. “Introduction to Parallel Algorithms and Architectures; Arrays,
Trees, Hypercubes”, MIT Press, 1992.

17. N. A. Lynch. “Distributed Algorithms”, Morgan Kaufmann Publishers, 1996.
18. A. A. Markov. “Theory of Algorithms”, Transactions of the Steklov Institute

of Mathematics, vol. 42, 1954, Russian. Translated to English by the Israel
Program for Scientific Translations, Jerusalem, 1962.

19. A. M. Turing. “On Computable Numbers, with an Application to the Entschei-
dungsproblem”, Proceedings of London Mathematical Society, series 2, vol. 42,
1936, pp. 230–265; correction, ibidem, vol. 43, pp. 544–546.

20. P. Wegner. “Interactive Foundation of Computing”, Theoretical Computer Sci-
ence 192, 1998, pp. 315–351.

21. P. Wegner. “Why Interaction is More Powerful than Algorithms”, Communica-
tions of ACM, May 1997, pp. 81–91.

Computability Logic: A Formal Theory of
Interaction�

Giorgi Japaridze

Villanova University, Villanova, PA, USA

Summary. Generalizing the traditional concepts of predicates and their truth to in-
teractive computational problems and their effective solvability, computability logic
conservatively extends classical logic to a formal theory that provides a systematic
answer to the question of what and how can be computed, just as traditional logic
is a systematic tool for telling what is true. The present chapter contains a compre-
hensive yet relatively compact overview of this very recently introduced framework
and research program. It is written in a semitutorial style with general computer
science, logic and mathematics audiences in mind.

1 Introduction

In the same sense as classical logic is a formal theory of truth, the re-
cently initiated approach called computability logic (CL) is a formal theory
of computability—in particular, a theory of interactive computability. It un-
derstands computational problems as games played by a machine against the
environment, their computability as existence of a machine that always wins
the game, logical operators as operations on computational problems, and va-
lidity of a logical formula as being a scheme of “always computable” problems.
The paradigm shift in computer science towards interaction provides a solid
motivational background for CL. In turn, the whole experience of developing
CL presents additional strong evidence in favor of the new paradigm. It reveals
that the degree of abstraction required at the level of logical analysis makes
it imperative to understand computability in its most general—interactive—
sense: the traditional, noninteractive concept of computability appears to be
too narrow, and its scope delimitation not natural enough, to induce any
meaningful logic.

Currently computability logic is at its very first stages of development, with
open problems and unverified conjectures prevailing over answered questions.
� This material is based upon work supported by the National Science Foundation

under Grant No. 0208816

184 G. Japaridze

A fundamental, 99-page-long introduction to the subject has been given in [6].
The present chapter reintroduces CL in a more compact and less technical way,
being written in a semitutorial style with a wider computer science audience
in mind.

The traditional Church–Turing approach to computational problems as-
sumes a simple interface between a computing agent and its environment, con-
sisting in asking a question (input) and generating an answer (output). Such
an understanding, however, only captures a modest fraction of our broader in-
tuition of computational problems. This has been not only repeatedly pointed
out by the editors and authors of the present collection [4, 5, 6, 8, 12, 16] but,
in fact, acknowledged by Turing [15] himself. The reality is that most tasks
that computers perform are interactive, where not only the computing system
but also its environment remain active throughout a computation, with the
two parties communicating with each other through what is often referred
to as observable actions [12, 16]. Calling sequences of observable actions in-
teraction histories, a computational problem in a broader sense can then be
understood as a pair comprising a set of all “possible” interaction histories
and a subset of it of all “successful” interaction histories; and the computing
agent considered to be solving such a problem if it ensures that the actual
interaction history is always among the successful ones.

As was mentioned, technically CL understands interactive problems as
games, or dialogues, between two agents/players: machine and environment,
symbolically named as " and ⊥, respectively. Machine, as its name suggests,
is specified as a mechanical device with fully determined, effective behavior,
while the behavior of the environment, which represents a capricious user or
the blind forces of nature, is allowed to be arbitrary. Observable actions by
these two agents translate into game-theoretic terms as their moves, interac-
tion histories as runs, i.e., sequences of moves, “possible” interaction histories
as legal runs, and “successful” interaction histories as won (by ") runs.

Computational problems in the Church–Turing sense are nothing but di-
alogues/games of depth 2, with the first legal move (“input”) by the envi-
ronment and the second legal move (“output”) by the machine. The problem
of finding the value of a function f is a typical task modeled by this sort of
games. In the formalism of CL this problem is expressed by the formula

�x�y(y = f(x)
)
.

It stands for a two-move-deep game where the first move—selecting a partic-
ular value m for x—must be made by ⊥, and the second move—selecting a
value n for y—by ". The game is then considered won by the machine, i.e.,
the problem solved, if n really equals f(m). So, computability of f means
nothing but existence of a machine that wins the game �x�y(y = f(x)

)
against any possible (behavior of the) environment.

Generally,�xA(x) is a game where the environment has to make the first
move by selecting a particular value m for x, after which the play continues—
and the winner is determined—according to the rules of A(m); if ⊥ fails to

Computability Logic: A Formal Theory of Interaction 185

make an initial move, the game is considered won by the machine as there was
no particular (sub)problem specified by its adversary that it failed to solve.
�xA(x) is defined in the same way, only here it is the machine who makes
an initial move/choice and it is the environment who is considered the winner
if such a choice is never made. This interpretation makes � a constructive
version of existential quantifier, while � is a constructive version of universal
quantifier.

As for standard atomic formulas, such as n = f(m), they are understood
as games without any moves. This sort of games are called elementary. An
elementary game is automatically won or lost by the machine depending on
whether the formula representing it is true or false (true = won, false = lost).
This interpretation makes the classical concept of predicates a special case of
games.

The meanings of the propositional counterparts � and � of � and � are
not hard to guess. They, too, signify a choice by the corresponding player.
The only difference is that while in the case of � and � the choice is made
among the objects of the universe of discourse, � and �mean a choice between
left and right. For example, the problem of deciding predicate P (x) could be
expressed by �x(

P (x) � ¬P (x)
)
, denoting the game where the environment

has to select a value m for x, to which the machine should reply by one of the
moves left or right; the game will be considered won by the machine if P (m)
is true and the move left was made or P (m) is false and the choice was right,
so that decidability of P (x) means nothing but existence of a machine that
always wins the game �x(

P (x) � ¬P (x)
)
.

The above example involved classical negation ¬. The other classical oper-
ators will also be allowed in our language, and they all acquire a new, natural
game interpretation. The reason why we can still call them “classical” is that,
when applied to elementary games—i.e., predicates—they preserve the ele-
mentary property of their arguments and act exactly in the classical way. Here
is an informal explanation of how the “classical” operators are understood as
game operations:

The game ¬A is nothing but A with the roles of the two players switched:
"’s moves or wins become ⊥’s moves or wins, and vice versa. For example,
where Chess is the game of chess (with the possibility of draw outcomes ruled
out for simplicity) from the point of view of the white player, ¬Chess is the
same game from the point of view of the black player.

The operations ∧ and ∨ combine games in a way that corresponds to the
intuition of parallel computations. Playing A∧B or A∨B means playing the
two games A and B simultaneously. In A ∧ B the machine is considered the
winner if it wins in both of the components, while in A ∨B it is sufficient to
win in one of the components. Thus we have two sorts of conjunction: �,∧
and two sorts of disjunction: �,∨. Comparing the games Chess ∨¬Chess and
Chess�¬Chess will help us appreciate the difference. The former is, in fact, a
parallel play on two boards, where " plays white on the left board and black
on the right board. There is a strategy for " that guarantees an easy success

186 G. Japaridze

in this game even if the adversary is a world champion. All that " needs to do
is to mimic, in Chess, the moves made by ⊥ in ¬Chess, and vice versa. On the
other hand, winning the game Chess � ¬Chess is not easy at all: here, at the
very beginning, " has to choose between Chess and ¬Chess and then win the
chosen one-board game. Generally, the principle A ∨ ¬A is valid in the sense
that the corresponding problem is always solvable by a machine, whereas this
is not so for A � ¬A.

While all the classical tautologies automatically hold when classical oper-
ators are applied to elementary games, in the general case the class of valid
principles shrinks. For example, ¬A ∨ (A ∧A) is not valid. The above “mim-
icking strategy” would obviously be inapplicable in the three-board game
¬Chess∨ (Chess∧Chess): the best that " can do here is to pair ¬Chess with
one of the two conjuncts of Chess∧Chess. It is possible that then ¬Chess and
the unmatched Chess are both lost, in which case the whole game will be lost.

The class of valid principles of computability forms a logic that resembles
linear logic [3] with ¬ understood as linear negation, ∧,∨ as multiplicatives
and �,�,�,� as additives. It however should be pointed out that, despite
similarity, these computability-logic operations are by no means “the same”
as those of linear logic (see Sect. 7). To stress the difference and avoid pos-
sible confusion, we refrain from using any linear-logic terminology, calling
�,�,�,� choice operations and ∧,∨ parallel operations.

Assuming that the universe of discourse is {1, 2, 3, . . .}, obviously the
meanings of�xA(x) and�xA(x) can be explained as A(1)�A(2)�A(3)� . . .
and A(1)�A(2)�A(3)� . . ., respectively. Similarly, our parallel operations ∧
and ∨ have their natural quantifier-level counterparts∧ and∨, with∧xA(x)
understood as A(1)∧A(2)∧A(3)∧ . . . and∨xA(x) as A(1)∨A(2)∨A(3)∨
Hence, just like ∧ and ∨, the operations∧ and ∨ are “classical” in the sense
that, when applied to elementary games, they behave exactly as the classical
universal and existential quantifiers, respectively.

The parallel implication →, yet another “classical” operation, is perhaps
most interesting from the computability-theoretic point of view. FormallyA→
B is defined as ¬A ∨ B. The intuitive meaning of A → B is the problem of
reducing problem B to problem A. Putting it in other words, solving A→ B
means solving B having A as an (external) resource. “Resource” is symmetric
to “problem”: what is a problem (task) for the machine, is a resource for
the environment, and vice versa. To get a feel of → as a problem reduction
operator, consider the reduction of the acceptance problem to the halting
problem. The halting problem can be expressed by

�x�y(Halts(x, y) � ¬Halts(x, y)
)
,

where Halts(x, y) is the predicate “Turing machine x halts on input y”. And
the acceptance problem can be expressed by

�x�y(Accepts(x, y) � ¬Accepts(x, y)
)
,

with Accepts(x, y) meaning “Turing machine x accepts input y”. While the
acceptance problem is not decidable, it is effectively reducible to the halting

Computability Logic: A Formal Theory of Interaction 187

problem. In particular, there is a machine that always wins the game

�x�y(Halts(x, y)�¬Halts(x, y)
)
→ �x�y(Accepts(x, y)�¬Accepts(x, y)

)
.

A strategy for solving this problem is to wait till ⊥ specifies values m and
n for x and y in the consequent, then select the same values m and n for
x and y in the antecedent (where the roles of " and ⊥ are switched), and
see whether ⊥ responds by left or right there. If the response is left, simulate
machine m on input n until it halts and then select, in the consequent, left or
right depending on whether the simulation accepted or rejected. And if ⊥’s
response in the antecedent was right, then select right in the consequent.

What the machine did in the above strategy was indeed a reduction of the
acceptance problem to the halting problem: it solved the former by employing
an external, environment-provided solution to the latter. A strong case can be
made in favor of the thesis that → captures our ultimate intuition of reduc-
ing one interactive problem to another. It should be noted, however, that the
reduction captured by→ is stronger than Turing reduction, which is often per-
ceived as an adequate formalization of our most general intuition of reduction.
Indeed, if we talk in terms of oracles that the definition of Turing reduction
employs, specifying the values of x and y as m and n in the antecedent can be
thought of as asking the oracle whether machine m halts on input n. Notice,
however, that the usage of the oracle here is limited as it can only be employed
once: after querying regarding m and n, the machine would not be able to
repeat the same query with different parameters m′ and n′, for that would
require having two “copies” of the resource�x�y(Halts(x, y)�¬Halts(x, y)

)
(which could be expressed by their ∧-conjunction) rather than one. On the
other hand, Turing reduction allows recurring usage of the oracle, which the
resource-conscious CL understands as reduction not to the halting problem
�x�y(Halts(x, y) � ¬Halts(x, y)

)
but to the stronger problem expressed by

∧|�x�y(Halts(x, y)�¬Halts(x, y)
)
. Here ∧|A, called the parallel recurrence of

A, means the infinite conjunction A∧A∧ The ∧| -prefixed halting problem
now explicitly allows an unbounded number of queries of the type “does m
halt on n?”. So, Turing reducibility of B to A, which, of course, is only defined
when A and B are computational problems in the traditional sense, i.e., prob-
lems of the type �x(

Predicate(x) � ¬Predicate(x)
)

or �x�yPredicate(x, y),
means computability of ∧|A → B rather than of A → B, i.e., reducibility of
B to ∧|A rather than to A. To put this intuition together, consider the Kol-
mogorov complexity problem. It can be expressed by �t�z K (z, t), where
K (z, t) is the predicate “z is the smallest (code of a) Turing machine that
returns t on input 1”. Having no algorithmic solution, the Kolmogorov com-
plexity problem, however, is known to be Turing reducible to the halting
problem. In our terms, this means nothing but that there is a machine that
always wins the game

∧|�x�y(Halts(x, y) � ¬Halts(x, y)
)
→ �t�z K (z, t). (1)

Here is a strategy for such a machine: Wait till ⊥ selects a value m for t in the
consequent. Then, starting from i = 1, do the following: in the ith ∧-conjunct

188 G. Japaridze

of the antecedent, make two consecutive moves by specifying x and y as i and
1, respectively. If ⊥ responds there by right, increment i by one and repeat the
step; if ⊥ responds by left, simulate machine i on input 1 until it halts; if you
see that machine i returned m, make a move in the consequent by specifying
z as i; otherwise, increment i by one and repeat the step.

One can show that Turing reduction of the Kolmogorov complexity prob-
lem to the halting problem essentially requires unlimited usage of the oracle,
which means that, unlike the acceptance problem, the Kolmogorov complexity
problem is not reducible to the halting problem in our sense, and is only re-
ducible to the parallel recurrence of it. That is, (1) is computable but not with
∧| removed from the antecedent. One might expect that ∧|A→ B captures the
intuition of reducing an interactive problem B to an interactive problem A in
the weakest sense, as Turing reduction certainly does for noninteractive prob-
lems. But this is not so. While having ∧|A in the antecedent, i.e., having it as a
resource, indeed allows an agent to reuse A as many times as it wishes, there
is a stronger—in fact the strongest—form of reusage, captured by another op-
eration ◦| called branching recurrence. Both ∧|A and ◦|A can be thought of as
games where ⊥ can restart A as many times as it likes. The difference is that
in ◦|A, unlike ∧|A, A can be restarted not only from the very beginning, but
from any already reached state/position. This gives ⊥ greater flexibility, such
as, say, the capability to try different answers to the same (counter)question
by ", while this could be impossible in ∧|A because " may have asked different
questions in different conjuncts of ∧|A. Section 2 will explain the differences
between ∧| and ◦| in more detail. Our claim that ◦| captures the strongest sort
of resource-reusage automatically translates into another claim, according to
which ◦|A → B captures the weakest possible sort of reduction of one inter-
active problem to another. The difference between ◦| and ∧| is irrelevant when
they are applied to two-step “traditional” problems such as the halting prob-
lem or the Kolmogorov complexity problem: for such a “traditional” problem
A, ∧|A and ◦|A turn out to be logically equivalent, and hence both ∧|A → B
and ◦|A→ B are equally accurate translations for Turing reduction of B to A.
The equivalence between ◦| and ∧| , however, certainly does not extend to the
general case. For example, the principle ◦| (A � B) → ◦|A � ◦|B is valid while
∧| (A�B)→ ∧|A� ∧|B is not. Among the so far unverified conjectures of CL is
that the logical behavior of ◦|A→ B is exactly that of the implication A ◦–B
of (Heyting’s) intuitionistic logic.

Another group of operations that play an important role in CL comprises
∀ and its dual ∃ (with ∃xA(x) = ¬∀x¬A(x)), called blind quantifiers. ∀xA(x)
can be thought of as a “version” of �xA(x) where the particular value of x
that the environment selects is invisible to the machine, so that it has to play
blindly in a way that guarantees success no matter what that value is. This
way, ∀ and ∃ produce games with imperfect information.

Compare the problems�x(
Even(x)�Odd(x)

)
and ∀x(

Even(x)�Odd(x)
)
.

Both of them are about telling whether a given number is even or odd; the
difference is only in whether that “given number” is known to the machine or

Computability Logic: A Formal Theory of Interaction 189

not. The first problem is an easy-to-win, two-move-deep game of a structure
that we have already seen. The second game, on the other hand, is one-move
deep with only by the machine to make a move—select the “true” disjunct,
which is hardly possible to do as the value of x remains unspecified.

Of course, not all nonelementary ∀-problems will be unsolvable. Here is
an example:

∀x
(
Even(x) �Odd(x) → �y(Even(x × y) �Odd(x × y)

))
.

Solving this problem, which means reducing the consequent to the antecedent
without knowing the value of x, is easy: " waits till ⊥ selects a value n for
y. If n is even, then " makes the move left in the consequent. Otherwise, if
n is odd, " continues waiting until ⊥ selects one of the �-disjuncts in the
antecedent (if ⊥ has not already done so), and then " makes the same move
left or right in the consequent as ⊥ made in the antecedent. Note that our
semantics for �,�,→ guarantees an automatic win for " if ⊥ fails to make
either selection.

Both ∀xA(x) and ∧xA(x) can be shown to be properly stronger than
�xA(x), in the sense that ∀xA(x) → �xA(x) and ∧xA(x) → �xA(x)
are valid while �xA(x) → ∀xA(x) and �xA(x) → ∧xA(x) are not. On the
other hand, the strengths of ∀xA(x) and∧xA(x) are mutually incomparable:
neither ∀xA(x) →∧xA(x) nor∧xA(x) → ∀xA(x) is valid. The big difference
between ∀ and∧ is that, while playing ∀xA(x) means playing one “common”
play for all possible A(c) and thus ∀xA(x) is a one-board game,∧xA(x) is an
infinitely-many-board game: playing it means playing, in parallel, game A(1)
on board #1, game A(2) on board #2, etc. When restricted to elementary
games, however, the distinction between the blind and the parallel groups of
quantifiers disappears and, just like ¬, ∧, ∨, →, ∧, ∨, the blind quantifiers
behave exactly in the classical way. Having this collection of operators makes
CL a conservative extension of classical first-order logic: the latter is nothing
but CL restricted to elementary problems and the logical vocabulary ¬, ∧, ∨,
→, ∀ (and/or ∧), ∃ (and/or ∨).

As the above examples illustrate, what can be considered an adequate for-
mal equivalent of our broad intuition of computational problems goes far be-
yond the traditional, two-step, input/output problems. Computational prob-
lems of higher degrees of interactivity emerge naturally and have to be ad-
dressed in any more or less advanced study in computability theory. So far
this has been mostly done in an ad hoc manner as there has been no stan-
dard way for specifying interactive problems. The formalism of CL offers a
convenient language for expressing interactive computational problems and
studying them in a systematic way. Finding effective axiomatizations of the
corresponding logic or, at least, some reasonably rich fragments of it, is ex-
pected to have not only theoretical, but also high practical significance. Among
the applications would be the possibility to build CL into a machine and then
use such a machine as a universal problem-solving tool.

190 G. Japaridze

Outlining the rest of this chapter: Sections 2–4 provide formal definitions—
accompanied with explanations and illustrations—of the basic concepts on
interactive computational problems understood as games, including the main
operations on such problems/games. Section 5 introduces a model of interac-
tive computation that generalizes Turing machines and, allowing us to extend
the Church–Turing thesis to interaction, serves as a basis for our definition
of interactive computability. Sections 6 and 7 present sound and complete
axiomatizations of various fragments of CL. Section 8 discusses, using ample
examples and illustrations, potential applications of CL in the areas of (in-
teractive) knowledgebase systems, planning systems and constructive applied
theories.

2 Constant Games

Our ultimate concept of games will be defined in the next section in terms of
the simpler and more basic class of games called constant games. To define
this class, we need some technical terms and conventions. Let us agree that
by a move we mean any finite string over the standard keyboard alphabet.
A labeled move is a move prefixed with " or ⊥, with its prefix (label)
indicating which player has made the move. A run is a (finite or infinite)
sequence of labeled moves, and a position is a finite run.

We will be exclusively using letters Γ, Υ as metavariables for runs, Φ, Ψ
for positions, ℘ for players, and α for moves. Runs will be often delimited
with “〈” and “〉”, with 〈 〉 thus denoting the empty run. The meaning of an
expression such as 〈Φ, ℘α, Γ 〉 must be clear: this is the result of appending to
〈Φ〉 〈℘α〉 and then 〈Γ 〉.

Definition 1. A constant game is a pair A = (LrA,WnA), where:
1. LrA is a set of runs satisfying the condition1 that a (finite or infinite)

run Γ is in LrA iff all of its nonempty finite initial segments are in LrA.
2. WnA is a function of the type LrA → {",⊥}. We use WnA〈Γ 〉 to

denote the value of WnA at Γ .

The intuitive meaning of the LrA component of a constant game A, called
the structure of A, is that it tells us what runs are legal. Correspondingly, we
call the elements of LrA the legal runs of A, and call all other runs illegal.
For a player ℘, a run Γ is said to be a ℘-legal run of A iff either Γ is a legal
1 [6] imposes an additional condition according to which there is a special move that

no element of LrA contains. The only result of [6] that appeals to that condition
is Lemma 4.7. In the present exposition we directly incorporate the statement of
that lemma into the definition of static games (page 201), and thus all results of
[6]—in particular, those that rely on Lemma 4.7—remain valid. This and a couple
of other minor technical differences between our present formulations from those
given in [6] only signify presentational and by no means conceptual variations.

Computability Logic: A Formal Theory of Interaction 191

run of A or otherwise the label of the last move of the shortest illegal initial
segment of Γ is not ℘. Understanding an illegal move by player ℘ in position Φ
as a move α such that adding ℘α to Φ makes this position illegal, the condition
of clause 1 of Definition 1 corresponds to the intuition that a run is legal iff
no illegal moves have been made in it, which automatically implies that the
empty position 〈 〉 is a legal run of every game. And a ℘-legal run of A is a
run where ℘ has not made any illegal moves in any of the legal positions—in
other words, a run where, if there are illegal moves at all, ℘ is not the first
to have made such a move. When modeling real-life interactive tasks, such as
server-client or robot-environment interaction, illegal moves will usually mean
actions that can, will or should never be performed. For generality, flexibility
and convenience, our approach however does not formally exclude illegal runs
from considerations.

As for the WnA component of a constant game A, called the content of
the game, it tells us who has won a given legal run. A run Γ ∈ LrA with
WnA〈Γ 〉 = ℘ will be said to be a ℘-won run of A.

We say that a constant game A is elementary iff LrA = {〈 〉}. Thus,
elementary games have no legal moves: the empty run 〈 〉 is the only legal run
of such games. There are exactly two elementary constant games, for which
we use the same symbols " and ⊥ as for the two players. They are defined by
stipulating that (Lr	 = Lr⊥ = {〈 〉} and) Wn	〈 〉 = ", Wn⊥〈 〉 = ⊥. Below
comes an official definition of some of the basic game operations informally
explained in Section 1.

Definition 2. In each of the following clauses, Φ ranges over nonempty
positions—in view of Definition 1, it would be sufficient to define Lr only
for this sort of Φ, for then Lr uniquely extends to all runs. Γ ranges over
the legal runs of the game that is being defined. A,A1, A2 are any constant
games. The notation Φ̄ in clause 1 means the result of interchanging " with
⊥ in all labeled moves of Φ. And the notation Φi. in clauses 2 and 3 means
the result of removing from Φ all labeled moves except those of the form ℘i.α
(℘ ∈ {",⊥}), and then deleting the prefix “i.” in the remaining moves, i.e.,
replacing each such ℘i.α by ℘α. Similarly for Γ̄ , Γ i..

1. Negation ¬A:
• Φ ∈ Lr¬A iff Φ̄ ∈ LrA;
• Wn¬A〈Γ 〉 = " iff WnA〈Γ̄ 〉 = ⊥.

2. Parallel conjunction A1 ∧A2:
• Φ ∈ LrA1∧A2 iff every move of Φ starts with “1.” or “2.” and, for each

i ∈ {1, 2}, Φi. ∈ LrAi ;
• WnA1∧A2〈Γ 〉 = " iff, for each i ∈ {1, 2}, WnAi〈Γ i.〉 = ".

3. Parallel disjunction A1 ∨A2:
• Φ ∈ LrA1∨A2

e iff every move of Φ starts with “1.” or “2.” and, for each
i ∈ {1, 2}, Φi. ∈ LrAi ;

• WnA1∨A2〈Γ 〉 = ⊥ iff, for each i ∈ {1, 2}, WnAi〈Γ i.〉 = ⊥.

192 G. Japaridze

4. Choice conjunction A1 �A2:
• Φ ∈ LrA1�A2 iff Φ = 〈⊥i, Ψ〉, where i ∈ {1, 2} and Ψ ∈ LrAi ;
• WnA1�A2〈Γ 〉 = ⊥ iff Γ = 〈⊥i, Υ 〉, where i ∈ {1, 2} and WnAi〈Υ 〉 =
⊥.

5. Choice disjunction A1 �A2:
• Φ ∈ LrA1A2 iff Φ = 〈"i, Ψ〉, where i ∈ {1, 2} and Ψ ∈ LrAi ;
• WnA1A2〈Γ 〉 = " iff Γ = 〈"i, Υ 〉, where i ∈ {1, 2} and WnAi〈Υ 〉 =
".

6. Parallel implication, or reduction A1 → A2 is defined as (¬A1)∨A2.

The operations ∧,∨,�,� naturally generalize from binary to n-ary (any
natural number n) or even infinite-ary, where the 0-ary ∧ and � should be
understood as " and the 0-ary ∨ and � as ⊥. Alternatively, A1 ∧ . . . ∧ An

with n > 2 can be understood as an abbreviation for A1 ∧ (A2 ∧ . . . (An−1 ∧
An) . . .). Similarly for ∨,�,�. For simplicity, officially we will stick to the
binary version.

Notice the perfect symmetry/duality between ∧ and ∨, or � and �: the
definition of each of these operations can be obtained from the definition
of its dual by interchanging " with ⊥. We earlier characterized legal plays
of A1 ∧ A2 and A1 ∨ A2 as plays “on two boards”. According to the above
definition, making a move α on “board” #i is technically done by prefixing α
with “i.”.

Exercise 1. Verify the following equalities (any constant games A,B):
1. ⊥ = ¬"; " = ¬⊥;
2. A = ¬¬A;
3. A ∧B = ¬(¬A ∨ ¬B); A ∨B = ¬(¬A ∧ ¬B);
4. A �B = ¬(¬A � ¬B); A �B = ¬(¬A � ¬B).

Exercise 2. Verify that both 〈⊥1.1,"2.1.2〉 and 〈"2.1.2,⊥1.1〉 are (legal and)
"-won runs of the game (" �⊥)→

(
(⊥ �") ∧"

)
, i.e., by Exercise 1, of the

game (⊥ �") ∨
(
(⊥ �") ∧ "

)
. How about the runs 〈 〉, 〈⊥1.1〉, 〈"2.1.2〉?

An important game operation not mentioned in Section 1 is that of pre-
fixation, which is somewhat reminiscent of the modal operator(s) of dynamic
logic. This operation takes two arguments: a constant game A and a position
Φ that must be a legal position of A (otherwise the operation is undefined).

Definition 3. Let A be a constant game and Φ a legal position of A. The
Φ-prefixation of A, denoted 〈Φ〉A, is defined as follows:

• Lr〈Φ〉A = {Γ | 〈Φ, Γ 〉 ∈ LrA};
• Wn〈Φ〉A〈Γ 〉 = WnA〈Φ, Γ 〉 (any Γ ∈ Lr〈Φ〉A).

Intuitively, 〈Φ〉A is the game playing which means playing A starting (con-
tinuing) from position Φ. That is, 〈Φ〉A is the game to which A evolves (will
be “brought down”) after the moves of Φ have been made. We have already

Computability Logic: A Formal Theory of Interaction 193

used this intuition when explaining the meaning of choice operations: we said
that after ⊥ makes an initial move i ∈ {1, 2}, the game A1 � A2 continues
as Ai. What this meant was nothing but that 〈⊥i〉(A1 �A2) = Ai. Similarly,
〈"i〉(A1 �A2) = Ai.

Exercise 3. Verify that, for arbitrary constant games A,B, we have:
1. Where 〈℘1α1, . . . , ℘nαn〉 ∈ LrA, 〈℘1α1, . . . , ℘nαn〉A = 〈℘nαn〉 . . . 〈℘1α1〉A.
2. Where 〈"α〉 ∈ Lr¬A, 〈"α〉¬A = ¬〈⊥α〉A. Same with ",⊥ interchanged.
3. Where 〈℘1.α〉 ∈ LrA∧B, 〈℘1.α〉(A∧B) = (〈℘α〉A)∧B. Similarly for 〈℘2.α〉.

Similarly for A ∨B.

Prefixation is very handy in visualizing legal runs of a given game A.
In particular, every (sub)position Φ of such a run can be represented by, or
thought of as, the game 〈Φ〉A.

Example 1. Let G0 =
(
A� (B �C)

)
∧

(
D ∨ (E �F)

)
. 〈"2.2.1,⊥1.2,"1.2〉 is

a legal run of G0, and to it corresponds the following sequence of games:
G0 :

(
A � (B � C)

)
∧

(
D ∨ (E � F)

)
, i.e., G0, i.e., 〈 〉G0;

G1 :
(
A � (B � C)

)
∧ (D ∨ E), i.e., 〈"2.2.1〉G0, i.e., 〈"2.2.1〉G0;

G2 : (B � C) ∧ (D ∨ E), i.e., 〈⊥1.2〉G1, i.e., 〈"2.2.1,⊥1.2〉G0;
G3 : C ∧ (D ∨ E), i.e., 〈"1.2〉G2, i.e.,

〈"2.2.1,⊥1.2,"1.2〉G0.
The run stops at C ∧ (D ∨ E), and hence the winner is the player ℘ with

WnC∧(D∨E)〈 〉 = ℘. Note how the ∧,∨-structure of the game was retained
throughout the play.

Another constant-game operation of high interest is branching recur-
rence ◦| . A strict formal definition of this operation, together with detailed
discussions and illustrations of the associated intuitions, can be found in Sect.
13 of [6].2 Here we only give a brief informal explanation. A legal run of ◦|A
can be thought of as a tree rather than sequence of labeled moves (with those
labeled moves associated with the edges—rather than nodes—of the tree),
where each branch of the tree spells a legal run of A. " is considered the
winner in such a game iff it wins A in all of the branches. The play starts
with the root as the only node of the tree, representing the empty run; at any
time, " can make any legal move of A in any of the existing branches. So
can ⊥, with the difference that ⊥—and only ⊥—also has the capability, by
making a special “splitting” move (that we do not count as a move of A), to
fork any given branch into two, thus creating two runs of A out of one that
share the same beginning but from now on can evolve in different ways. So,
◦| allows ⊥ to replicate/restart A as many times as it wishes; furthermore,
as noted in Sect. 1, ⊥ does not really have to restart A from the very be-
ginning every time it “restarts” it; instead, ⊥ may choose to continue a new
2 [6] used the terms and notation “branching conjunction”, “branching disjunction”,

“!” and “?” for our present “branching recurrence”, “branching coreccurrence”,
“◦.....” and “◦..... ”, respectively.

194 G. Japaridze

run of A from any already reached position Φ of A, i.e., replicate 〈Φ〉A rather
than A, thus depriving " of the possibility to reconsider its previously made
moves while giving itself the opportunity to try different strategies in different
continuations of Φ and become the winner as long as one of those strategies
succeeds. This makes ◦|A easier for ⊥ to win than the infinite conjunction
A∧A∧A∧ . . . that we call parallel recurrence ∧|A. The latter can be con-
sidered a restricted version of ◦|A where all the branching happens only at the
root. The dual operator ◦| of ◦| , called branching corecurrence, is defined
in a symmetric way with the roles of the two players interchanged: here it is "
who can initiate new branches and for whom winning in one of the branches
is sufficient. Alternatively, ◦|A can be defined as ¬◦| ¬A. Again, winning ◦|A
is easier for " than winning the infinite disjunction A ∨ A ∨ A ∨ . . . that we
call parallel corecurrence ∨|A (= ¬∧| ¬A). To feel this, let us consider the
bounded versions ◦| 2 and ∨| 2 of ◦| and ∨| , in which the total number of allowed
branches is limited to 2. We want to compare ◦| 2

B with ∨| 2B, i.e., with B∨B,
where

B = (Chess � ¬Chess) � (Checkers � ¬Checkers).

Here is "’s strategy for ◦| 2
B: Wait till ⊥ chooses one of the �-conjuncts of

B. Suppose the first conjunct is chosen (the other choice will be handled in
a similar way). This brings the game down to Chess � ¬Chess. Now make a
splitting move, thus creating two branches/copies of Chess � ¬Chess. In one
copy choose Chess, and in the other copy choose ¬Chess. From now on the
game continues as a parallel play of Chess and ¬Chess, where it is sufficient
for " to win in one of the plays. Hence, applying the “mimicking strategy”
described in Section 1 for Chess ∨ ¬Chess guarantees success. On the other
hand, winning B ∨ B is not easy. A possible scenario here is that ⊥, by
making different choices in the two disjuncts, brings the game down to (Chess�
¬Chess) ∨ (Checkers � ¬Checkers). Unless " is a champion in either chess or
checkers, (s)he may find it hard to win this game no matter what choices (s)he
makes in its two disjuncts.

3 Not-Necessarily-Constant Games

Classical logic identifies propositions with their truth values, so that there
are exactly two propositions: " (true) and ⊥ (false), with the expressions
“snow is white” or “2 + 2 = 4” simply being two different names of the same
proposition ", and “elephants can fly” being one of the possible names of ⊥.
Thinking of the classical propositions " and ⊥ as the games " and ⊥ defined
in Sect. 2, classical propositions become a special—elementary—case of our
constant games. It is not hard to see that our game operations ¬,∧,∨,→,
when applied to " and ⊥, again produce " or ⊥, and exactly in the way their
same-name classical counterparts do. Hence, the (¬,∧,∨,→)-fragment of CL,
restricted to elementary constant games, is nothing but classical propositional
logic. The expressive power of propositional logic, however, is very limited.

Computability Logic: A Formal Theory of Interaction 195

The more expressive version of classical logic—first-order logic—generalizes
propositions to predicates. Let us fix two infinite sets of expressions: the set
{v1, v2, . . .} of variables and the set {1, 2, , . . .} of constants. Without loss
of generality here we assume that the above collection of constants is exactly
the universe of discourse, i.e., the set over which the variables range, in all
cases that we consider. By a valuation we mean a function that sends each
variable x to a constant e(x). In these terms, a classical predicate P can be
understood as a function that sends each valuation e to either " (meaning
that P is true at e) or ⊥ (meaning that P is false at e). Say, the predicate
x < y is the function that, for a valuation e, returns " if e(x) < e(y), and
returns ⊥ otherwise. Propositions can then be thought of as special, constant
cases of predicates—predicates that return the same proposition for every
valuation.

The concept of games that we define below generalizes constant games in
exactly the same sense as the above classical concept of predicates generalizes
propositions:

Definition 4. A game is a function from valuations to constant games. We
write e[A] (rather than A(e)) to denote the constant game returned by game
A for valuation e. Such a constant game e[A] is said to be an instance of A.

Just as this is the case with propositions versus predicates, constant games
in the sense of Definition 1 will be thought of as special, constant cases of
games in the sense of Definition 4. In particular, each constant game A′ is the
game A such that, for every valuation e, e[A] = A′. From now on we will no
longer distinguish between such A and A′, so that, if A is a constant game, it
is its own instance, with A = e[A] for every e.

We say that a game A depends on a variable x iff there are two valuations
e1, e2 that agree on all variables except x such that e1[A] �= e2[A]. Constant
games thus do not depend on any variables.

The notion of an elementary game that we defined for constant games
naturally generalizes to all games by stipulating that a given game is ele-
mentary iff all of its instances are so. Hence, just as we identified classical
propositions with constant elementary games, classical predicates from now
on will be identified with elementary games. Say, Even(x) is the elementary
game such that e[Even(x)] is the game " if e(x) is even, and the game ⊥ if
e(x) is odd.

Any other concepts originally defined only for constant games can be simi-
larly extended to all games. In particular, just as the propositional operations
of classical logic naturally generalize to operations on predicates, so do our
game operations from Sect. 2. This is done by simply stipulating that e[. . .]
commutes with all of those operations: ¬A is the game such that, for every e,
e[¬A] = ¬e[A]; A�B is the game such that, for every e, e[A�B] = e[A]�e[B];
etc. A little caution is necessary when generalizing the operation of prefixation
this way. As we remember, for a constant game A, 〈Φ〉A is defined only when

196 G. Japaridze

Φ is a legal position of A. So, for 〈Φ〉A to be defined for a not-necessarily-
constant game A, Φ should be a legal position of every instance of A. Once
this condition is satisfied, 〈Φ〉A is defined as the game such that, for every
valuation e, e[〈Φ〉A] = 〈Φ〉e[A].

To generalize the standard operation of substitution of variables to games,
let us agree that by a term we mean either a variable or a constant; the
domain of each valuation e is extended to all terms by stipulating that, for
any constant c, e(c) = c.

Definition 5. Let A be a game, x1, . . . , xn pairwise distinct variables, and
t1, . . . , tn any (not necessarily distinct) terms. The result of substituting
x1, . . . , xn by t1, . . . , tn in A, denoted A(x1/t1, . . . , xn/tn), is defined by stip-
ulating that, for every valuation e, e[A(x1/t1, . . . , xn/tn)] = e′[A], where e′ is
the valuation for which we have:

1. e′(x1) = e(t1), . . . , e′(xn) = e(tn);
2. for every variable y �∈ {x1, . . . , xn}, e′(y) = e(y).

Intuitively A(x1/t1, . . . , xn/tn) isA with x1, . . . , xn remapped to t1, . . . , tn,
respectively. Say, if A is the elementary game x < y, then A(x/y, y/x) is y < x,
A(x/y) is y < y, A(y/3) is x < 3, and A(z/3)—where z is different from x, y—
remains x < y because A does not depend on z.

Following the standard readability-improving practice established in the
literature for predicates, we will often fix a tuple (x1, . . . , xn) of pairwise
distinct variables for a game A and write A as A(x1, . . . , xn). It should be
noted that when doing so, by no means do we imply that x1, . . . , xn are all
of (or only) the variables on which A depends. Representing A in the form
A(x1, . . . , xn) sets a context in which we can write A(t1, . . . , tn) to mean the
same as the more clumsy expressionA(x1/t1, . . . , xn/tn). So, if the game x < y
is represented as A(x), then A(3) will mean 3 < y and A(y) mean y < y. And
if the same game is represented as A(y, z) (where z �= x, y), then A(z, 3) means
x < z while A(y, 3) again means x < y.

The entities that in common language we call “games” are at least as often
nonconstant as constant. Chess is a classical example of a constant game. On
the other hand, many of the card games—including solitaire games where only
one player is active—are more naturally represented as nonconstant games:
each session/instance of such a game is set by a particular permutation of the
card deck, and thus the game can be understood as a game that depends on
a variable x ranging over the possible settings of the deck or certain portions
of it. Even the game of checkers—another “classical example” of a constant
game—has a natural nonconstant generalization Checkers(x) (with x ranging
over positive even integers), meaning a play on the board of size x×x where, in
the initial position, the first 3

2x black cells are filled with white pieces and the
last 3

2x black cells with black pieces. Then the ordinary checkers can be written
as Checkers(8). Furthermore, the numbers of pieces of either color also can
be made variable, getting an even more general game Checkers(x, y, z), with

Computability Logic: A Formal Theory of Interaction 197

the ordinary checkers being the instance Checkers(8, 12, 12) of it. By allowing
rectangular (rather than just square-) shape boards, we would get a game that
depends on four variables, etc. Computability theory texts also often appeal
to nonconstant games to illustrate certain complexity-theory concepts such
as alternating computation or PSPACE-completeness. The Formula Game
or Generalized Geography ([14], Section 8.3) are typical examples. Both can
be understood as games that depend on a variable x, with x ranging over
quantified Boolean formulas in Formula Game and over directed graphs in
Generalized Geography.

A game A is said to be unistructural in a variable x iff, for every two
valuations e1 and e2 that agree on all variables except x, we have Lre1[A] =
Lre2[A]. And A is (simply) unistructural iff Lre1[A] = Lre2[A] for any two
valuations e1 and e2. Intuitively, a unistructural game is a game whose every
instance has the same structure (the Lr component). And A is unistructural
in x iff the structure of an instance e[A] of A does not depend on how e
evaluates the variable x. Of course, every constant or elementary game is
unistructural, and every unistructural game is unistructural in all variables.
The class of unistructural games can be shown to be closed under all of our
game operations (Theorem 1). While natural examples of nonunistructural
games exist such as the games mentioned in the above paragraph, virtually
all of the other examples of particular games discussed elsewhere in the present
paper are unistructural. In fact, every nonunistructural game can be rather
easily rewritten into an equivalent (in a certain reasonable sense) unistructural
game. One of the standard ways to convert a nonunistructural game A into a
corresponding unistructural game A′ is to take the union (or anything bigger)
U of the structures of all instances of A to be the common-for-all-instances
structure of A′, and then extend the Wn function of each instance e[A] of A to
U by stipulating that, if Γ �∈ Lre[A], then the player who made the first illegal
(in the sense of e[A]) move is the loser in e[A′]. So, say, in the unistructural
version of generalized checkers, an attempt by a player to move to or from a
nonexisting cell would result in a loss for that player but otherwise considered
a legal move. In view of these remarks, if the reader feels more comfortable
this way, without much loss of generality (s)he can always understand “game”
as “unistructural game”.

Now we are ready to define quantifier-style operations on games. The blind
group ∀x,∃x of quantifiers is only defined for games that are unistructural
in x.

Definition 6. Below A(x) is an arbitrary game that in Clauses 5 and 6 is
assumed to be unistructural in x. e ranges over all valuations. Just as in
Definition 2, Φ ranges over nonempty positions, and Γ ranges over the legal
runs of the game that is being defined. The notation Φc. in clauses 3 and 4
means the result of removing from Φ all labeled moves except those of the form
℘c.α (℘ ∈ {",⊥}), and then deleting the prefix “c.” in the remaining moves,
i.e., replacing each such ℘c.α by ℘α. Similarly for Γ c..

198 G. Japaridze

1. Choice universal quantification �xA(x):
• Φ ∈ Lre[�xA(x)] iff Φ = 〈⊥c, Ψ〉, where c is a constant and Ψ ∈

Lre[A(c)];
• Wne[�xA(x)]〈Γ 〉 = ⊥ iff Γ = 〈⊥c, Υ 〉, where c is a constant and

Wne[A(c)]〈Υ 〉 = ⊥.
2. Choice existential quantification �xA(x):
• Φ ∈ Lre[�xA(x)] iff Φ = 〈"c, Ψ〉, where c is a constant and Ψ ∈

Lre[A(c)];
• Wne[�xA(x)]〈Γ 〉 = " iff Γ = 〈"c, Υ 〉, where c is a constant and

Wne[A(c)]〈Υ 〉 = ".
3. Parallel universal quantification ∧xA(x):
• Φ ∈ Lre[∧xA(x)] iff every move of Φ starts with “c.” for some constant

c and, for each such c, Φc. ∈ Lre[A(c)];
• Wne[∧xA(x)]〈Γ 〉 = " iff, for each constant c, Wne[A(c)]〈Γ c.〉 = ".

4. Parallel existential quantification ∨xA(x):
• Φ ∈ Lre[∨xA(x)] iff every move of Φ starts with “c.” for some constant

c and, for each such c, Φc. ∈ Lre[A(c)];
• Wne[∨xA(x)]〈Γ 〉 = ⊥ iff, for each constant c, Wne[A(c)]〈Γ c.〉 = ⊥.

5. Blind universal quantification ∀xA(x):
• Φ ∈ Lre[∀xA(x)] iff Φ ∈ Lre[A(x)];
• Wne[∀xA(x)]〈Γ 〉 = " iff, for each constant c, Wne[A(c)]〈Γ 〉 = ".

6. Blind existential quantification ∃xA(x):
• Φ ∈ Lre[∃xA(x)] iff Φ ∈ Lre[A(x)];
• Wne[∃xA(x)]〈Γ 〉 = ⊥ iff, for each constant c, Wne[A(c)]〈Γ 〉 = ⊥.

Thus, �xA(x) and ∧xA(x) are nothing but A(1)�A(2)� . . . and A(1)∧
A(2)∧ . . ., respectively. Similarly,� and∨ are “big brothers” of � and ∨. As
for ∀xA(x), as explained in Sect. 1, winning it for " (resp. ⊥) means winning
A(x), at once, for all (resp. some) possible values of x without knowing the
actual value of x. Playing or evaluating a game generally might be impossible
or meaningless without knowing what moves are available/legal. Therefore
our definition of ∀xA(x) and ∃xA(x) insists that the move legality question
should not depend on the (unknown) value of x, i.e., that A(x) should be
unistructural in x.

As we did in Exercise 1, one can easily verify the following interdefinabil-
ities: �xA(x) = ¬�x¬A(x); �xA(x) = ¬�x¬A(x);

∨xA(x) = ¬∧x¬A(x); ∧xA(x) = ¬∨x¬A(x);
∃xA(x) = ¬∀x¬A(x); ∀xA(x) = ¬∃x¬A(x).

Computability Logic: A Formal Theory of Interaction 199

Exercise 4. Let Odd(x) be the predicate “x is odd”. Verify that:

1. 〈⊥3,"1〉 is a legal run of �x(
Odd(x) � ¬Odd(x)

)
won by ".

2. ∀x(
Odd(x) � ¬Odd(x)

)
has exactly three legal runs: 〈 〉, 〈"1〉 and 〈"2〉,

all lost by ". ∃x(
Odd(x)�¬Odd(x)

)
has the same legal runs, with 〈 〉 won

by ⊥ and the other two by ".
3. 〈"9.1〉 is a legal run of ∨x(

Odd(x) � ¬Odd(x)
)

won by ".
4. 〈"1.1,"2.2,"3.1,"4.2,"5.1,"6.2, . . .〉 is a legal run of ∧x(

Odd(x) �
¬Odd(x)

)
won by ". On the other hand, every finite initial segment of

this infinite run is lost by ".

Exercise 5. Verify that, for every game A(x), we have:

1. Where c is an arbitrary constant, 〈⊥c〉�xA(x) = A(c) and 〈"c〉�xA(x) =
A(c).

2. Where A(x) is unistructural in x and Φ is a legal position of all instances
of A(x), 〈Φ〉∀xA(x) = ∀x〈Φ〉A(x) and 〈Φ〉∃xA(x) = ∃x〈Φ〉A(x).

The results of the above exercise will help us visualize legal runs of
∀,∃,�,�-combinations of games in the style of the earlier Example 1:

Example 2. Let E(x, y) be the predicate “x+ y is even”, and G0 be the game
∀x((

E(x, 4) � ¬E(x, 4)
)
→ �y(E(x, y) � ¬E(x, y)

))
, i.e., ∀x((

¬E(x, 4) �
E(x, 4)

)
∨�y(E(x, y) � ¬E(x, y)

))
. Then 〈⊥2.7,⊥1.2,"2.1〉 is a legal run of

G0, to which corresponds the following sequence of games:
G0 : ∀x((

¬E(x, 4) � E(x, 4)
)
∨�y(E(x, y) � ¬E(x, y)

))
;

G1 : ∀x((
¬E(x, 4) � E(x, 4)

)
∨

(
E(x, 7) � ¬E(x, 7)

))
, i.e., 〈⊥2.7〉G0;

G2 : ∀x(
E(x, 4) ∨

(
E(x, 7) � ¬E(x, 7)

))
, i.e., 〈⊥1.2〉G1;

G3 : ∀x(
E(x, 4) ∨ E(x, 7)

)
, i.e., 〈"2.1〉G2.

The run hits the true proposition ∀x(
E(x, 4) ∨E(x, 7)

)
and hence is won

by ". Note that—just as this is the case with all non-choice operations—the
∀,∃-structure of a game persists throughout a run.

When visualizing∧,∨-games in a similar style, we are better off represent-
ing them as infinite conjunctions/disjunctions. Of course, putting infinitely
many conjuncts/disjuncts on paper would be no fun. But, luckily, in every
position of such (sub)games ∧xA(x) or ∨xA(x) only a finite number of con-
juncts/disjuncts would be “activated”, i.e., have a non-A(c) form, so that all
of the other, uniform, conjuncts can be combined into blocks and represented,
say, through an ellipsis, or through expressions such as ∧m ≤ x ≤ nA(x)
or ∧x ≥ mA(x). Once ∧,∨-formulas are represented as parallel conjunc-
tions/disjunctions, we can apply the results of Exercise 3(3)—now general-
ized to infinite conjunctions/disjunctions—to visualize runs. For example, the
legal run 〈"9.1〉 of game ∨x(

Odd(x) � ¬Odd(x)
)

from Exercise 4(3) will be
represented as follows:

200 G. Japaridze

∨x(
Odd(x) � ¬Odd(x)

)
;

∨x ≤ 8
(
Odd(x) � ¬Odd(x)

)
∨Odd(9) ∨∨x ≥ 10

(
Odd(x) � ¬Odd(x)

)
.

And the infinite legal run 〈"1.1,"2.2,"3.1,"4.2,"5.1,"6.2, . . .〉 of game
∧x(

Odd(x) � ¬Odd(x)
)

from Exercise 4(4) will be represented as follows:

∧x(
Odd(x) � ¬Odd(x)

)
;

Odd(1) ∧∧x ≥ 2
(
Odd(x) � ¬Odd(x)

)
;

Odd(1) ∧ ¬Odd(2) ∧∧x ≥ 3
(
Odd(x) � ¬Odd(x)

)
;

Odd(1) ∧ ¬Odd(2) ∧Odd(3) ∧∧x ≥ 4
(
Odd(x) � ¬Odd(x)

)
;

...etc.

4 Interactive Computational Problems

Various sorts of games have been extensively studied in both logical and the-
oretical computer science literatures. The closest to our present approach to
games appears to be Blass’s [2] model, and less so the models proposed later
within the “game semantics for linear logic” line by Abramsky, Jagadeesan,
Hyland, Ong and others. See Sect. 27 of [6] for a discussion of how other
game models compare with our own, and what the crucial advantages of
our approach to games are that turn the corresponding logic into a logic of
computability—something that is no longer “just a game”. One of the main
distinguishing features of our games is the absence of what in [1] is called pro-
cedural rules—rules strictly regulating who and when should move, the most
standard procedural rule being the one according to which the players should
take turns in alternating order. In our games, either player is free to make any
(legal) move at any time. Such games can be called free, while games where
in any given situation only one of the players is allowed to move called strict.
Strict games can be thought of as special cases of our free games, where the
structure (Lr) component is such that in any given position at most one of the
players has legal moves. Our games are thus most general of all two-player,
two-outcome games. This makes them the most powerful and flexible model-
ing tool for interactive tasks. It also makes our definitions of game operations
as simple, compact and natural as they could be, and allows us to adequately
capture certain intended intuitions associated with those operations. Con-
sider the game Chess∧Chess. Assume an agent plays this two-board game
over the Internet against two independent adversaries that, together, form
the (one) environment for the agent. Playing white on both boards, in the
initial position of this game only the agent has legal moves. But once such
a move is made, say, on the left board, the picture changes. Now both the
agent and the environment have legal moves: the agent may make another
opening move on the right board, while the environment—in particular, ad-
versary #1—may make a reply move on the left board. This is a situation
where which player “can move” is no longer strictly determined, so the next
player to move will be the one who can or wants to act sooner. A strict-game
approach would impose some additional conditions uniquely determining the

Computability Logic: A Formal Theory of Interaction 201

next player to move. Such conditions would most likely be artificial and not
quite adequate, for the situation we are trying to model is a concurrent play
on two boards against two independent adversaries, and we cannot or should
not expect any coordination between their actions. Most of the compound
tasks that we perform in everyday life are free rather than strict, and so are
most computer communication/interaction protocols. A strict understanding
of ∧ would essentially mean some sort of an (in a sense interlaced but still)
sequential rather than truly parallel/concurrent combination of tasks, where
no steps in one component can be made until receiving a response in the other
component, contrary to the very (utility-oriented) idea of parallel/distributed
computation.

Our class of free games is obviously general enough to model anything
that we would call a (two-agent, two-outcome) interactive problem. However,
it is too general. There are games where the chances of a player to succeed
essentially depend on the relative speed at which its adversary responds, and
we do not want to consider that sort of games meaningful computational
problems. A simple example would be a game where all moves are legal and
that is won by the player who moves first. This is merely a contest of speed.
Below we define a subclass of games called static games. Intuitively, they are
games where speed is irrelevant: in order to succeed (play legal and win), only
matters what to do (strategy) rather than how fast to do (speed). In particular,
if a player can succeed when acting fast in such a game, it will remain equally
successful acting the same way but slowly. This releases the player from any
pressure for time and allows it to select its own pace for the game.

We say that a run Υ is a ℘-delay of a run Γ iff:
• for each player ℘′, the subsequence of ℘′-labeled moves of Υ is the same

as that of Γ , and
• for any n, k ≥ 1, if the nth ℘-labeled move is made later than (is to the

right of) the kth non-℘-labeled move in Γ , then so is it in Υ .
This means that in Υ each player has made the same sequence of moves as in
Γ , only, in Υ , ℘ might have been acting with some delay. Then we say that a
constant game A is static iff, whenever a run Υ is a ℘-delay of a run Γ , we
have:

• if Γ is a ℘-legal run of A, then so is Υ ,3 and
• if Γ is a ℘-won run of A, then so is Υ .

This definition extends to all games by stipulating that a (not-necessarily-
constant) game is static iff all of its instances are so.

Now we are ready to formally clarify what we mean by interactive com-
putational problems: an interactive computational problem (ICP) is a
static game, and from now on we will be using the terms “ICP” (or simply
“problem”) and “static game” interchangeably. This terminology is justified
by one of the two main theses on which CL relies philosophically: the concept
3 This first condition was a derivable one in the presentation chosen in [6]. See the

footnote on page 190.

202 G. Japaridze

of static games is an adequate formal counterpart of our intuitive notion of
“pure”, speed-independent interactive computational problems. See Sect. 4 of
[6] for a detailed discussion and examples in support of this thesis. According
to the second thesis, the concept of computability/winnability of static games,
defined in the next section, is an adequate formal counterpart of our intuitive
notion of effective solvability of speed-independent interactive problems. This
is thus an interactive version of the Church–Turing thesis.

Theorem 1.
1. Every elementary game is static and unistructural.
2. All of our game operations, ¬, ∧, ∨, →, �, �, ◦| , ◦| , ∧| , ∨| , �, �, ∀, ∃,

∧, ∨, prefixation and substitution of variables, preserve both the static and
the unistructural properties of games.

The first clause of this theorem is straightforward; the second clause has
been proven in [6] (Theorem 14.1) for all operations except ∧| , ∨| ,∧ and ∨
that were not officially introduced there but that can be handled in exactly
the same way as ∧,∨.

In view of Theorem 1, the closure of the set of all predicates under all
of our game operations forms a natural class C of unistructural ICPs. For
a reader who has difficulty in comprehending the concept of static games,
it is perfectly safe to simply think of ICPs as elements of C: even though
the class ICP of all ICPs is essentially wider than C, virtually all of our
results—in particular, completeness results—remain valid with ICP restricted
to C. Class C has a number of nice features. Among them, together with
unistructurality, is the effectiveness of the structure of any A ∈ C, in the
sense that the question whether a given move is legal in a given position is
decidable—in fact, decidable rather efficiently.

5 Interactive Computability

Now that we know what ICPs are, it is time to clarify what their computability
means. The definitions given in this section are semiformal. All of the omitted
technical details are rather standard or irrelevant and can be easily restored by
anyone familiar with Turing machines. If necessary, the corresponding detailed
definitions can be found in Part II of [6].

As we remember, the central point of our philosophy is to require that
agent " be implementable as a computer program, with effective and fully
determined behavior. On the other hand, the behavior of agent ⊥ can be
arbitrary. This intuition is captured by the model of interactive computation
where " is formalized as what we call HPM.4

4 HPM stands for “Hard-Play Machine”. See [6] for a (little long) story about why
“hard”.

Computability Logic: A Formal Theory of Interaction 203

An HPMM is a Turing machine that, together with an ordinary read/write
work tape, has two additional, read-only tapes: the valuation tape and the run
tape. The presence of these two tapes is related to the fact that the outcome
of a play over a given game depends on two parameters: (1) valuation and (2)
the run that is generated in the play.M should have full access to information
about these two parameters, and this information is provided by the valua-
tion and run tapes: the former spells a (the “actual”) valuation e by listing
constants in the lexicographic order of the corresponding variables, and the
latter spells, at any given time, the current position, i.e., the sequence of the
(labeled) moves made by the two players so far, in the order in which those
moves have been made. Thus, both of these two tapes can be considered input
tapes. The reason for our choice to keep them separate is the difference in the
nature of the input that they provide. Valuation is a static input, known at
the very beginning of a computation/play and remaining unchanged through-
out the subsequent process. On the other hand, the input provided by the
run tape is dynamic: every time one of the players makes a move, the move
(with the corresponding label) is appended to the content of this tape, with
such content being unknown and hence blank at the beginning of interaction.
Technically the run tape is read-only: the machine has unlimited read access
to this (as well as to the valuation) tape, but it cannot write directly on it.
Rather, M makes a move α by constructing it at the beginning of its work
tape, delimiting its end with a blank symbol, and entering one of the specially
designated states called move states. Once this happens, "α is automatically
appended to the current position spelled on the run tape. While the frequency
at which the machine can make moves is naturally limited by its clock cycle
time (the time each computation step takes), there are no limitations to how
often the environment can make a move, so, during one computation step
of the machine, any finite number of any moves by the environment can be
appended to the content of the run tape. This corresponds to the intuition
that not only the strategy, but also the relative speed of the environment can
be arbitrary. For technical clarity, we can assume that the run tape remains
stable during a clock cycle and is updated only on a transition from one cy-
cle to another, on which event the moves (if any) by the two players appear
on it at once in the order that they have been made. As we may guess, the
computing power of the machine is rather rigid with respect to how this sort
of technical details are arranged, and such details can be safely suppressed.

A configuration of M is defined in the standard way: this is a full de-
scription of the (“current”) state of the machine, the locations of its three
scanning heads and the contents of its tapes, with the exception that, in or-
der to make finite descriptions of configurations possible, we do not formally
include a description of the unchanging (and possibly essentially infinite) con-
tent of the valuation tape as a part of configuration, but rather account for
it in our definition of computation branch as this will be seen below. The
initial configuration is the configuration where M is in its start state and the
work and run tapes are empty. A configuration C′ is said to be an e-successor

204 G. Japaridze

of configuration C if, when valuation e is spelled on the valuation tape, C′

can legally follow C in the standard sense, based on the transition function
(which we assume to be deterministic) of the machine and accounting for
the possibility of the above-described nondeterministic updates of the content
of the run tape. An e-computation branch of M is a sequence of configura-
tions of M where the first configuration is the initial configuration and every
other configuration is an e-successor of the previous one. Thus, the set of all
e-computation branches captures all possible scenarios (on valuation e) cor-
responding to different behaviors by ⊥. Each e-computation branch B of M
incrementally spells—in the obvious sense—a run Γ on the run tape, which
we call the run spelled by B.

Definition 7. For ICPs A and B we say that:
1. An HPM M computes (solves, wins) A iff, for every valuation e,

whenever Γ is the run spelled by some e-computation branch of M, Γ is a
"-won legal run of e[A] as long as it is ⊥-legal.

2. A is computable iff there is an HPM that computes A. Such an HPM
is said to be a solution to A.

3. A is reducible to B iff B → A is computable. An HPM that computes
B → A is said to be a reduction of A to B.

4. A and B are equivalent iff A is reducible to B and B is reducible to A.

One of the most appealing known models of interactive computation is per-
sistent Turing machines (Goldin [4]). PTMs are defined as Turing machines
where the content of the work tape persists between an output and the sub-
sequent input events (while an ordinary Turing machine cleans up the tape
and starts from scratch on every new input). The PTM model appears to be
optimal for what is called sequential interactive computations [5], which into
our terms translate as plays over games with strictly alternating legal moves
by the two players, always by the environment to start. Our HPM model
sacrifices some of the niceties of PTMs in its ambition to capture the wider
class of free games and, correspondingly, not-necessarily-sequential interactive
computations.

Just as the Turing machine model, our HPM model, as noted, is highly
rigid with respect to reasonable technical variations. Say, a model where only
environment’s moves are visible to the machine yields the same class of com-
putable ICPs. Similarly, there is no difference between whether we allow the
scanning heads on the valuation and run tapes to move in either or only one
(left to right) direction. Another variation is the one where an attempt by
either player to make an illegal move has no effect: such moves are automati-
cally rejected and/or filtered out by some interface hardware or software and
thus illegal runs are never generated. Obviously in such a case a minimum re-
quirement would be that the question of legality of moves be decidable. This
again yields a model equivalent to HPM.

Computability Logic: A Formal Theory of Interaction 205

6 The Propositional Logic of Computability

Among the main technical goals of CL at its present stage of development is
to axiomatize the set of valid principles of computability or various natural
fragments of that set. This is a challenging but promising task. Some positive
results in this direction have already been obtained, yet more results are still
to come. We start our brief survey of known results at the simplest, proposi-
tional level. The system axiomatizing the most basic fragment of propositional
computability logic is called CL1. Its language extends that of classical propo-
sitional logic by incorporating into it two additional connectives: � and �. As
always, there are infinitely many atoms in the language, for which we will be
using the letters p, q, r, . . . as metavariables. Atoms are meant to represent el-
ementary games. The two atoms: " and ⊥ have a special status in that their
interpretation is fixed. Therefore we call them logical to distinguish them
from all other atoms that are called nonlogical. Formulas of this language,
referred to as CL1-formulas, are built from atoms in the standard way: the
class of CL1-formulas is defined as the smallest set of expressions such that
all atoms are in it and, if F and G are in it, then so are ¬(F), (F) ∧ (G),
(F) ∨ (G), (F) → (G), (F) � (G), (F) � (G). For better readability, we will
often omit some parentheses in formulas by standard conventions.

An interpretation, corresponding to what is more often called “model”
in classical logic, is a function ∗ that sends every nonlogical atom p to an
elementary game p∗. The mapping ∗ extends to all CL1-formulas by stip-
ulating that it commutes with all connectives, i.e., respects their meaning
as game operations. That is, we have: "∗ = "; ⊥∗ = ⊥; (¬G)∗ = ¬(G∗);
(G∧H)∗ = (G∗)∧ (H∗); (G∨H)∗ = (G∗)∨ (H∗); (G→ H)∗ = (G∗)→ (H∗);
(G �H)∗ = (G∗) � (H∗); (G �H)∗ = (G∗) � (H∗).

When F ∗ = A, we say that ∗ interprets F as A. We say that a
CL1-formula F is valid iff, for every interpretation ∗, the ICP F ∗ is com-
putable. Thus, valid CL1-formulas are exactly the ones representing “always-
computable” problems, i.e., “valid principles of computability”.

Note that, despite the fact that we refer to CL1 as a “propositional logic”,
interpretations of its formulas go beyond constant games, let alone proposi-
tions. This is so because our definition of interpretation does not insist that
atoms be interpreted as constant games. Rather, for the sake of generality, it
lets them represent any predicates.

To axiomatize the set of valid CL1-formulas, we need some preliminary
terminology. Understanding F → G as an abbreviation of (¬F) ∨ G, by a
positive (resp. negative) occurrence of a subexpression we mean an oc-
currence that is in the scope of an even (resp. odd) number of occurrences of
¬. In the context of the language of CL1, by an elementary formula we
mean a formula not containing choice operators �, �, i.e., a formula of classical
propositional logic. A surface occurrence of a subexpression means an oc-
currence that is not in the scope of choice operators. The elementarization
of a CL1-formula F is the result of replacing in F every surface occurrence of

206 G. Japaridze

the form G �H by " and every surface occurrence of the form G �H by ⊥.
A CL1-formula is said to be stable iff its elementarization is a valid formula
(tautology) of classical logic. Otherwise it is instable.

With P .→ C here and later meaning “from premise(s) P conclude C”,
deductively CL1 is given by the following two rules of inference:

Rule (a): H .→ F , where F is stable and H is a set of formulas such that,
whenever F has a positive (resp. negative) surface occurrence of a subfor-
mula G1 � G2 (resp. G1 � G2), for each i ∈ {1, 2}, H contains the result
of replacing that occurrence in F by Gi.

Rule (b): H .→ F , where H is the result of replacing in F a negative (resp.
positive) surface occurrence of a subformula G1 � G2 (resp. G1 � G2) by
Gi for some i ∈ {1, 2}.
Axioms are not explicitly stated, but note that the set H of premises of

Rule (a) can be empty, in which case the conclusion F of that rule acts as
an axiom. A rather unusual logic, isn’t it? Let us play with it a little to get a
syntactic feel of it. Below, p, q, r are pairwise distinct nonlogical atoms.

Example 3. The following is a CL1-proof of
(
(p → q) � (p → r)

)
→

(
p →

(q � r)
)
:

1. (p→ q)→ (p→ q) (from { } by Rule (a))
2.

(
(p→ q) � (p→ r)

)
→

(
p→ q

)
(from 1 by Rule (b))

3. (p→ r) → (p→ r) (from { } by Rule (a))
4.

(
(p→ q) � (p→ r)

)
→

(
p→ r

)
(from 3 by Rule (b))

5.
(
(p→ q) � (p→ r)

)
→

(
p→ (q � r)

)
(from {2,4} by Rule (a))

On the other hand, CL1 does not prove
(
(p → q) � (p → r)

)
→

(
p →

(q ∧ r)
)
. Indeed, this formula is instable, so it could only be derived by Rule

(b). The premise of this rule should be either (p → q) →
(
p → (q ∧ r)

)
or

(p → r) →
(
p → (q ∧ r)

)
. In either case we deal with a formula that can be

derived neither by Rule (a) (because it is instable) nor by Rule (b) (because
it does not contain �,�).

Exercise 6. With Logic - F (resp. Logic �- F) here and later meaning “F is
provable (resp. not provable) in Logic”, show that:
CL1 -

(
(p � q) ∧ (p � q)

)
→ (p � q);

CL1 �- (p � q)→
(
(p � q) ∧ (p � q)

)
.

As we probably just had a chance to notice, if F is an elementary formula,
then the only way to prove F in CL1 is to derive it by Rule (a) from the
empty set of premises. In particular, this rule will be applicable when F is
stable, which for an elementary F means nothing but that F is a classical
tautology. And vice versa: every classically valid formula is an elementary
formula derivable in CL1 by Rule (a) from the empty set of premises. Thus
we have:

Computability Logic: A Formal Theory of Interaction 207

Proposition 1. The �,�-free fragment of CL1 is exactly classical proposi-
tional logic.

This is what we should have expected for, as noted earlier, when restricted
to elementary problems—and �,�-free formulas are exactly the ones that
represent such problems—the meanings of ¬,∧,∨,→ are exactly classical.
Here comes the soundness/completeness result:

Theorem 2. (Japaridze [7]) CL1 - F iff F is valid (any CL1-formula F).

Since the atoms of CL1 represent predicates rather than ICPs in general,
CL1 only describes the valid principles of elementary ICPs. This limitation
of expressive power is overcome in the extension of CL1 called CL2. The
language of the latter augments the language of the former in that, along
with the old atoms of CL1 which we now call elementary atoms, it has an
additional sort of (nonlogical) atoms called general atoms. We continue us-
ing the lowercase letters p, q, r, . . . as metavariables for elementary atoms, and
will be using the uppercase P,Q,R, . . . as metavariables for general atoms. We
refer to formulas of this language as CL2-formulas. An interpretation now
becomes a function that sends each nonlogical elementary atom (as before) to
an elementary ICP and each general atom to any, not-necessarily-elementary,
ICP. This mapping extends to all formulas in the same way as in the case
of CL1. The concepts of validity, surface occurrence and positive/negative
occurrence straightforwardly extend to this new language. The elementa-
rization of a CL2-formula F means the result of replacing in F every surface
occurrence of the form G�H by ", every surface occurrence of the form G�H
by ⊥ and, in addition, replacing every positive surface occurrence of a general
atom by ⊥ and every negative surface occurrence of a general atom by ".

The rules of inference of CL2 are the two rules of CL1—that are now
applied to any CL2-formulas rather than (just) CL1-formulas—plus the fol-
lowing additional rule:

Rule (c): H .→ F , where H is the result of replacing in F two—one pos-
itive and one negative—surface occurrences of some general atom by a
nonlogical elementary atom that does not occur in F .

Example 4. The following is a CL2-proof of P ∧ P → P :
1. p ∧ P → p (from { } by Rule (a))
2. P ∧ P → P (from 1 by Rule (c))
On the other hand, CL2 does not prove P → P ∧ P (while, of course, it
proves p→ p ∧ p). Indeed, this formula is instable and does not contain � or
�, so it cannot be derived by Rules (a) or (b). If it is derived by Rule (c),
the premise should be p→ P ∧p or p→ p∧P for some elementary atom p. In
either case we deal with an instable formula that contains no choice operators
and only has one occurrence of a general atom, so that it cannot be derived
by any of the three rules of CL2.

208 G. Japaridze

Exercise 7. Verify that:
1. CL2 - P ∨ ¬P
2. CL2 �- P � ¬P
3. CL2 - P → P � P
4. CL2 - (P ∧Q) ∨ (R ∧ S)→ (P ∨R) ∧ (Q ∨ S) (Blass’s [2] principle)
5. CL2 - p ∧ (p→ Q) ∧ (p→ R)→ Q ∧R
6. CL2 �- P ∧ (P → Q) ∧ (P → R)→ Q ∧R
7. CL2 - P � (Q ∨R)→ (P �Q) ∨ (P �R)
8. CL2 �- (P �Q) ∨ (P �R)→ P � (Q ∨R)
9. CL2 - (p �Q) ∨ (p �R)→ p � (Q ∨R)

Theorem 3. (Japaridze [7]) CL2 - F iff F is valid (any CL2-formula F).

Both CL1 and CL2 are obviously decidable, with a brute force decision
algorithm running in polynomial space. Whether there are more efficient al-
gorithms is unknown.

A next step in exploring propositional computability logic would be aug-
menting the language of CL1 or CL2 with recurrence operators. At present
the author sees the decidability of the set of valid formulas in the ◦| , ∧| -
augmented language of CL1, but has nothing yet to say about the ◦| , ∧| -
augmented CL2.

7 The First-Order Logic of Computability

CL2 seamlessly extends to the first-order logic CL4 with four quantifiers:
∀,∃,�,�. The set of variables of the language of CL4 is the same as the
one that we fixed in Sect. 3. Constants 1, 2, 3, . . . are also allowed in the
language, and terms have the same meaning as before. The language has
two—elementary and general—sorts of ICP letters, where each such let-
ter comes with a fixed integer n ≥ 0 called its arity. We assume that, for
each n, there are infinitely many n-ary ICP letters of either (elementary and
general) sort. Each atom looks like L(t1, . . . , tn), where L is an n-ary ICP
letter and the ti are any terms. The terms “elementary”, “general”, “n-ary”
extend from ICP letters to atoms in the obvious way. If L is a 0-ary ICP letter,
then the (only) corresponding atom we write as L rather than L(). " and ⊥,
as before, are two special (0-ary) elementary atoms called logical.

Formulas of this language, referred to as CL4-formulas, are built from
atoms using ¬, ∧, ∨, →, �, � in the same way as CL1- or CL2-formulas; in
addition, we have the following formation rule: If F is a formula and x is a
variable, then ∀x(F), ∃x(F), �x(F) and �x(F) are formulas.

An interpretation for the language of CL4 is a function that sends each
n-ary general (resp. elementary nonlogical) letter L to an ICP (resp. elemen-
tary ICP) L∗(x1, . . . , xn), where the xi are pairwise distinct variables; in this
case we say that ∗ interprets L as L∗(x1, . . . , xn). Note that, just as in

Computability Logic: A Formal Theory of Interaction 209

the propositional case, we do not insist that interpretations respect the arity
of ICP letters. Specifically, we do not require that the above L∗(x1, . . . , xn)
depend on only (or all) the variables x1, . . . , xn. Some caution is however
necessary to avoid unpleasant collisions of variables, and also to guarantee
that ∀x and ∃x are only applied to games for which they are defined, i.e.,
games that are unistructural in x. For this reason, we restrict interpretations
to “admissible” ones. For a CL4-formula F and interpretation ∗ we say that
∗ is F -admissible iff, for every n-ary ICP letter L occurring in F , where ∗

interprets L as L∗(x1, . . . , xn), the following two conditions are satisfied:

(i) L∗(x1, . . . , xn) does not depend on any variables that are not among
x1, . . . , xn but occur in F .

(ii) Suppose, for some terms t1, . . . , tn and some i with 1 ≤ i ≤ n, F has a
subformula ∀tiG or ∃tiG, where G contains an occurrence of L(t1, . . . , tn)
that is not in the scope (within G) of �ti or �ti. Then L∗(x1, . . . , xn) is
unistructural in xi.

The concept of admissible interpretation extends to any set S of CL4-formulas
by stipulating that an interpretation ∗ is S-admissible iff it is F -admissible
for every F ∈ S. Notice that condition (ii) is automatically satisfied for el-
ementary ICP letters, because an elementary problem (i.e., L∗(x1, . . . , xn))
is always unistructural. In most typical cases we will be interested in inter-
pretations that interpret every n-ary ICP letter L as a unistructural game
L∗(x1, . . . , xn) that does not depend on any variables other than x1, . . . , xn,
so that both conditions (i) and (ii) will be automatically satisfied. With this
remark in mind and in order to relax terminology, henceforth we will usually
omit “F -admissible” and simply say “interpretation”; every time an expres-
sion F ∗ is used in a context, it should be understood that the range of ∗ is
restricted to F -admissible interpretations.

Every interpretation ∗ extends from ICP letters to formulas (for which ∗ is
admissible) in the obvious way: where L is an n-ary ICP letter interpreted as
L∗(x1, . . . , xn) and t1, . . . , tn are any terms,

(
L(t1, . . . , tn)

)∗ = L∗(t1, . . . , tn);
"∗ = ", (¬G)∗ = ¬(G∗); (G � H)∗ = (G∗) � (H∗); (∀xG)∗ = ∀x(G∗),
etc. When F ∗ = A, we say that ∗ interprets F as A. We say that a CL4-
formula F is valid iff, for every (F -admissible) interpretation ∗, the ICP F ∗

is computable.
The terms “negative occurrence” and “positive occurrence” have the same

meaning as in the previous section. A surface occurrence of a subexpres-
sion in a CL4-formula is an occurrence that is not in the scope of choice
operators �,�,�,�. When a CL4-formula contains neither choice operators
nor general atoms, it is said to be elementary. The elementarization of
a CL4-formula F is the result of replacing in F every surface occurrence of
the form G �H or �xG by ", every surface occurrence of the form G �H
or �xG by ⊥, every positive surface occurrence of a general atom by ⊥ and
every negative surface occurrence of a general atom by ". A CL4-formula is
stable iff its elementarization is a valid formula of classical first-order logic.

210 G. Japaridze

The definition of a free occurrence of a variable x in a formula is standard,
meaning that the occurrence is not in the scope of ∀x,∃x,�x or �x. We
will be using the expression F (x/t) to denote the result of replacing all free
occurrences of variable x by term t in CL4-formula F . A formula with no free
occurrences of variables is said to be a sentence.

The rules of inference of CL4 are obtained from those of CL2 by replacing
them by their “first-order versions”, with Rule (b) splitting into two rules
(B1) and (B2), as follows:

Rule (A): H .→ F , where F is stable and H is a set of CL4-formulas satis-
fying the following conditions:
(i) Whenever F has a positive (resp. negative) surface occurrence of a

subformula G1 � G2 (resp. G1 � G2), for each i ∈ {1, 2}, H contains
the result of replacing that occurrence in F by Gi;

(ii) Whenever F has a positive (resp. negative) surface occurrence of a
subformula�xG (resp.�xG), H contains the result of replacing that
occurrence in F by G(x/y) for some variable y not occurring in F .

Rule (B1): H .→ F , where H is the result of replacing in F a negative (resp.
positive) surface occurrence of a subformula G1 � G2 (resp. G1 � G2) by
Gi for some i ∈ {1, 2}.

Rule (B2): H .→ F , where H is the result of replacing in F a negative (resp.
positive) surface occurrence of a subformula�xG (resp.�xG) by G(x/t)
for some term t such that (if t is a variable) neither the above occurrence
of�xG (resp. �xG) within F nor any of the free occurrences of x within
G are in the scope of ∀t,∃t,�t or �t.

Rule (C): H .→ F , where H is the result of replacing in F two—one positive
and one negative—surface occurrences of some n-ary general ICP letter
by an n-ary nonlogical elementary ICP letter that does not occur in F .

In what follows, the lowercase p stands for a 1-ary (and hence nonlogical)
elementary ICP letter, and the uppercase P,Q for 1-ary general ICP letters.

Example 5. The following is a CL4-proof of �x�y(P (x) → P (y)
)
:

1. p(z)→ p(z) (from { } by Rule (A))
2. P (z)→ P (z) (from 1 by Rule (C))
3. �y(P (z)→ P (y)

)
(from 2 by Rule (B2))

4. �x�y(P (x) → P (y)
)

(from {3} by Rule (A))
On the other hand, a little analysis can convince us that CL4 does not

prove �y�x(
P (x) → P (y)

)
, even though the “blind version” ∃y∀x(

P (x) →
P (y)

)
of this formula is derivable as follows:

1. ∃y∀x(
p(x) → p(y)

)
(from { } by Rule (A))

2. ∃y∀x(
P (x) → P (y)

)
(from 1 by Rule (C))

Exercise 8. Verify that:
1. CL4 - ∀xP (x) →�xP (x)
2. CL4 �- �xP (x) → ∀xP (x)
3. CL4 - �x((

P (x) ∧�xQ(x)
)
�

(�xP (x) ∧Q(x)
))
→�xP (x) ∧�xQ(x)

Computability Logic: A Formal Theory of Interaction 211

A little excursus for the logicians. It was noted in Sect. 1 that the logical
behavior of our parallel and choice operators is similar to yet not the same
as that of the “corresponding” multiplicative and additive operators of linear
logic (LL). Now we can be more specific. CL and LL agree on many simple
and demonstrative formulas such as P → P ∧P and P �¬P that both logics
reject (Example 4, Exercise 7), or P ∨ ¬P and P → P � P that both logics
accept (Exercise 7). CL also agrees with the version of LL called affine logic
(LL with the weakening rule) on P ∧ P → P that both logics accept. On the
other hand, the somewhat longer formulas of Exercises 8(3) and 7(4) are valid
in our sense yet underivable in linear (or affine) logic. Neither the similarities
nor the discrepancies are a surprise. The philosophies of CL and LL overlap
in their striving to develop a logic of resources. But the ways this philosophy
is materialized are rather different. CL starts with a mathematically strict
and intuitively convincing semantics, and only after that, as a natural sec-
ond step, asks what the corresponding logic and its axiomatizations (syntax)
are. It would be accurate to say that LL, on the other hand, started directly
from the second step. As a resource logic, LL was introduced syntactically
rather than semantically,5 essentially by taking classical sequent calculus and
throwing out the rules that seemed unacceptable from some intuitive, naive
resource point of view, so that, in the absence of a clear concept of truth or
validity, the question about whether the resulting system was sound/complete
could not even be meaningfully asked. In this process of syntactically rewriting
classical logic some innocent, deeply hidden principles could have easily got-
ten victimized. Apparently the above-mentioned formulas separating CL from
LL should be considered examples of such “victims”. Of course, a number of
attempts have been made to retroactively find a missing semantical justifica-
tion for LL. Technically it is always possible to come up with some sort of a
formal semantics that matches a given target syntactic construction, but the
whole question is how natural and meaningful such a semantics is in its own
right, and how adequately it captures the logic’s underlying philosophy and
ambitions. Unless, by good luck, the target system really is “the right logic”,
the chances of a decisive success when following the odd scheme “from syntax
to semantics” can be rather slim. The natural scheme is “from semantics to
syntax”. It matches the way classical logic evolved and climaxed in Gödel’s
completeness theorem. And this is exactly the scheme that CL, too, follows.

Taking into account that classical validity and hence stability is recursively
enumerable, obviously (the set of theorems of) CL4 is recursively enumerable.
[9] also proves that

Theorem 4. The ∀,∃-free fragment of CL4 is decidable.

This is a nice and perhaps not very obvious/expected fact, taking into
account that the above fragment of CL4 is still a first order logic as it contains
5 A philosophically-minded reader would easily understand why the phase or co-

herent semantics do not count here.

212 G. Japaridze

the quantifiers �,�. This fragment is also natural as it gets rid of the only
operators of the language that produce games with imperfect information.

Next, based on the straightforward observation that elementary formulas
are derivable in CL4 (in particular, from {} by Rule (A)) exactly when they
are classically valid, we have:

Proposition 2. CL4 is a conservative extension of classical first-order logic:
an elementary CL4-formula is classically valid if and only if it is provable in
CL4.

The following theorem is the strongest technical result on CL known so
far:

Theorem 5. (Japaridze [9]) CL4 - F iff F is valid (any CL4-sentence F).
Furthermore:

Uniform-constructive soundness: There is an effective procedure that
takes a CL4-proof of an arbitrary sentence F and constructs an HPM M
such that, for every interpretation ∗, M solves F ∗.

Strong completeness: If CL4 �- F , then F ∗ is not computable for some
interpretation ∗ that interprets each elementary atom as a finitary predicate
and each general atom as a �,�-combination of finitary predicates.

Here “finitary predicate” (or finitary game in general) is a predicate
(game) A for which there is some finite set X of variables such that, for
any two valuations e1 and e2 that agree on all variables from X , we have
e1[A] = e2[A]. That is, only the values of those finitely many variables are
relevant. A nonfinitary game generally depends on infinitely many variables,
and appealing to this sort of games in a completeness proof could seriously
weaken such a result: the reason for incomputability of a nonfinitary game
could be just the fact that the machine can never finish reading all the rele-
vant information from its valuation tape. Fortunately, in view of the strong
completeness clause, it turns out that the question whether nonfinitary ICPs
are allowed or not has no effect on the soundness and completeness of CL4;
moreover, ICPs can be further restricted to the sort of games as simple as
�,�-combinations of finitary predicates. Similarly, the uniform-constructive
soundness clause dramatically strengthens the soundness result for CL4 and,
as this will be discussed in Section 8, opens application areas far beyond the
pure theory of computing. Of course, both uniform-constructive soundness
and strong completeness (automatically) hold for CL1 and CL2 as well, but
the author has chosen to disclose this good news only in the present section.

Theorem 5, even though by an order of magnitude more informative than
Gödel’s completeness theorem for classical logic which it implies as a special
case, is probably only a beginning of progress on the way of in-depth study of
computability logic. Seeing what happens if we add parallel quantifiers and/or
the recurrence group of operators to the language of CL4, or exploring some
other—limited—∧, ◦| , ∧| -containing fragments of CL, remains a challenging

Computability Logic: A Formal Theory of Interaction 213

but worthy task to pursue. Among the interesting fragments of CL is the one
that only has general atoms and the operators �,�,�,�, ◦– , where A ◦–B
is defined as (◦|A) → B. It was conjectured in [6] that the valid formulas of this
language are exactly those provable in Heyting’s intuitionistic calculus, with
the above operators understood as the intuitionistic conjunction, disjunction,
universal quantifier, existential quantifier and implication, respectively. The
soundness part of this conjecture was successfully verified later in [10]. A
verification of the remaining completeness part of the conjencture could signify
a convincing “proof” of Kolmogorov’s (1932) well-known but so far rather
abstract thesis according to which intuitionistic logic is a logic of problems.

8 Applied Systems Based on CL

The original motivation underlying CL, presented in Sect. 1, was computa-
bility-theoretic: the approach provides a systematic answer to the question
“what can be computed?”, which is a fundamental question of computer sci-
ence. Yet, a look at the uniform-constuctive soundness clause of Theorem 5
reveals that the CL paradigm is not only about what can be computed. It
is equally about how problems can be computed/solved, suggesting that CL
should have substantial utility, with its application areas not limited to theory
of computing. In the present section we will briefly examine why and how CL
is of interest in some other fields of study, such as knowledgebase systems,
planning systems or constructive applied theories.

The reason for the failure of p � ¬p as a computability-theoretic prin-
ciple is that the problem represented by this formula may have no effec-
tive solution, that is, the predicate p∗ may be undecidable. The reason
why this principle fails in the context of knowledgebase systems, however,
is much simpler. A knowledgebase system may fail to solve the problem
Female(Dana) � ¬Female(Dana) not because the latter has no effective so-
lution (of course it has one), but because the system simply lacks sufficient
knowledge to determine Dana’s gender. On the other hand, any system would
be able to “solve” the problem Female(Dana) ∨ ¬Female(Dana) as this is
an automatically won elementary game so that there is nothing to solve at
all. Similarly, while ∀y∃xFather(x, y) is an automatically solved elementary
problem expressing the almost tautological knowledge that every person has
a father, ability to solve the problem �y�xFather(x, y) implies the nontriv-
ial knowledge of everyone’s actual father. Obviously the knowledge expressed
by A � B or �xA(x) is generally stronger than the knowledge expressed by
A ∨ B or ∃xA(x), yet the language of classical logic fails to capture this
difference, the difference whose relevance hardly requires any explanation.
The traditional approaches to knowledgebase systems ([11, 13] etc.) try to
mend this gap by augmenting the language of classical logic with special epis-
temic constructs, such as the modal “know that” operator Know, after which
probably KnowA ∨KnowB would be suggested as a translation for A � B

214 G. Japaridze

and ∀y∃xKnowA(x, y) for �y�xA(x, y). Leaving it for the philosophers
to argue whether, say, ∀y∃xKnowA(x, y) really expresses the constructive
meaning of �y�xA(x, y), and forgetting that epistemic constructs typically
yield unnecessary and very unpleasant complications such as messiness and
non-semidecidability of the resulting logics, some of the major issues still do
not seem to be taken care of. Most of the actual knowledgebase and infor-
mation systems are interactive, and what we really need is a logic of inter-
action rather than just a logic of knowledge. Furthermore, a knowledgebase
logic needs to be resource-conscious. The informational resource expressed
by �x(Female(x) � ¬Female(x)) is not as strong as the one expressed by
�x(Female(x)�¬Female(x))∧�x(Female(x)�¬Female(x)): the former im-
plies the resource provider’s commitment to tell only one (even though an
arbitrary one) person’s gender, while the latter is about telling any two peo-
ple’s genders.6 Neither classical logic nor its standard epistemic extensions
have the ability to account for such differences. CL promises to be adequate.
It is a logic of interaction, it is resource-conscious, and it does capture the
relevant differences between truth and actual ability to find/compute/know
truth.

When CL is used as a logic of knowledgebases, its formulas represent inter-
active queries. A formula whose main operator is � or � can be understood
as a question asked by the user, and a formula whose main operator is � or
� a question asked by the system. Consider the problem �x�yHas(x, y),
where Has(x, y) means “patient x has disease y” (with Healthy counting as
one of the possible “diseases”). This formula is the following question asked by
the system: “Who do you want me to diagnose?” The user’s response can be
“Dana”. This move brings the game down to �yHas(Dana, y). This is now a
question asked by the user: “What does Dana have?”. The system’s response
can be “flu”, taking us to the terminal position Has(Dana, F lu). The system
has been successful iff Dana really has flu.

Successfully solving the above problem�x�yHas(x, y) requires having all
relevant medical information for each possible patient, which in a real diagnos-
tic system would hardly be the case. Most likely, such a system, after receiving
a request to diagnose x, would make counterqueries regarding x’s symptoms,
blood pressure, test results, age, gender, etc., so that the query that the system
will be solving would have a higher degree of interactivity than the two-step
query�x�yHas(x, y) does, with questions and counterquestions interspersed
in some complex fashion. Here is when other computability-logic operations
come into play. ¬ turns queries into counterqueries; parallel operations gener-
ate combined queries, with→ acting as a query reduction operation; ◦| , ∧| allow
repeated queries, etc. Here we are expanding our example. Let Sympt(x, s)
mean “patient x has (set of) symptoms s”, and Pos(x, t) mean “patient x

6 A reader having difficulty in understanding why this difference is relevant, may
try to replace Female(x) with Acid(x), and then think of a (single) piece of litmus
paper.

Computability Logic: A Formal Theory of Interaction 215

tests positive for test t”. Imagine a diagnostic system that can diagnose any
particular patient x, but needs some additional information. Specifically, it
needs to know x’s symptoms; plus, the system may require to have x taken
a test t that it selects dynamically in the course of a dialogue with the user
depending on what responses it received. The interactive task/query that such
a system is performing/solving can then be expressed by the formula

�x
(
�sSympt(x, s) ∧�t(Pos(x, t) � ¬Pos(x, t)

)
→�yHas(x, y)

)
. (2)

A possible scenario of playing the above game is the following. At the begin-
ning, the system waits until the user specifies a patient x to be diagnosed. We
can think of this stage as systems’s requesting the user to select a particular
(value of) x, remembering that the presence of�x automatically implies such
a request. After a patient x, say x = X , is selected, the system requests to
specify X ’s symptoms. Notice that our game rules make the system successful
if the user fails to provide this information, i.e., specify a (the true) value for
s in �sSympt(X, s). Once a response, say, s = S, is received, the system
selects a test t = T and asks the user to perform it on X , i.e., to choose the
true disjunct of Pos(X,T)�¬Pos(X,T). Finally, provided that the user gave
correct answers to all counterqueries (and if not, the user has lost), the system
makes a diagnostic decision, i.e., specifies a value Y for y in �yHas(X, y) for
which Has(X,Y) is true.

The presence of a single “copy” of �t(Pos(x, t) � ¬Pos(x, t)
)

in the an-
tecedent of (2) means that the system may request testing a given patient only
once. If n tests were potentially needed instead, this would be expressed by
taking the ∧-conjunction of n identical conjuncts �t(Pos(x, t) � ¬Pos(x, t)

)
.

And if the system potentially needed an unbounded number of tests, then we
would write ∧|�t(Pos(x, t)�¬Pos(x, t)

)
, thus further weakening (2): a system

that performs this weakened task is not as good as the one performing (2)
as it requires stronger external (user-provided) informational resources. Re-
placing the main quantifier �x by ∀x, on the other hand, would strengthen
(2), signifying the system’s ability to diagnose a patent purely on the basis
of his/her symptoms and test result without knowing who the patient really
is. However, if in its diagnostic decisions the system uses some additional in-
formation on patients such their medical histories stored in its knowledgebase
and hence needs to know the patient’s identity, �x cannot be upgraded to
∀x. Replacing �x by ∧x would be a yet another way to strengthen (2), sig-
nifying the system’s ability to diagnose all patients rather than any particular
one; obviously effects of at least the same strength would be achieved by just
prefixing (2) with ∧| or ◦| .

As we just mentioned system’s knowledgebase, let us make clear what
it means. Formally, this is a finite ∧-conjunction KB of formulas, which can
also be thought of as the (multi)set of its conjuncts. We call the elements of
this set the internal informational resources of the system. Intuitively, KB
represents all of the nonlogical knowledge available to the system, so that (with
a fixed built-in logic in mind) the strength of the former determines the query-

216 G. Japaridze

solving power of the latter. Conceptually, however, we do not think of KB as
a part of the system properly. The latter is just “pure”, logic-based problem-
solving software of universal utility that initially comes to the user without any
nonlogical knowledge whatsoever. Indeed, built-in nonlogical knowledge would
make it no longer universally applicable: Dana can be a female in the world
of one potential user while a male in the world of another user, and ∀x∀y(x×
y = y × x) can be false to a user who understands × as Cartesian rather
than number-theoretic product. It is the user who selects and maintains KB
for the system, putting into it all informational resources that (s)he believes
are relevant, correct and maintainable. Think of the formalism of CL as a
highly declarative programming language, and the process of creating KB as
programming in it.

The knowledgebase KB of the system may include atomic elementary for-
mulas expressing factual knowledge, such as Female(Dana), or nonatomic ele-
mentary formulas expressing general knowledge, such as ∀x(∃yFather(x, y) →
Male(x)

)
or ∀x∀y(x × (y + 1) = (x × y) + x

)
; it can also include nonele-

mentary formulas such as ◦|�x(
Female(x) � Male(x)

)
, expressing potential

knowledge of everyone’s gender, or ◦|�x�y(x2 = y), expressing ability to re-
peatedly compute the square function, or something more complex and more
interactive such as formula (2). With each resource R ∈KB is associated (if
not physically, at least conceptually) its provider—an agent that solves the
query R for the system, i.e., plays the game R against the system. Physically
the provider could be a computer program allocated to the system, or a net-
work server having the system as a client, or another knowledgebase system
to which the system has querying access, or even human personnel servicing
the system. For example, the provider for ◦|�x�yBloodpressure(x, y) would
probably be a team of nurses repeatedly performing the task of measuring
the blood pressure of a patient specified by the system and reporting the out-
come back to the system. Again, we do not think of providers as a part of the
system itself. The latter only sees what resources are available to it, without
knowing or caring about how the corresponding providers do their job; fur-
thermore, the system does not even care whether the providers really do their
job right. The system’s responsibility is only to correctly solve queries for the
user as long as none of the providers fail to do their job. Indeed, if the system
misdiagnoses a patient because a nurse-provider gave it wrong information
about that patient’s blood pressure, the hospital (ultimate user) is unlikely
to fire the system and demand refund from its vendor; more likely, it would
fire the nurse. Of course, when R is elementary, the provider has nothing to
do, and its successfully playing R against the system simply means that R is
true. Note that in the picture that we have just presented, the system plays
each game R ∈KB in the role of ⊥, so that, from the system’s perspective,
the game that it plays against the provider of R is ¬R rather than R.

The most typical internal informational resources, such as factual knowl-
edge or queries solved by computer programs, can be reused an arbitrary num-

Computability Logic: A Formal Theory of Interaction 217

ber of times and with unlimited branching capabilities, i.e., in the strong sense
captured by the operator ◦| , and thus they would be prefixed with ◦| as we did
with �x(

Female(x)�Male(x)
)

and�x�y(x2 = y). There was no point in ◦| -
prefixing Female(Dana), ∀x(∃yFather(x, y) → Male(x)

)
or ∀x∀y(x×(y+1) =

(x× y) + x
)

because every elementary game A is equivalent to ◦|A and hence
remains “recyclable” even without recurrence operators. As noted in Sect. 1,
there is no difference between ◦| and ∧| as long as “simple” resources such as
�x�y(x2 = y) are concerned. However, in some cases—say, when a resource
with a high degree of interactivity is supported by an unlimited number of
independent providers each of which however allows to run only one single
“session”—the weaker operator ∧| will have to be used instead of ◦| . Yet, some
of the internal informational resources could be essentially nonreusable. A
provider possessing a single item of disposable pregnancy test device would
apparently be able to support the resource �x(Pregnant(x) � ¬Pregnant(x)

)
but not ◦|�x(Pregnant(x) � ¬Pregnant(x)

)
and not even �x(Pregnant(x) �

¬Pregnant(x)
)
∧�x(Pregnant(x)�¬Pregnant(x)

)
. Most users, however, would

try to refrain from including this sort of a resource into KB but rather make
it a part (antecedent) of possible queries. Indeed, knowledgebases with non-
recyclable resources would tend to weaken from query to query and require
more careful maintainance/updates. The appeal of a knowledgebase entirely
consisting of ◦| ,∧| -resources is its absolute persistence. Whether recyclable or
not, all of the resources of KB can be used independently and in parallel.
This is exactly what allows us to identify KB with the ∧-conjunction of its
elements.

Assume KB = R1∧. . .∧Rn, and let us now try to visualize a system solving
a query F for the user. The designer would probably select an interface where
the user only sees the moves made by the system in F , and hence gets the
illusion that the system is just playing F . But in fact the game that the
system is really playing is KB→ F , i.e., ¬R1 ∨ . . . ∨ ¬Rn ∨ F . Indeed, the
system is not only interacting with the user in F , but, in parallel, also with
its providers against whom, as we already know, it plays ¬R1, . . . ,¬Rn. As
long as those providers do not fail to do their job, the system loses each of the
games ¬R1, . . . ,¬Rn. Then our semantics for ∨ implies that the system wins
its play over the “big game” ¬R1 ∨ . . . ∨ ¬Rn ∨ F if and only if it wins it in
the F component, i.e., successfully solves the query F .

Thus, the system’s ability to solve a query F reduces to its ability to
generate a solution to KB→ F , i.e., a reduction of F to KB. What would
give the system such an ability is built-in knowledge of CL, in particular, a
uniform-constructively sound axiomatization of it, by which we mean
a deductive system S (with effective proofs of its theorems) that satisfies the
uniform-constructive soundness clause of Theorem 5 with “S” in the role of
CL4. According to the uniform-constructive soundness property, it would be
sufficient for the system to find a proof of KB→ F , which would allow it

218 G. Japaridze

to (effectively) construct an HPM M and then run it on KB→ F with a
guaranteed success.

Notice that it is uniform-constructive soundness rather than simple sound-
ness of the the built-in (axiomatization of the) logic that allows the knowl-
edgebase system to function. Simple soundness just means that every provable
formula is valid. This is not sufficient for two reasons. One reason is that va-
lidity of a formula E only implies that, for every interpretation ∗, a solution
to the problem E∗ exists. It may be the case, however, that different interpre-
tations require different solutions, so that choosing the right solution requires
knowledge of the actual interpretation, i.e., the meaning, of the atoms of E.
Our assumption is that the system has no nonlogical knowledge which, in
more precise terms, means nothing but that it has no knowledge of the inter-
pretation ∗. Thus, a solution that the system generates for KB∗ → F ∗ should
be successful for any possible interpretation ∗. We call such an interpretation-
independent solution, an HPM M that wins E∗ for every interpretation ∗,
a uniform solution to E, and correspondingly call a formula uniformly
valid iff it has a uniform solution. The uniform-constructive soundness clause
asserts that every provable formula is not only valid, but also uniformly valid.
Going back to the example with which this section started, the reason why
p�¬p fails in the context of computability theory is that it is not valid, while
the reason for the failure of this principle in the context of knowledgebase
systems is that it is not uniformly valid: its solution, even if it existed for each
interpretation ∗, generally would depend on whether p∗ is true or false, and
the system would be unable to figure out the truth status of p∗ unless this
information was explicitly or implicitly contained in KB. Thus, for knowledge-
base systems the primary semantical concept of interest is uniform validity
rather than validity. But does having two different concepts of validity mean
that we will have to deal with two different logics? Not really. According to
Conjecture 26.2 of [6], a formula of the language of CL is valid if and only if
it is uniformly valid. Our Theorem 5 with its uniform-constructive soundness
clause signifies a successful verification of this conjecture for CL4-sentences:
such a sentence is valid iff it is uniformly valid iff it is provable in CL4. There
are good reasons to expect that this nice extensional equivalence between va-
lidity and uniform validity continues to hold for all reasonable extensions of
the language of CL4 and, in particular, its extension with ◦| , ◦| , ∧| , ∨| ,∧,∨.

The other reason why simple soundness of the built-in logic would not be
sufficient for a knowledgebase system to function—even if every provable for-
mula was known to be uniformly valid—is the following. With simple sound-
ness, after finding a proof of E, even though the system would know that a
solution to E∗ exists, it might have no way to actually find such a solution.
On the other hand, uniform-constructive soundness guarantees that a (uni-
form) solution to every provable formula not only exists, but can be effectively
extracted from a proof.

As for completeness of the built-in logic—unlike uniform-constructive
soundness—it is a desirable but not necessary condition. So far a complete

Computability Logic: A Formal Theory of Interaction 219

axiomatization has been found only for the fragment of CL limited to the
language of CL4. We hope that the future will bring completeness results for
more expressive fragments as well. But even if not, we can still certainly suc-
ceed in finding ever stronger axiomatizations that are uniform-constructively
sound even if not necessarily complete. Extending CL4 with some straight-
forward rules such as the ones that allow to replace ◦| F by F ∧◦| F and ∧| F by
F ∧∧| F , the rules F .→ ◦| F , F .→ ∧|F , etc. would already immensely strengthen
the logic. It should also be remembered that, when it comes to practical ap-
plications in the proper sense, the logic that will be used is likely to be far
from complete anyway. Say, the popular classical-logic-based systems and pro-
gramming languages are incomplete, and the reason is not that a complete
axiomatization for classical logic is not known, but rather the unfortunate fact
of life that often efficiency only comes at the expense of completeness.

But even CL4, as it is now, is already very powerful. Why don’t we see
a simple example to feel the flavor of it as a query-solving logic. Let Acid(x)
mean “solution x contains acid”, and Red(x) mean “litmus paper turns red
in solution x”. Assume that the knowledgebase KB of a CL4-based system
contains ∀x(

Red(x) → Acid(x)
)
, ∀x(

Acid(x) → Red(x)
)

and �x(
Red(x) �

¬Red(x)
)
, accounting for knowledge of the fact that a solution contains acid

iff the litmus paper turns red in it, and for availability of a provider who
possesses a piece of litmus paper that it can dip into any solution and report
the paper’s color to the system. Then the system can solve the acidity query
�x(

Acid(x) � ¬Acid(x)
)
. This follows from the fact—left as an exercise for

the reader to verify—that CL4 - KB→�x(
Acid(x) � ¬Acid(x)

)
.

An implicit assumption underlying our discussions so far was that an in-
terpretation is fixed in a context and does not change its values. Making
just one more step and departing from this unchanging-interpretation as-
sumption opens significantly wider application areas for CL, in particular,
the more general area of planning and physical-informational (vs. just in-
formational) resource management systems. We call such (CL-based) sys-
tems resourcebase systems. In this new context, interpretations in the
old, unchanging sense can be renamed into situations, with the term “in-
terpretation” reserved for the more general concept of possibly dynamic map-
ping from atoms to ICPs, mapping whose values may keep changing from
situation to situation, with situations intuitively being nothing but “snap-
shots” of interpretations. Dynamic interpretations are indeed the common
case in real world. Perhaps Dana is not pregnant in a given situation, so that
(Pregnant(Dana))∗ = ⊥. But it may happen that the situation changes so
that ∗ reinterprets Pregnant(Dana) into ". Furthermore, probably Dana has
full control over whether she gets pregnant or not. This means that she can
successfully maintain the resource Pregnant(Dana)�¬Pregnant(Dana) which,
unlike Pregnant(Dana)� ¬Pregnant(Dana), generally no agent would be able
to maintain if the situation was fixed and unmanageable. Thus, in the con-
text of resourcebase systems, successful game-playing no longer means just

220 G. Japaridze

correctly answering questions. It may involve performing physical tasks, i.e.,
controlling/managing situations. Think of the task performed by a ballistic
missile. With t ranging over all reachable targets, this task can be expressed
by �tDestroyed(t). The user makes a move by specifying a target t = T . This
amounts to commanding the missile to destroy T . Provided that the latter
indeed successfully performs its task, the user’s command will be satisfied: the
situation, in which (the interpretation of) Destroyed(T) was probably false,
will change and Destroyed(T) become true. The same example demonstrates
the necessity for a planning logic to be resource-conscious. With only one
missile available as a resource, an agent would be able to destroy any one
target but not two. This is accounted for by the fact that �tDestroyed(t) →
Destroyed(x) is valid while �tDestroyed(t) → Destroyed(x) ∧Destroyed(y) is
not.

The earlier-discussed CL-based knowledgebase systems solve problems in a
uniform, interpretation-independent way. This means that whether the inter-
pretation is unchanging or dynamic is technically irrelevant for them, so that
exactly the same systems, without any modifications whatsoever, can be used
for solving planning problems (instead of just solving queries) such as how
to destroy target T or how to make Dana pregnant, with their knowledge-
bases (KB)—renamed into resourcebases (RB)—now containing physical,
situation-managing resources such as�tDestroyed(t) along with old-fashioned
informational resources. See Sect. 26 of [6] for an illustrative example of a
planning problem solved with CL. CL and especially extensions of its present
version with certain new game operators, such as sequential versions of con-
junction/disjunction, quantifiers and recurrence operators,7 might have good
potential as a new logical paradigm for AI planning systems.

The fact that CL is a conservative extension of classical logic also makes it
a reasonable and appealing alternative to the latter in its most traditional and
7 Here is an informal outline of one of the—perhaps what could be called oblivious—

versions of sequential operators. The sequential conjunction A�B is a game
that starts and proceeds as a play of A; it will also end as an ordinary play
of A unless, at some point, ⊥ makes a special “switch” move; to this move—
it is OK if with a delay—� should respond with an “acknowledgment” move
(if such a response is never made, � loses), after which A is abandoned, and
the play continues/restarts as a play of B without the possibility to go back
to A. The sequential universal quantification �xA(x) is then defined as
A(1)�A(2)�A(3)� . . ., and the sequential recurrence -∧...

..A as A�A�A� . . . In
both cases ⊥ is considered the loser if it makes a switch move infinitely many
times. As this can be understood, the dual operators: sequential disjunction
�, sequential existential quantifier � and sequential corecurrence -∨

..... will
be defined in a symmetric way with the roles of the two players interchanged. Note
that, as a resource, -∧...

..A is the weakest among -∧...
..A, ∧...

..A, ◦.....A: just like ∧...
..A and ◦.....A, -∧...

..A
allows the user to restart A an arbitrary number of times; however, unlike the
case with ∧...

..A and ◦.....A, only one session of A can be run at a time, and restarting A
signifies giving up the previous run(s) of it. See Sect. 2 of [10] for a more detailed
discussion of how the three sorts of recurrence operations compare.

Computability Logic: A Formal Theory of Interaction 221

unchallenged application areas. In particular, it makes perfect sense to base
applied theories, such as, say, Peano arithmetic (axiomatic number theory),
on CL instead of classical logic. Due to conservativity, no old information
would be lost or weakened this way. On the other hand, we would get by an
order of magnitude more expressive, constructive and computationally mean-
ingful theories than their classical-logic-based versions. Let us see a little more
precisely what we mean by a CL-based applied theory. For simplicity, we re-
strict our considerations to the cases when the set AX of nonlogical axioms
of the applied theory is finite. As we did with KB, we identify AX with the
∧-conjunction of its elements. From (the problem represented by) AX—or,
equivalently, each conjunct of it—we require to be computable in our sense,
i.e., come with an HPM that solves it. So, notice, all of the axioms of the old,
classical-logic-based version of the theory could be automatically included into
the new set AX because they represent true and hence computable elementary
problems. Many of those old axioms can be constructivized by, say, replac-
ing blind or parallel operators with their choice equivalents. For example, we
would want to rewrite the axiom ∀x∃y(y = x + 1) of arithmetic as the more
informative �x�y(y = x + 1). And, of course, to the old axioms or their
constructivized versions could be added some essentially new axioms express-
ing basic computability principles specific to (the particular interpretation
underlying) the theory. Provability (theoremhood) of a formula F in such a
theory we understand as provability of the formula AX→ F in the underly-
ing axiomatization of CL which, as in the case of knowledgebase systems, is
assumed to be uniform-constructively sound. The rule of modus ponens has
been shown in [6] (Proposition 21.3) to preserve computability in the following
uniform-constructive sense:

Theorem 6. There is an effective function f : {HPMs}×{HPMs} → {HPMs}
such that, for any HPMs M,N and ICPs A,B, if M solves A and N solves
A→ B, then f(M,N) solves B.

This theorem, together with our assumptions that AX is computable and that
the underlying logic is uniform-constructively sound, immediately implies that
the problem represented by any theorem F of the applied theory is computable
and that, furthermore, a solution to such a problem can be effectively con-
structed from a proof of F . So, for example, once a formula �x�yp(x, y)
has been proven, we would know that, for every x, a y with p(x, y) not only
exists, but can be algorithmically found; furthermore, we would be able to
actually construct such an algorithm. Similarly, a reduction—in the sense
of Definition 7(3)—of the acceptance problem to the halting problem would
automatically come with a proof of �x�y(Halts(x, y) � ¬Halts(x, y)

)
→

�x�y(Accepts(x, y) � ¬Accepts(x, y)
)

in such a theory. Does not this look
like exactly what the constructivists have been calling for?..

222 G. Japaridze

* * *

As a conclusive remark, the author wants to point out that the story told
in this paper was only about the tip of the iceberg called CL. Even though
the phrase “the language of CL” was used in some semiformal contexts, such
a language has no official boundaries and, depending on particular needs or
taste, remains open to various sorts of interesting new operators. The general
framework of CL is also ready to accommodate any reasonable weakening
modifications of its absolute-strength computation model HPM,8 thus keeping
a way open for studying logics of sub-Turing computability and developing a
systematic theory of interactive complexity.

References

1. J. van Benthem. Logic in Games. Lecture Notes, Institute for Logic, Language
and Computation (ILLC), University of Amsterdam, 2001.

2. A. Blass. A game semantics for linear logic. Ann Pure Appl Logic 56:183-220,
1992.

3. J. Girard. Linear logic. Theoret Comp Sci 50:1-102, 1987.
4. D. Goldin. Persistent Turing machines as a model of interactive computation.

Lecture Notes in Comp Sci 1762:116-135, 2000.
5. D. Goldin, S. Smolka, P. Attie, E. Sonderegger. Turing machines, transition

systems and interaction. Information and Computation 194:101-128, 2004.
6. G. Japaridze. Introduction to computability logic. Ann Pure Appl Logic 123:1-

99, 2003.
7. G. Japaridze. Propositional computability logic I-II. ACM Transactions on

Computational Logic 7:202-262, 2006.
8. G. Japaridze. From truth to computability I. Theoret Comp Sci 357:100-135,

2006.

8 Among the most natural modifications of this sort might be depriving the HPM
of its infinite work tape, leaving in its place just a write-only buffer where the ma-
chine constructs its moves. In such a modification the exact type of read access to
the run and valuation tapes becomes relevant, and a reasonable restriction would
apparently be to allow—perhaps now multiple—read heads to move only in one
direction. An approach favoring this sort of machines would try to model Tur-
ing (unlimited) or sub-Turing (limited) computational resources such as memory,
time, etc. as games, and then understand computing a problem A with resources
represented by R as computing R → A, thus making explicit not only trans-
Turing (incomputable) resources as we have been doing in this paper, but also all
of the Turing/sub-Turing resources needed or allowed for computing A, the re-
sources that the ordinary HPM, PTM or Turing machine models take for granted.
So, with T representing the infinite read/write tape as a computational resource,
computability of A in the old sense would mean nothing but computability of
T → A in the new sense: having T in the antecedent would amount to having
infinite memory, only this time provided externally (by the environment) via the
run tape rather than internally via the work tape.

Computability Logic: A Formal Theory of Interaction 223

9. G. Japaridze. From truth to computability II.
http://arxiv.org/abs/cs.LO/0501031, 2005.

10. G. Japaridze. Intuitionistic computability logic. Acta Cybernetica (to appear).
11. K. Konolige. On the relation between default and autoepistemic logic. In: Pro-

ceedings of the International Joint Conference on Artificial Intelligence. Detroit,
MI, 1989.

12. R. Milner. Elements of interaction. Communications of the ACM 36:79-89, 1993.
13. R. Moore. A formal theory of knowledge and action. In: Hobbs J, Moore R

(eds.) Formal Theories of Commonsense Worlds. Ablex, Norwood, N.J., 1985.
14. M. Sipser. Introduction to the Theory of Computation, 2nd Edition. Thomson

Course Technology, Boston, MA, 2006.
15. A. Turing. On Computable numbers with an application to the entshei-

dungsproblem. Proc London Math Soc 2.42:230-265, 1936.
16. P. Wegner. Interactive foundations of computing. Theoret Comp Sci 192:315-

351, 1998.

Part III

Applications

Human–Computer Interaction

Michel Beaudouin-Lafon

Université Paris-Sud, Orsay, France

1 Introduction

Human–computer interaction (HCI) is a multidisciplinary field “concerned
with the design, evaluation and implementation of interactive computing sys-
tems for human use and with the study of major phenomena surrounding
them” [24]. A human–computer system1 is typically made up of two compo-
nents: the user interface and the functional core. The user interface captures
user input and turns it into calls to the functional core, which typically imple-
ments the algorithmic component of the system. The user interface also turns
the results of its calls to the functional core into output to be presented to the
user. A human–computer system therefore interacts with its user(s) through
its user interface.

Human–computer systems are arguably the first truly interactive systems.
In 1963, Ivan Sutherland’s SketchPad [48] was the first system to use pen input
on a CRT display, pioneering direct manipulation techniques that are still in
use today. Forty years later, millions of people interact with graphical user
interfaces on a daily basis, to the point where computers are often reduced to
their input-output devices and applications to their user interface.

Yet human–computer systems are still created at great cost with algorith-
mic approaches. More than a decade ago, a study showed that on average
50% of the development cost of human–computer systems is spent on the user
interface [37]. One of the main reasons was the lack of proper tools to de-
velop such interfaces, their growing complexity and the inability to test them
thoroughly. There is no reason to believe that the situation has changed sub-
stantially since then because the tools in use today are based on the same
concepts as twenty years ago.

1 Since the term “interactive system” that is normally used in HCI has a more gen-
eral meaning in this book, this chapter uses the term “human–computer system”
instead.

228 M. Beaudouin-Lafon

User interfaces are notoriously difficult to program, debug and maintain
because they exacerbate many aspects of interactive systems. For example,
traditional interactive systems, i.e., systems that interact with other com-
puter systems, often rely on well-specified protocols so that it is fairly easy to
anticipate future possible inputs. Human–computer systems, for they have a
human in the loop, cannot rely on such strict protocols. In order to give the
user a sense of control, they must be prepared to receive virtually any input at
any moment, and react to it in a way that will be understandable to the user.
Therefore the state space of a human–computer system is extremely large.

This chapter evaluates some unique aspects of human–computer systems
with respect to the five characteristics of interactive systems outlined in the
preface of this book:

• Nonalgorithmic computational problem: human–computer systems are of-
ten created by turning an algorithmic system into an interactive one in
order to give the users more control over the process; at the same time,
many human–computer systems are not meant to solve a particular al-
gorithmic problem but instead to extend human capabilities in order to
address more open-ended situations.

• Dynamic interleaving of user input and system output streams: human–
computer systems feature intricate dependencies between input and output
streams, with tight timing constraints and large abstraction mismatches
between user, streams and computer.

• Dependency on the environment : the evolution towards novel forms of
interaction, such as ubiquitous and pervasive computing, mixed and aug-
mented reality, and tangible interfaces, extends the environment of human–
computer systems to the physical world and blurs the distinction between
physical and digital artifacts.

• Parallel “computation” of user and computer : the unique characteristics
of human users as well as the distributed nature of many interfaces require
multiple threads and various levels of parallelism and synchronization be-
tween user and computer.

• Noncomputability of the environment : humans are inherently noncom-
putable, but the learning and adaptation capabilities of users and comput-
ers can be leveraged to create more powerful human–computer systems.

The chapter covers a wide range of user interface styles and techniques,
from traditional graphical user interfaces to advanced research, and considers
the full life-cycle of human–computer systems from design to evaluation.

Human–Computer Interaction 229

2 Computational Problem

Models of interaction capture the notion of performing a task or pro-
viding a service, rather than algorithmically producing outputs from
inputs.2

This section shows that the type of problems addressed by human–computer
systems has shifted from purely computational problems to open-ended prob-
lem solving. Nowadays, human–computer systems help users incrementally
construct solutions to evolving problems rather than producing definitive an-
swers to well-formed questions. Douglas Engelbart was probably the first to
clearly articulate the vision that computers can “augment human intellect”
and help solve problems that humans alone and computers alone could not
solve [14]. For this vision to take shape, computer systems should be evaluated
in terms of how well they support the creative and problem-solving process,
not in terms of their pure algorithmic power.

Multiple approaches exist to support problem-solving with computer sys-
tems. The style of interaction may involve treating the computer as a tool
that augments human capabilities, as a partner to which one delegates tasks,
or as a medium to communicate with other users and solve problems collabo-
ratively. The rest of this section describes these three interaction paradigms,
presents a generic conceptual model that emphasizes the interactive nature of
human–computer systems, and introduces cognitive dimensions to help un-
derstand the interactive nature of users’ activities.

2.1 Interaction Paradigms

Early user interfaces were created to allow users to specify input values for
algorithms, e.g., for ballistics calculations in the very early days of computer
science. Even nowadays, some user interfaces are created solely for the purpose
of specifying inputs and displaying the output of an algorithm, for example in
biology for analyzing DNA. Users of these systems are nevertheless invariably
frustrated by the limited amount of control they have over such user interfaces.
They want to change parameters of the algorithm while it runs, or see its state
or a partial output before it is finished. Adding such control over input and
output is typical of turning an algorithmic software into an interactive one
and drives the design of many human–computer systems.

The power of spreadsheet programs, for example, lies in their ability to
embody a computation in a flexible environment where users can easily change
input values as well as formulas and display correlations between input and
output through plots and graphs. At some level, changing a cell in a spread-
sheet just “re-runs the program”, and is therefore algorithmic. At a higher
level though, using a spreadsheet means changing cells to test several hy-
potheses, editing formulas to try variants of the computation, designing plots
2 The quotes at the beginning of each section are from the preface of the book.

230 M. Beaudouin-Lafon

and graphs that give better insights into the problem under scrutiny. At this
level, the spreadsheet program is used interactively, not algorithmically.

While spreadsheets are an example of tools that empower users by giving
them direct control over a complex calculation, other styles of interaction exist
where the roles of users and computers differ. The various interaction styles
can be classified into three main interaction paradigms, as follows:

1. First-person interfaces are systems where the user directly engages with
the objects of interest and uses tools and commands to manipulate these
objects directly. In graphical user interfaces, the objects of interest refer
both to the computational artifacts that exist inside the system and their
representation on the screen. For example, in a desktop interfaces, the files
and folders of a file system are represented by icons and windows on the
screen. The user can interact with the computational artifacts through
their representation using a pointing device, typically a mouse, and in-
teraction objects such as menus and dialogue boxes. The system updates
the graphical representation in response to its interpretation of the user
actions, maintaining the consistency between the displayed state and the
internal state of the system. Direct manipulation [44] and instrumental
interaction [3, 5] are interaction models that give rules and guidelines for
the design of such interfaces.

2. Second-person interfaces are based on the user delegating tasks to the
system and the system reporting back on the progress of these tasks. The
system is seen as a partner, and can only be effective if it has a good
representation of the user and the user’s tasks. This usually requires ar-
tificial intelligence techniques such as machine learning to adapt to the
user and users’ tasks dynamically (see also Sect. 6). Agent-based systems
[34] fall into this category, as do most approaches based on natural lan-
guage interaction, whether written or spoken, and avatars. Because of the
sequential nature of interaction in these systems, they are often called
dialogue systems.

3. Third-person interfaces are systems that mediate the communication
among humans, i.e., users interact with the system in order to commu-
nicate with each other. E-mail, instant messaging and video-conferencing
are examples of third-person interfaces. Shared whiteboards, and more
generally shared editors, where users can interact simultaneously on the
same objects, also fall into this category. The field of computer-supported
cooperative work (CSCW) studies such systems [6].

All three paradigms emphasize the use of computers as a means to achieve
a task, not an end. This is often misunderstood by computer scientists and
software designers for whom the use of a computer is often an end rather than a
means. The use of computers for human–human communication (third-person
interfaces) clearly emphasizes this distinction: When exchanging email or in-
stant messages or when collectively editing a shared document, the computer
acts as a medium for communication, not a computational engine. First- and

Human–Computer Interaction 231

second-person interfaces are also widely used for open-ended tasks, in par-
ticular creative tasks such as text-editing, music composition, graphics and
video editing (SketchPad [48] was arguably the first computer-aided design
tool). With creative activities, the “problem” to be solved is not fully defined
in the user’s mind nor is the test to decide whether the problem is solved. Yet
computers have been instrumental in the development of creative activities in
many areas, from sound synthesis to special visual effects, from typography
to music composition, from architecture to product design.

The rest of this chapter focuses mostly on first-person interfaces, primar-
ily because they are the most widespread today. Nevertheless most of the
arguments developed in the chapter apply to all three types of interfaces.

2.2 Conceptual Model

Figure 1 shows a generic conceptual model of a human–computer system. The
user issues commands and receives feedback from the system to show that they
are properly entered. The commands are then transformed into operations
that modify the internal objects of the system and produces responses that
are transmitted back to the user, typically by updating the screen display. For
example, when the user drags the icon of a file towards the trash (command),
the feedback is the ghost image of the icon being dragged and the highlighting
of potential targets for the drag. Dragging an icon to the trash is interpreted
as deleting the file represented by this icon. If the operation succeeds, the icon
disappears from the screen and the trash looks fuller.

Commands

Feedback

Responses

Operations Objects

Fig. 1. Conceptual model of human–computer system

Feedback is an essential aspect of user interfaces. Without feedback of
the keystrokes, one could not enter text reliably; without feedback of an icon
being dragged, one could not use direct manipulation efficiently. As we will see
in the next section, feedback requires a tight interleaving of user actions and
system responses. Because of this tight coupling, a human–computer system is
not purely algorithmic: user actions determine the feedback, and the feedback
guides the next actions of the user. Since the system cannot know what the
user has in mind, it cannot anticipate the user’s next moves.

232 M. Beaudouin-Lafon

Moreover, many user interfaces, including graphical user interfaces, must
maintain a permanent and up-to-date representation of the objects of interest.
This representation is updated in response to user commands as well as when
the state of the objects changes for other reasons. For example, an interface
that displays the state of the file system must update its display when files
are created and deleted, whether these operations are carried out by the user
of the system or by a third party. Shared editors also exhibit this behavior:
when another user edits the document, changes must be propagated to all
other users. In practice, a standard way to program such interfaces is to use
an Observer design pattern [18] that tracks changes to the objects and updates
the display. This often requires modifying the software that implements the
objects in order to provide proper notification of state changes, which is typical
of turning an algorithmic software into an interactive one.

2.3 Cognitive Dimensions

Thomas Green [21, 22] has introduced a framework called cognitive dimen-
sions that helps evaluate the design of information artifacts, including human–
computer systems. This framework focuses on the representations used to
depict the manipulated objects, called notations, and their structure. It intro-
duces the following classification of users’ activities [8]:

• Incrementation: adding further information to a notation without altering
the structure in any way, e.g., adding a new formula to a spreadsheet;

• Modification: changing an existing notational structure, possibly without
adding new content, e.g., changing a spreadsheet for use with a different
problem;

• Transcription: copying content from one structure or notation to another
notation, e.g., reading an equation out of a textbook, and converting it
into a spreadsheet formula;

• Search: finding information by navigating through the notational struc-
ture, e.g., finding a specific value in a spreadsheet;

• Exploratory design: combining incrementation and modification, with the
further characteristic that the desired end state is not known in advance,
e.g., programming a spreadsheet on the fly or “hacking”.

Different types of activities may involve using the same functions of the
system, however each activity may raise specific requirements so that differ-
ent commands are needed for each function. For example, when creating a
presentation with, e.g., Microsoft Powerpoint, incrementation consists of cre-
ating new slides or adding content to existing slides, whereas transcription
consists of copying content from an external source. The latter is facilitated
by the ability to copy-paste text and diagrams across applications, while the
former requires editing commands to create texts and diagrams within the
application. Similarly, while modification and exploratory design both involve
changing the design of the slides and their order, they may require different

Human–Computer Interaction 233

commands. Modification is typically used to create a presentation from an
existing one and typically begins by saving the old file under a new name. Ex-
ploratory design, on the other hand, consists in exploring multiple alternatives
and would be much facilitated if the user could bookmark and recall these al-
ternatives rather than having to save them to different files. Finally, search
can take many forms, from visual search of the thumbnails (performed by the
user) to textual search through the outline of the presentation (performed by
the system).

The spreadsheet and presentation software examples show that users are
not primarily interested in having the system algorithmically produce defini-
tive answers to well-formed questions, but rather that they use the system to
incrementally construct solutions to evolving problems. In fact, it is precisely
when problems are ill-defined that human–computer systems are needed: if
the problem were well-defined, an algorithmic approach with no human in the
loop would suffice.

Green’s cognitive dimensions help better understand the problems users
face when working with interactive software. While there are more than a
dozen dimensions in the framework, we illustrate three of them here.

The cognitive dimension called premature commitment describes situations
where the system imposes an order on the actions to be taken by users that
forces them to make decisions ahead of time. Premature commitment is very
frequent in computer systems and shows evidence of algorithmic behavior,
i.e., situations where it is more convenient (for the system) to know all input
at the beginning of the computation, while an interactive behavior would
be preferable. For example, when saving a file for the first time, the system
requires the user to enter the name of the file even though the user may not
know the exact name he wants to use yet. Moreover, the user must commit
his choice before knowing whether it creates a conflict with another file.

Another cognitive dimension is viscosity or resistance to change, i.e., how
hard it is to make changes to previous work. For example, many text editors
cannot change all bold text to italics in one command: the user has to go
through the text by hand. The use of text and paragraph styles reduces this
viscosity, however it still shows up when trying to edit a large document
made of multiple files, where changes to a style have to be duplicated in each
file. The combination of premature commitment and viscosity is particularly
problematic: not only is the user asked to make a choice too early (premature
commitment), but the cost of changing his mind is high (viscosity).

One last example of cognitive dimension is progressive evaluation, which
describes whether it is possible to stop in the middle of a process and see
the current result. This is again a case where the algorithmic approach causes
problems since an algorithm is typically not interruptible and only gives its
answer at the end of execution. Searching is a good example where progressive
evaluation is useful: rather than having to wait until a whole database has
been looked up, the system should present the matches as they are found.
This gives the user a sense of progress, and if the right match shows up early,

234 M. Beaudouin-Lafon

the user can interrupt the search. Another example is downloading a large
file, where one would like to see what is being downloaded progressively in
order to cancel the operation early if needed. Note that progress indicators
(see Sect. 5.1) are a poor form of progressive evaluation.

The above three dimensions alone help better understand the mismatch
between the capabilities of humans and computers, which is the major chal-
lenge for designers of human–computer systems. They also emphasize the
users’ need to keep options open, to make complex changes simply and to
control the computational processes tightly.

In summary, human–computer systems are interactive by nature. Whether
the system is used as a tool, as an agent or as a medium, its role is to com-
plement, extend and augment the capabilities of the human users rather than
give definite answers to well-defined problems.

3 Dynamic Streams

Interactions may consist of interleaved inputs and outputs modeled by
dynamic streams; future input values can depend on past output values.

Human–computer systems are characterized by three types of dependencies:
between input and output, between system state and interface, and between
system and environment. After describing these dependencies, this section an-
alyzes the mismatch between the low-level abstractions of input/output events
and the high-level abstractions manipulated by both the user and computer.
Finally it looks at current approaches to tackle these problems: event-based
programming and formal models based on automata.

3.1 Three Types of Dependencies

Human–computer systems exhibit both dependencies between input and out-
put streams: between later values of input streams and earlier values of output
streams on the one hand, and between earlier values of input streams and later
values of output streams on the other hand. The former corresponds to the
fact that user actions depend on earlier system output. In graphical user inter-
faces, input commands such as clicking with the mouse are always interpreted
relatively to the current display of the system as produced by earlier out-
puts. Such dependencies can be short-term as well as long-term: short-term
dependencies correspond to the feedback provided by the system while the
user specifies a command; long-term dependencies occur at the higher level
of planning goals and subgoals and adjusting one’s actions to the result of
previous ones.

The other type of dependency, from earlier input to later output, is cap-
tured by the side effects that input actions have on the state of the interface,

Human–Computer Interaction 235

i.e., its internal objects. These are a special case of a more general form of
dependency: the consistency between the internal system state of the system
and the state displayed by the interface. These dependencies are the raison
d’être of user interfaces, since users expect to see the effects of their actions
and trust what they see. A good user interface will go out of its way to make
these dependencies perceivable by the users, e.g., through animation. The fact
that a dependency exists, i.e., that there is a causal path in the program, is
not sufficient to make sure that it will be perceived and interpreted properly
by the user. For example, minimizing a window may close it and display a win-
dow icon or button in a task bar. Without an animation, the user is unlikely
to understand which icon or button now represents the window. This is worse
when the state change is not initiated by the user. For example, if a window
is opened on a remote file server and the server shuts down, a notification or
animation must give the user a chance to understand what happened. Timing
constraints are critical in that matter (see also Sect. 5.1): an animation will
go unnoticed if it is too short and will get boring if it is too long; time delays
between user action and system reaction must be bounded in order to perceive
causality. In fact the perceived responsiveness of a user interface critically de-
pends on properly accounting for these dependencies and the corresponding
timing constraints.

In addition these side effects of user actions often need to be persistent. For
example, a desktop interface must remember the positions of the icons on the
display so that the next time the system is run, the icons will be at the same
locations. This often creates problems with legacy applications where objects
cannot be extended to include the necessary extra information to ensure full
persistence. For example, the Unix file system cannot store icon locations as
part of the i-nodes that represent the file system on disk, while the Macintosh
file system can. As a result, desktop interfaces that run on top of Unix store
icon locations in a separate database, which causes problems when files are
manipulated by applications that are not aware of this database. This leads
to the third type of dependency, between the system and its environment.

Human–computer systems often involve a variety of input and output
streams which may have very diverse characteristics. For example, mice and
keyboards provide low-bandwidth input, but sound and video input require
much higher bandwidth. Video output to a display requires so much band-
width that dedicated graphics hardware has become part of most computers
in order to off-load the main CPU. With multimodal interaction [40] and
ubiquitous computing [52, 53], the number and diversity of input and output
streams keeps growing, and so do the dependencies among those streams.

3.2 Abstraction Mismatch

A common characteristic of the streams produced by a computer’s input and
output devices is their low level of abstraction: a mouse provides relative
motion and button click events, a microphone provides raw sound samples,

236 M. Beaudouin-Lafon

a video camera provides images made of pixels; for output, graphics cards
implement primitives such as line segments, filled polygons and bitmap im-
ages. Even though the human and the computer both work at high levels of
abstraction, the channels that connect them carry low-level information.

On the human side, Norman’s action theory (see Sect. 6.1) refers to the gulf
of execution and the gulf of evaluation to describe this abstraction mismatch
[9]. The gulf of execution is the distance between the abstract desired goal of
the task at hand and the actual physical actions required to (try to) reach this
goal; the gulf of evaluation is the distance between the state of the system as
perceived from its display and the user interpretation of whether the goal has
been achieved.

A major goal of designing user interfaces is to reduce both gulfs. Well-
designed metaphors, such as the well-known desktop metaphor, can be very
effective in that matter: deleting files by dragging them to the trash requires
less cognitive effort than remembering the name and syntax of a command-
line interface. The dependencies between output streams and input streams
are more explicit in graphical user interfaces than in many second-person in-
terfaces because the commands directly refer, through pointing, to objects
created by former system output. This reduces the gulf of execution by sup-
porting more intuitive commands, such as moving objects by dragging them
with the mouse. Conversely, perceiving the dependencies between the system’s
input and output streams, i.e., between user actions and system response,
helps to reduce the gulf of evaluation. For example, seeing an icon disappear
after it has been dragged to the trash makes it easy to understand what hap-
pened. With a Unix shell, the gulf of evaluation is larger: the response received
for the file deletion command (rm myfile) is a simple prompt, which must
be interpreted as “the command was executed successfully and therefore the
file was deleted”. Indeed, even advanced users often type an ls command (list
files) after deleting a file to make sure it is really gone.

The abstraction mismatch exists on the computer side as well. Low-level
input events must be interpreted into commands and operations, while feed-
back and responses must be translated into low-level display primitives. De-
pendencies among input streams must be extracted, e.g., clicking a mouse
button while the Shift key is depressed, dependencies between input streams
and output streams must be made perceivable by the user, e.g., highlighting
folder icons while a file icon is being dragged over them, and dependencies
between output streams must be enforced, e.g., images and sounds must be
synchronized during an animation.

Extracting and creating these dependencies is especially difficult because
the system must essentially behave as a real-time system: it must react to
input events in bounded time. The time constants of the human perception
systems range from a few milliseconds to a few hundred milliseconds. Although
this may seem long when compared with the speed of today’s computers,
many applications do not match these constraints because of the abstraction
mismatch. For example, browsing through a video or scrolling through a large

Human–Computer Interaction 237

collection of photos or a long document is rarely smooth unless explicit steps
are taken to trade display quality for speed [49]. Indeed, there is no need to
display an image at full resolution if the user is browsing but as soon as the
user stops, the image must be refined to show all its details. Moreover, humans
are very sensitive to jitter, i.e., to variations in response time over time, so
that a “best effort” approach is not always the most appropriate.

3.3 Event-Based Programming

Even though the various types of dependencies between input and output
streams in human–computer systems are well understood, the tools used to
program user interfaces are still very primitive. The vast majority of user
interfaces are organized around an event loop [39]: Input drivers append events
to a global event queue every time the state of an input device changes. The
application is supposed to retrieve and handle events as fast as it can. This
is achieved by dispatching events to event handlers according to the event
type, the event target (typically the object under the cursor) and the global
state of the interface. The logic for this dispatching is often complex, hard to
understand and hard to maintain: the code that handles a single interaction,
such as a drag and drop, is scattered among several event handlers that have
to communicate through global variables. As pointed out by Myers [35], the
application becomes a “spaghetti of callbacks”.

Many user interface toolkits such as GTk, Windows or the Macintosh
toolbox are based on variants of the event-loop approach. They do provide an
abstraction, called the widget, that encapsulates into a single object a presen-
tation (how the widget looks on-screen), a behavior (how it reacts to input
events) and an application interface (how it notifies the rest of the applica-
tion of its state changes). Widgets work relatively well for simple interactions
such as buttons, menus and scrollbars where interaction occurs within the
same object. But widgets do not work for techniques such as drag-and-drop
or direct-manipulation of application objects (icons, drawings, images, etc.)
where interaction involves multiple objects.

The consequences on the quality of user interfaces are easy to see. For
example, many applications use dialogue boxes that are modal, i.e., that force
the user to terminate the interaction with the dialogue box before continuing
or doing something else (an example of Green’s premature commitment, see
Sect. 2.3). In general, there is no good reason for the dialogue box to be modal.
A file-saving dialogue box could stay open until the user decides under which
name to save the file without preventing him or her from editing the file. The
major reason why programmers use modal dialogue boxes is because it makes
programming easier with the tools they have. If the file-saving dialogue were
nonmodal, the programmer would have to manage its interaction with the rest
of the system, e.g., handling the situation where the user issues the save-file
command again (should it open a second dialogue box?) or reflecting changes
in the file system that occur while the dialogue box is open. None of these

238 M. Beaudouin-Lafon

problems are inherently difficult to solve but without proper tools, they do
not justify, in the eyes of the programmer, the extra effort when compared
with making the dialogue box modal.

Event-based programming is also at the root of the Model-View-Controler
(MVC) pattern originally developed for the Smalltalk environment [27] and
widely used in more recent frameworks such as Java Swing and .NET. The
MVC pattern involves three objects: the model represents information that
needs to be represented and interacted with, the view displays the information
from the model, and the controller receives input events, transforms them into
changes on the model which then notifies the view to update its display. An
application contains a hierarchy of MVC triplets that may involve hundreds
of objects. While more general than the widget model, the MVC model suffers
similar problems: the events that make up a single interaction may be handled
by multiple controllers that must coordinate their actions.

3.4 Formal Approaches

Several approaches have been attempted to use more formal models to describe
the intricate relationships among input and output streams. Early work used
augmented transition networks and recursive transition networks [20]. More
recently, StateCharts [23] have been used as an alternative state machine
model. Describing an interaction technique with a finite state automaton usu-
ally only requires a few states and transitions and is therefore manageable.
Figure 2 shows a simple state machine for selecting objects with a click and
moving them with drag-and-drop. Transitions are triggered by guarded events
(in roman font in the figure). When a transition is fired, it may trigger an ac-
tion (in italics in the figure). The major drawback of these approaches is that
they do not deal with output. Output is always generated as a side effect,
within the actions triggered by the transitions. This is not satisfying because
it makes it impossible to prove anything about the dependencies between
input and output.

Down on icon Move & delta>eps

Up

Up

Move
Hilite icon Drag icon

Drag icon

Move icon

Select icon

0 1 2

Fig. 2. State machine for selection and drag-and-drop

Another approach is based on cascading reactive devices [13]. ICON (In-
put CONfigurator) provides a visual interface where modules can be connected

Human–Computer Interaction 239

together to describe a configuration (see Fig. 3). This approach has the ad-
vantage that input and output are handled within the same framework. It
has been used to describe a wide range of interaction techniques, from tradi-
tional widgets to advanced techniques such as toolglasses [7] or crossing-based
interaction [1], as well as speech-based and multimodal interfaces.

Fig. 3. ICON (image courtesy of Pierre Dragicevic)

Finally, Petri nets have also been used to describe various aspects of
human–computer systems. The most advanced work in this area is ICO (Inter-
active Cooperative Objects) [41] and the associated PetShop tool [2]. ICOs use
an object-oriented approach to describe the structure of the system and high-
level Petri nets to describe its behavior. ICOs describe both input-to-output
dependencies, i.e., how user actions affect the inner state of the application and
which actions are enabled at any given time, and output-to-input dependen-
cies, i.e., when and how the application displays information that is relevant
to the user. The PetShop tool allows the interactive editing, verification and
execution of the specification.

In summary, human–computer systems involve dynamic streams of vari-
ous types with intricate dependencies between input and output streams and
potentially tight time constraints. These streams carry low-level information,
while both the user and computer operate at higher level of abstractions. This
abstraction mismatch requires complex processing of input and output events
that is not well supported by current programming tools. These tools promote
simplified forms of interaction, e.g., based on widgets and modal dialogues,
that do not encourage novel interaction techniques to be developed. Some ap-

240 M. Beaudouin-Lafon

proaches based on various kinds of transition networks, reactive devices and
Petri nets have been studied in the literature and offer interesting perspective
for better managing the dependencies among the interaction streams.

4 Environment

In models of interaction, the world or environment of the computation
is part of the model and plays an active part in the computation by dy-
namically supplying the computational system, or agent, with inputs,
and consuming the output values the system produces.

The previous section emphasized the fact that dependencies between input
and output streams were the raison d’être of user interfaces. Stated differ-
ently, this means that user interfaces only exist to consume user input and to
provide output to the users. The environment of a human–computer system is
therefore primarily its user(s). Of course, human–computer systems may have
other interactions with the physical environment that are not user driven. For
example, command and control systems use sensors to gather data from the
environment and actuators to affect the environment. Over the past decade,
a new breed of human–computer systems has developed that involve a tighter
integration between the computer and its environment: rather than just being
sensed and actuated upon, the physical environment becomes an integral part
of the system, at least from the perspective of the user.

Humans relate to the physical world in many ways. According to Gibson’s
ecological theory of perception [19], we directly perceive the affordances of
objects for action, i.e., we instantly perceive whether an object can be picked
up, sat upon, walked through, etc. Cultural affordances [38] extend Gibson’s
affordances with the fundamental, tacit knowledge that all individuals of a
given culture have of their environment. Building on affordances is a powerful
way to create interfaces that feel natural to use.

This section briefly introduces three related areas of research: ubiquitous
and pervasive computing, mixed and augmented reality, and tangible inter-
faces. The embodiment [12] of digital artifacts into physical ones that char-
acterizes all three approaches is the key to unlock the power of affordances.
In terms of interactive computation, it means that the environment becomes
symbiotic with the computer system.

4.1 Ubiquitous and Pervasive Computing

The vision for ubiquitous computing, or Ubicomp, put forward by Mark Weiser
[52, 53], involves computers of all sizes and shapes seamlessly integrated into
their environment so that they are used without even thinking about it.
Weiser’s group developed a first generation of such systems, based on tabs
(pager-sized computers), pads (laptop-size computers) and boards (wall-size

Human–Computer Interaction 241

computers). A key aspect of the infrastructure underlying Ubicomp is trans-
parent access to resources. The devices are networked and therefore it must
be possible to start a task on some computer, e.g., a pad in one’s office, and
then move it to the board in the meeting room. The notion of an interactive
application running on a system and used by a single user becomes obsolete.
Instead, Ubicomp promotes a vision where services are available over the net-
work to many users and are able to adapt to a variety of contexts of use.
Ubicomp is clearly based on the interactive paradigm where the environment
encompasses users, physical location and available physical resources for input
and output.

Since Weiser’s seminal work, the concept of Ubicomp has been explored
and developed in a variety of directions. It has also taken on new names,
such as Pervasive Computing and Ambient Computing. The main extension
to the original concept is to make the environment more active: when sensors
detect specific situations, such as someone entering a room or a meeting taking
place, automated responses may take place, such as turning the lights on or
setting up a shared whiteboard application on the laptops of the people in
the meeting. The environment becomes a new component that interacts with
the system. The downside of this approach is the sense of losing control over
the physical environment: the users’ interactions with the physical world are
suddenly mediated by the computer system.

A milder approach consists of taking advantage of peripheral awareness,
i.e., our ability to be aware of events occurring outside our focus of attention.
Peripheral awareness is critical in our everyday life. It guides our actions,
provides serendipity and allows us to react to the environment. A computer
system can take advantage of the physical environment to deliver informa-
tion through so-called ambient displays that are perceived through peripheral
awareness. The concept was first elaborated by Weiser and Seely Brown under
the name calm technology [54]. One of the first ambient display was LiveWire,
a dangling string connected to an ethernet cable so that each network packet
caused a tiny twitch of the motor to which the string was attached. High net-
work traffic would make the string whirl madly, while slow traffic would make
it spin onto itself slowly. Installed in a public space, the string could be seen
and heard from several offices and provided a peripheral display of network ac-
tivity. Since then, a number of ambient displays have been developed, most of
which use large screens. While ambient displays are primarily output oriented,
they can also take advantage of sensing technologies to adapt their content
to the location and maybe even identity of nearby users. A good example
is Rekimoto’s augmented surfaces [42] where information can be seamlessly
moved from a laptop to the desk and the wall display in the room, where
other users can pick it up.

With ambient displays, and pervasive computing in general, the dependen-
cies between output provided by the system and future user input are even
more elusive than with traditional human–computer systems, yet such sys-
tems quickly become part of the fabric of our everyday life. They enrich the

242 M. Beaudouin-Lafon

environment with information we use, sometimes even subconsciously, such
as avoiding big downloads when the network is busy.

4.2 Augmented and Mixed Reality

Augmented reality and mixed reality [56, 30] share with Ubicomp the goal to
better integrate the physical and computer worlds, but emphasize the use of
everyday physical objects rather than relying on a pervasive computing in-
frastructure. The goal is to better take advantage of humans’ skills to interact
with familiar physical object.

The first augmented reality system was Wellner’s Digital Desk [55], where
a projector and camera installed above a traditional desk allowed mixing
physical and digital information without the traditional PC devices such as
keyboard, mouse and monitor. The camera could capture information from
physical artifacts, such as the amounts on expense slips or a hand drawing, as
well as simple interactions such as pointing and dragging; the projector could
display digital information, such as a calculator or spreadsheet to compute
and fill out an expense claim or a drawing program where the physical hand
drawing captured by the camera could be duplicated, scaled and manipulated
digitally.

With augmented and mixed reality, the seam between the physical and dig-
ital world becomes blurry; user interaction combines interaction with physical
and digital artifacts; objects may exist both in the physical and electronic
world, each representation complementing the other. For example, Mackay’s
work on augmented paper [31] enhances the capabilities of both paper docu-
ments and on-line documents by establishing links between them and allowing
the user to interact with one form in order to affect the other. With the A-
book [33], paper laboratory notebooks are augmented by capturing what is
written on paper as well as digitally. A PDA can then be used as a magic
lens to digitally interact with the content of the notebook, e.g., by creating
links to on-line information, indexing the content or semi-automatically cre-
ating a table of contents (Figure 4). Even though the pen and paper are in
the physical world and the user does not have the impression of interacting
with a computer when taking notes, the system captures this input for later
use when interacting through the PDA. Even when using the PDA, the dis-
play gives the impression that the underlying paper shows through the PDA
when in fact it is a synthetic display, thereby merging the physical and digital
worlds in the user’s mental model.

The word “augmented reality” was originally coined as an opposite to “vir-
tual reality” [56]. Whereas virtual reality immerses the user into a synthetic
world and gets rid of the physical world, augmented reality takes the digital
world and “explodes” it into the physical world. The systems described above
augment physical objects, e.g., paper notebooks, or the environment, e.g., the
physical desk. Another approach is to augment the users’ perception of the
physical world. This approach uses many of the technologies of virtual reality,

Human–Computer Interaction 243

Fig. 4. A-book (image courtesy of Wendy Mackay)

such as head-mounted displays and position trackers, in order to superimpose
synthetic images created by the computer onto the physical world. For exam-
ple, maintenance operators wearing a special head-mounted device could have
repairing instructions and diagrams directly overlaid (and registered with) the
objects they operate on [15], or one could take a tour of a real city and see
digital information overlaid on top of the monuments and landmarks. This
approach is now called augmented reality, while the other two (augmenting
the user or the environment) are now known as mixed reality. Either way, the
goal is similar: to blur the distinction between physical and virtual in order
to ease user interaction with the digital world.

4.3 Tangible Interfaces

Another, similar trend is called tangible interfaces [17, 50, 16]. Tangible inter-
faces attempt to create new physical objects that embody digital information
or processes. One of the first examples of tangible interface is Durrell Bishop’s
Marble answering machine, where each new message on the answering ma-
chine generates a physical marble that the user can put on top of the machine
to listen to it, take with her to remember the message, or put back into the
machine to discard it.3 Another example is Ullmer’s media blocks [51], which
are small pieces of wood that embody digital information, e.g., a video clip,
a hand-drawn diagram or a text document. Printing a document simply con-
sists of putting the media block holding that document on the printer itself.
Creating a video can be done by spatially ordering the blocks that contain
the respective clips.4

Tangible interaction is a slightly different approach from mixed reality
since the latter attempts to use existing objects and extends them with com-
putational capabilities. Here, new physical objects, such as the marble or the
3 This design exercise inspired the opening scene of the movie Minority Report,

where a machine carves a wood ball with the name of the author of a future
crime.

4 Incidentally, an augmented reality version of this video editing task, called Video
Mosaic, was developed earlier with a variant of the Digital Desk and paper sto-
ryboards [30].

244 M. Beaudouin-Lafon

media block, embody digital information, such as a telephone message or a
video clip, so that interaction with the physical object is interpreted as oper-
ations on the embodied information.

By building on human skills to manipulate physical objects, tangible inter-
faces blur the distinction between the system and the environment, between
physical and digital. Carrying a marble in my pocket and putting it onto the
answering machine are both physical actions, but only the latter is captured
by the system and interpreted. In this case, the marble is passive and provides
input when sensed by the system (this is typically achieved using RFID tags
or similar technology). However, one could also imagine an active marble that
beeps when it has been there too long without the message being played. Or
a sensor in my apartment front door could warn me if I am passing the door
with a marble in my pocket. It is then not clear, at least to the user, what
is part of the “sytem” and what is part of the “environment”. Augmented
objects become part of an augmented world; they participate in events that
may or may not be captured by the system. As long as they have a consistent
behavior in both worlds, they exist as a single entity for the users.

In summary, new approaches to human–computer systems such as ubiq-
uitous and pervasive computing, augmented and mixed reality and tangible
interfaces redefine the traditional notions of the environment of a computer
system. As we move away from explicit tasks and well-formed goals to implicit
interaction, peripheral awareness and serendipitous activity, the physical and
digital world merge and complement each other in complex and subtle ways.

5 Concurrency

In models of interaction, computation may be concurrent; a computing
agent can compute in parallel with its environment and with other
agents.

The human brain never stops. When interacting with computer systems, users
always work in parallel with the system. They anticipate the system’s re-
sponse, e.g., by moving the cursor to the next interaction point even before
the menu or dialogue box triggered by the previous action has appeared. They
plan ahead future actions so that, often times, the next action is being planned
while the current action is being carried out. The system, on the other hand,
seems to be idle most of the time; if it conducts some computation in the
background, this must not interfere with its ability to react to user input as
quick as possible. This section examines two aspects of human–computer sys-
tems where concurrency is critical: providing timely reactions to user actions,
and managing distributed interfaces.

Human–Computer Interaction 245

5.1 Reaction Time, Progress Indicators and Animations

Users have expectations about the system reaction times and are quick to
notice delays or criticize a system for being sluggish or nonresponsive. In fact,
they expect a purely reactive system that produces a response in zero time
once a command is submitted. The time scale for such instantaneous responses
is that of human perception and varies according to the senses involved as well
as the user’s expectation. Typically, it is on the order of a few milliseconds to
tens of milliseconds for visual or audio feedback of physical interactions such
as clicking a button or dragging an icon. In such cases, any perceivable lag
is problematic and it is better to degrade display quality in order to keep up
with the pace than to introduce lag. When the reaction time is not related to
a physical process, such as when popping up a dialogue box or displaying the
results of a search, delays up to a second are acceptable. If the delay is longer,
the system must display a progress indicator.

Progress indicators are inherently difficult to design and implement. They
are a typical example of turning an algorithmic process that blindly computes
a result into an interactive one that reports on its inner workings and is
interruptible. When users trigger long processes, they want to know how long
it is going to take. Ideally, the system should be able to display a countdown in
real time. Users also want the ability to interrupt a long process, or even pause
it and restart it later. A long computation should therefore always execute
concurrently with the interaction thread in order to ensure that the system
stays responsive.

Since it is often difficult to display a real-time countdown, an alternative
is to display a percent-done indicator or progress bar. Even if the bar does
not progress regularly and hence makes it difficult to predict the end time, it
gives useful information to the user. If progress stops for a significant amount
of time, an explanation should be given to the user, such as a network failure
when trying to copy a large folder to a remote server. Instrumenting existing
algorithms to provide such feedback can be difficult; in cases where even a
percent-done indicator cannot be provided, a busy indicator should at least
be displayed with the ability for the user to interrupt the process.

Ideally, long processes should compute their result incrementally so that
it can be displayed as it is created, rather than have the user wait until the
process is complete in order to see the final result. If the algorithm does not
compute the result incrementally, it may be able to display its best result so
far and update it as it progresses. Search processes are a good example: when
a user enters a query to search for some data, it is best to display the partial
results as they come in, even if this means updating the rankings or dropping
results that turn out to be less relevant. This provides feedback to the user,
who can also start working with an early and imperfect result right away and
even stop the search if satisfied with it. This of course is only possible if the
search proceeds in parallel with user interaction.

246 M. Beaudouin-Lafon

Even instantaneous interactions may give rise to parallel processing when
using animation. Sudden display changes may be hard to perceive as they do
not make the causality between a user action or external event and the corre-
sponding system response explicit. Proper animations can greatly enhance the
quality of an interface by helping users understand state changes caused by
their actions. Minimizing a window, for example, should display the window
shrinking into an icon so that the user can identify which icon now represents
the window. Animation is also very useful when external events cause a change
in the user interface. For example, a file server becoming unavailable could
blink and then fade away so that the user has enough time to understand
what happened. To be effective, animations should last on the order of one
second and can use tricks from cartoons such as slow-in, slow-out in order to
be perceived more easily [10]. Also, animations should degrade gracefully if
the system is loaded [49]. Finally, the animation should proceed concurrently
with the system’s normal operation so that they do not slow the user down.

5.2 Distributed Interfaces

Distributed systems are becoming the norm rather than the exception for
human–computer systems. The X Window System [43], for example, is based
on a client–server model where the server provides services for sharing the
input and output devices of a computer among various client applications.
Clients send requests to the X server to create windows, draw into these
windows, etc. The server sends events to the clients when user input occurs in
one of their windows. The clients and the server all run concurrently, which
can boost performance when they are on different machines.

With the advent of ubiquitous and pervasive computing, the amount of
concurrency between the various components of a human–computer system
is increasing. For example, a user may use a PDA to control a presentation
running on a separate computer, as in Pebbles [36]. User interfaces that use
gesture recognition, machine vision or speech recognition often offload some of
the heavy digital signal processing onto dedicated servers in order to improve
the performance and responsiveness of the system.

Finally collaborative systems are inherently distributed. Shared editors, for
example, typically use a replicated or partially replicated architecture where
similar replicas run at each site and exchange their respective users’ input in
order to update their state. Consistency management algorithms such as oper-
ation transformation [47, 26] ensure that the local states converge towards the
same global state, detecting and sometimes solving conflicts. These algorithms
usually rely on an optimistic approach, assuming that users will establish so-
cial protocols that minimize actual conflicts. These social protocols typically
require that the activity of each user be visible to other users: a user is less
likely to edit the same part of the document as another user if he is aware of
the presence of the other user in this area. The concurrent activity of multiple

Human–Computer Interaction 247

users is made explicit in the interface so it can then be mediated by the so-
cial protocols. The tools that support social protocols may be separate from
the collaborative application. For example, users can use instant messaging,
telephone, or even their voice if they are collocated. In such cases, the causal
chains can be extremely complex, involving both computer processes and the
environment. In general, there is no hope that they can ever be computable
algorithmically.

In summary, concurrency occurs at various levels in human–computer sys-
tems. Users operate concurrently with the system, the system is often dis-
tributed and each process generally has multiple threads, some for interaction,
some for computation.

6 Noncomputability

The environment cannot be assumed to be static or even effectively
computable; for example, it may include humans or other real-world
elements.

Human–computer systems obviously have humans in the loop, whose actions
are largely unpredictable. Most attempts at modeling human behavior to im-
prove human–computer systems have failed, even in the simplest cases. For
example, the wizards that try to help users in some applications are notori-
ously bad at anticipating the users’ needs.

Machine learning and other artificial intelligence techniques are used in-
creasingly to adapt human–computer systems to the observed user behavior.
In many cases, their goal is to “replace the user”, therefore trying to turn an
interactive system into a noninteractive one. This is often framed in the con-
text of first- vs. second-person interfaces where the latter attempt to delegate
more and more tasks to the computer while the former attempt to empower
the user with better tool [45]. A better approach probably is to try and com-
bine the two approaches, as in mixed initiative systems [25].

However since humans are inherently noncomputable, there is always a
limit to what the system can guess about the user’s next steps. Instead of try-
ing to get rid of interaction, one should use our knowledge of human behavior
to serve interaction. This section therefore focuses on models and theories
of human behavior and their consequences on the design of human–computer
systems. It covers action theory, situated action, and co-adaptation and shows
how to leverage the learning and adaptation capabilities of humans as well as
computers.

6.1 Action Theory

Norman’s action theory [9] gives an account of the psychological process a
user goes through when interacting with a system (see Figure 5). The user

248 M. Beaudouin-Lafon

Goal

Intention

Specification
of actions

Execution

System

Evaluation

Interpretation

Perception

Fig. 5. Norman’s action theory

has a goal, such as getting rid of a file. In order to reach the goal, the user
forms an intention (delete the file), specifies the necessary actions (drag the
icon of the file to the icon of the trash), and executes this action (using
the mouse). According to the conceptual model introduced in Sect. 2.2, the
system analyzes the input from the user and produces a response. The user
then perceives the change (or lack of change) in the system state, interprets
this change (the icon of the file has disappeared therefore the file is gone)
and evaluates this outcome with respect to the original goal. If the goal is
not reached, several strategies exist, e.g., the user can undo and try again
or reach the original goal from the new current state. Finally, goals are often
organized hierarchically, with goals subdivided into subgoals, e.g., cleaning up
my computer desktop involves deleting some files, renaming others, etc.

This model is obviously a simplified, maybe simplistic, view of reality.
Nevertheless it already shows that system input is driven by mental processes
that are not accessible to the computer and are therefore unpredictable, and
that future system input is determined, at least partially, by past system
output in ways that are also unpredictable from the computer’s perspective.

Many wizards, guided tours and interactive tutorials are based on this
model: they walk users through a sequence of mostly predefined steps, as-
suming that they will reuse the same schema when confronted with the same
situation. Some adaptive systems go further and try to infer the plan from
the user’s actions so as to take over from the user the next time they detect
a similar pattern. A good example is Eager [11], a system that watches for
repetitive actions such as making an index out of a list of messages and of-
fers the user to continue when it has inferred a pattern. The main limitations
of these systems are that they have a predefined library of plans, and they
assume that users conform to these plans.

Human–Computer Interaction 249

6.2 Situated Action

Suchman’s theory of situated action shows that humans do not necessarily
act according to plans [46]. Based on ethnographic observation of users, Lucy
Suchman noted that the environment affects human behavior to cause users
to modify their plans in situ, after they have formed them. For example, a
user goes to the copier to make copies of a document, runs into a colleague
and engages in a conversation with her, which makes her remember that she
was supposed to meet with another person whose office is on the way to the
copier. The person is not in her office and so she leaves a note asking him to
come and see her. She finally gets to the copier but there is a line, so she gets
back to her office and prints a new copy on her printer instead. When the
colleague comes back into his office, he sees the note but the phone rings and
keeps him busy for a while. He has to rush to a meeting and decides to send
her an email instead.

Our activity is constantly shaped by the environment, our plans are con-
stantly revised and adapted to the context: our actions are situated, they
result from conflicting constraints and microdecisions in such a way that two
identical situations may lead to different actions for reasons that are difficult
to uncover, even less rationalize. There is a line at the copier; what makes
me decide between waiting, coming back later, giving up on making the copy,
delegating it to another person, etc.?

Human–computer systems should support humans, not force them to con-
form to the way computers work. They should support our nonpredictability
by offering several ways of doing the same thing, by avoiding premature com-
mitment, by allowing to go back in time and try something different, etc. They
should be flexible enough to allow users to adapt the system to their needs,
not the opposite. For example, users of paper forms often use the margins to
write down extra information when the form does not cover a particular case.
This flexibility if often lost with on-line forms, which have a fixed set of fields.
It can be regained easily by adding free-form input fields for comments or
notes. Of course, the system does not know what to do with that information,
but it could make sure it is processed by a human user. This is, in fact, a
simple form of co-adaptation.

6.3 Co-adaptation

Co-adaptation [32] is the process by which users adapt to a new technology,
such as a new computer system, as well as adapt it to their own needs. It
is based on the observation that users often reinterpret new technology in
ways that were not anticipated by its designers. The appropriation of the
system by its users includes understanding what the system can and cannot do
and using features in unexpected ways. For example, email was created when
system operators were exchanging files that needed processing and attached
a message to the file to explain what to do with it. One day, someone realized

250 M. Beaudouin-Lafon

that he could use the message for other purposes, unrelated to the file it
was attached to. Only later on were messages decoupled from their attached
files. Ironically, we now see the opposite process where files are attached to
messages, and where email is used to exchange files.

Mackay [29] argues that users are innovators and that their adaptations
of the technology can be turned into new features of future versions of the
system. Observing the co-adaptation of a system is therefore a good source
of information for system designers. The next step is to design systems that
encourage co-adaptation, i.e., to design systems that are open and flexible
enough that they can be redefined by their users. Spreadsheets are a very
good example of such systems. They can be used for straight calculations, for
hypothesis testing, for complex table layout, etc.

In general, introducing end-user programming capabilities into human–
computer systems is a great way to open it for reinterpretation [28]. Macros
and scripting languages are common forms of end-user programming that
users can adopt fairly easily, especially when they use visual rather than
textual descriptions. Defining the level of programmability of an interface
is challenging. First, it requires exposing the inner workings of the system,
potentially showing its weaknesses. Second, it must make sense for the end
user, i.e., the exposed concepts must match the mental model that the user
has formed of the system when using it.

Finally, opening a system for reinterpretation through macros and script-
ing develops its interactive aspect in new directions. Not only does the system
input and output data during its execution, it is also able to change its own
program at run-time. Self-modifying programs are certainly outside the scope
of the traditional algorithmic approach, showing one more time the limits of
this approach to model human–computer systems.

In summary, the environment of human–computer systems is made of hu-
mans and the physical world, neither of which is computable. Moreover, in
order to support this environment, human–computer systems should be as
flexible and open as possible, up to the point of allowing users to modify the
system’s code in order to adapt it to their needs.

7 Conclusion

This chapter has presented human–computer interaction from the perspective
of the five characteristics of interactive systems: the nonalgorithmic compu-
tational problem they address, the dynamic interleaving of user input and
system display streams, the dependency on the environment, the parallel
“computation” of user and computer, and the noncomputability of the en-
vironment. It has been shown that human–computer systems feature all the
characteristics of interactive systems and that many shortcomings of current
systems are due to the use of algorithmic approaches to develop them.

Human–Computer Interaction 251

The shift from algorithms to interaction should have happened long ago
in human–computer systems, as the ingredients have been with us for so long
in this area. Instead, commercial systems are more than ever developed in
an algorithmic paradigm. For example, web applications are mostly based on
form-filling and linear navigation of the results. At the same time, research
turns to ever more interactive systems, such as mixed reality and ubiquitous
computing where interaction is distributed among many devices and comput-
ers.

What is most needed for the shift to occur is tools. We need languages and
libraries that truly implement reactive systems, tools for testing and verifying
interactive systems, and sample applications that show the benefits that can
be gained. This requires shifting the focus of the design process of human–
computer systems from user interfaces to interaction phenomena [4]. With
Moore’s law making computers ever more powerful, computer systems should
be easier, not harder to use. Interactive computation can unlock the true power
of human–computer interaction by helping design systems that are simpler,
more flexible, more open and better adapted to their users.

References

1. Johnny Accot and Shumin Zhai. More than dotting the i’s — foundations for
crossing-based interfaces. In Proceedings ACM Conference on Human Factors
in Computing Systems (CHI ’02), pages 73–80. ACM Press, 2002.

2. Rémi Bastide, David Navarre, and Philippe Palanque. A tool-supported design
framework for safety critical interactive systems. Interacting with Computers,
15(3):309–328, 2003.

3. Michel Beaudouin-Lafon. Instrumental interaction: an interaction model for de-
signing post-WIMP user interfaces. In Proceedings ACM Conference on Human
Factors in Computing Systems (CHI ’00), pages 446–453. ACM Press, 2000.

4. Michel Beaudouin-Lafon. Designing interfaction, not interfaces. In Proceedings
International Conference on Advanced Visual Interfaces (AVI ’04), pages 15–22.
ACM Press, May 2004.

5. Michel Beaudouin-Lafon and Wendy E. Mackay. Reification, polymorphism
and reuse: Three principles for designing visual interfaces. In Proceedings Inter-
national Conference on Advanced Visual Interfaces (AVI ’00), pages 102–109.
ACM Press, 2000.

6. Michel Beaudouin-Lafon, editor. Computer Supported Co-operative Work, vol-
ume 7 of Trends in Software. John Wiley & Sons, 1999.

7. Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, and Tony D.
DeRose. Toolglass and magic lenses: the see-through interface. In Proceed-
ings ACM Conference on Computer Graphics and Interactive Techniques (SIG-
GRAPH ’93), pages 73–80. ACM Press, 1993.

8. Alan F. Blackwell and Thomas R. G. Green. Notational systems – the cogni-
tive dimensions of notations framework. In J.M. Carroll, editor, HCI Models,
Theories and Frameworks: Toward a Multidisciplinary Science, pages 103–134.
Morgan Kaufmann Publishers Inc., 2003.

252 M. Beaudouin-Lafon

9. Stuart K. Card, Allen Newell, and Thomas P. Moran. The Psychology of Human-
Computer Interaction. Lawrence Erlbaum Associates, Inc., 1983.

10. Bay-Wei Chang and David Ungar. Animation: from cartoons to the user inter-
face. In Proceedings ACM Symposium on User Interface Software and Technol-
ogy (UIST ’93), pages 45–55. ACM Press, 1993.

11. Allen Cypher. Eager: Programming repetitive tasks by demonstration. In Allen
Cypher, editor, Watch What I Do: Programming by Demonstration. MIT Press,
1993.

12. Paul Dourish. Where the action is: the foundations of embodied interaction.
MIT Press, 2001.

13. Pierre Dragicevic and Jean-Daniel Fekete. The input configurator toolkit: to-
wards high input adaptability in interactive applications. In Proceedings Inter-
national Conference on Advanced Visual Interfaces (AVI ’04), pages 244–247.
ACM Press, 2004.

14. Douglas C. Engelbart and William K. English. A research center for augment-
ing human intellect. In AFIPS Conference Proceedings of the 1968 Fall Joint
Computer Conference, volume 33, pages 395–410, 1968.

15. Steven Feiner, Blair Macintyre, and Dorée Seligmann. Knowledge-based aug-
mented reality. Comm. ACM, 36(7):53–62, 1993.

16. Kenneth P. Fishkin. A taxonomy for and analysis of tangible interfaces. Personal
Ubiquitous Comput., 8(5):347–358, 2004.

17. George W. Fitzmaurice, Hiroshi Ishii, and William A. S. Buxton. Bricks: laying
the foundations for graspable user interfaces. In Proceedings ACM Conference on
Human Factors in Computing Systems (CHI ’95), pages 442–449. ACM Press,
1995.

18. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design pat-
terns: elements of reusable object-oriented software. Addison-Wesley Longman
Publishing Co., Inc., 1995.

19. James J. Gibson. The Ecological Approach to Visual Perception. Boston:
Houghton Mifflin, 1979.

20. Mark Green. A survey of three dialogue models. ACM Trans. Graph., 5(3):244–
275, 1986.

21. Thomas R. G. Green. Cognitive dimensions of notations. In People and Comput-
ers V, Proceedings of the HCI ’89, pages 443–460. Cambridge University Press,
1989.

22. Thomas R. G. Green. Instructions and descriptions: some cognitive aspects of
programming and similar activities. In Proceedings International Conference on
Advanced Visual Interfaces (AVI ’00), pages 21–28. ACM Press, 2000.

23. David Harel. Statecharts: A visual formalism for complex systems. Sci. Comput.
Program., 8(3):231–274, 1987.

24. Thomas T. Hewett, chairman. ACM SIGCHI curricula for human-computer
interaction. Technical report, ACM Press, 1992.

25. Eric Horvitz. Principles of mixed-initiative user interfaces. In Proceedings ACM
Conference on Human Factors in Computing Systems (CHI ’99), pages 159–166.
ACM Press, 1999.

26. Alain Karsenty and Michel Beaudouin-Lafon. An algorithm for distributed
groupware applications. In Proceedings International Conference on Distributed
Systems (ICDCS ’93), pages 195–202, 1993.

Human–Computer Interaction 253

27. Glenn E. Krasner and Stephen T. Pope. A description of the model-view-
controller user interface paradigm in the smalltalk-80 system. Journal of Object
Oriented Programming, 1(3):26–49, 1988.

28. Catherine Letondal. Participatory programming: Developing programmable
bioinformatics tools for end-users. In H. Lieberman, F. Paterno, and V. Wulf,
editors, End-User Development. Springer/Kluwer Academic Publishers, 2005.

29. Wendy E. Mackay. Patterns of sharing customizable software. In Proceedings
ACM Conference on Computer Supported Cooperative Work (CSCW ’90), pages
209–221. ACM Press, 1990.

30. Wendy E. Mackay. Augmented reality: linking real and virtual worlds: a new
paradigm for interacting with computers. In Proceedings International Confer-
ence on Advanced Visual Interfaces (AVI ’98), pages 13–21, 1998.

31. Wendy E. Mackay. Is paper safer? the role of paper flight strips in air traffic
control. ACM Trans. Comput.-Hum. Interact., 6(4):311–340, 1999.

32. Wendy E. Mackay. Responding to cognitive overload: coadaptation between
users and technology. Intellectica, 30(1):177–193, 2000.

33. Wendy E. Mackay, Guillaume Pothier, Catherine Letondal, Kaare Boegh, and
Hans Erik Sorensen. The missing link: augmenting biology laboratory note-
books. In Proceedings ACM Symposium on User Interface Software and Tech-
nology (UIST ’02), pages 41–50. ACM Press, 2002.

34. Pattie Maes. Agents that reduce work and information overload. Comm. ACM,
37(7):30–40, 1994.

35. Brad A. Myers. Separating application code from toolkits: eliminating the
spaghetti of call-backs. In Proceedings ACM Symposium on User Interface Soft-
ware and Technology (UIST ’91), pages 211–220. ACM Press, 1991.

36. Brad A. Myers. Using handhelds and PCs together. Comm. ACM, 44(11):34–41,
2001.

37. Brad A. Myers and Mary Beth Rosson. Survey on user interface programming.
In Proceedings ACM Conference on Human Factors in Computing Systems (CHI
’92), pages 195–202. ACM Press, 1992.

38. Donald A. Norman. Affordance, conventions, and design. ACM interactions,
6(3):38–43, 1999.

39. Dan R. Olsen. Developing User Interfaces. Morgan Kaufmann Publishers Inc.,
1998.

40. Sharon Oviatt. Ten myths of multimodal interaction. Comm. ACM, 42(11):74–
81, 1999.

41. Philippe Palanque and Rémi Bastide. Synergistic modelling of tasks, users
and systems using formal specification techniques. Interacting with Computers,
9(2):129–153, 1997.

42. Jun Rekimoto and Masanori Saitoh. Augmented surfaces: a spatially continuous
work space for hybrid computing environments. In Proceedings ACM Confer-
ence on Human Factors in Computing Systems (CHI ’99), pages 378–385. ACM
Press, 1999.

43. Robert W. Scheifler and Jim Gettys. The X window system. ACM Trans.
Graph., 5(2):79–109, 1986.

44. Ben Shneiderman. Direct manipulation: A step beyond programming languages.
In W.A.S. Buxton and R.M. Baecker, editors, Human-computer interaction: a
multidisciplinary approach, pages 461–467. Morgan Kaufmann Publishers Inc.,
1987.

254 M. Beaudouin-Lafon

45. Ben Shneiderman and Pattie Maes. Direct manipulation vs. interface agents.
ACM interactions, 4(6):42–61, 1997.

46. Lucy A. Suchman. Plans and situated actions: the problem of human-machine
communication. Cambridge University Press, 1987.

47. Chengzheng Sun and Clarence Ellis. Operational transformation in real-time
group editors: issues, algorithms, and achievements. In Proceedings ACM Con-
ference on Computer Supported Cooperative Work (CSCW ’98), pages 59–68.
ACM Press, 1998.

48. Ivan E. Sutherland. Sketchpad a man-machine graphical communication system.
In Papers on Twenty-five years of electronic design automation, pages 507–524.
ACM Press, 1988.

49. Steven H. Tang and Mark A. Linton. Pacers: time-elastic objects. In Proceedings
ACM Symposium on User Interface Software and Technology (UIST ’93), pages
35–43. ACM Press, 1993.

50. Brygg Ullmer and Hiroshi Ishii. Emerging frameworks for tangible user inter-
faces. In Human-Computer Interaction in the New Millenium, pages 579–601.
Addison-Wesley Longman Publishing Co., Inc., 2001.

51. Brygg Ullmer, Hiroshi Ishii, and Dylan Glas. mediaBlocks: physical containers,
transports, and controls for online media. In Proceedings ACM Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH ’98), pages 379–
386. ACM Press, 1998.

52. Mark Weiser. The computer for the twenty-first century. Scientific American,
pages 94–104, Sept. 1991.

53. Mark Weiser. Some computer science issues in ubiquitous computing. Comm.
ACM, 36(7):75–84, 1993.

54. Mark Weiser and John Seely Brown. The coming age of calm technolgy. In P.J.
Denning and R.M. Metcalfe, editors, Beyond calculation: the next fifty years,
pages 75–85. Springer-Verlag, 1997.

55. Pierre Wellner. Interacting with paper on the DigitalDesk. Comm. ACM,
36(7):87–96, 1993.

56. Pierre Wellner, Rich Gold, and Wendy E. Mackay. Special issue on computer
augmented environments: back to the real world. Comm. ACM, 36(7), 1993.

Modeling Web Interactions and Errors�

Shriram Krishnamurthi1, Robert Bruce Findler2, Paul Graunke3,��, and
Matthias Felleisen3

1 Brown University, Providence, RI, USA
2 University of Chicago, Chicago, IL, USA
3 Northeastern University, Boston, MA, USA

Summary. Programmers confront a minefield when they design interactive Web
programs. Web interactions take place via Web browsers. Browsers permit consumers
to whimsically navigate among the various stages of a dialog, leading to unexpected
outcomes. Furthermore, the growing diversity of browsers means the number of
interactive operations users can perform continues to grow.

To investigate this programming problem, we develop a foundational model of
Web interactions that reduces the panoply of browser-supported user interactions to
three fundamental ones. We use the model to formally describe two classes of errors
in Web programs. The descriptions suggest techniques for detecting both classes of
errors. For one class we present an incrementally-checked record type system, which
effectively eliminates these errors. For the other class, we introduce a dynamic safety
check that employs program annotations to detect errors.

1 Introduction

Over the past decade, the Web has evolved from a static medium into an
interactive one. A representative article claims that more than half of all
Web transactions are interactive [4], and this ratio only grows in favor of
interactivity. Indeed, entire corporations (including book retailers, auction
sites, travel reservation services, and so on) now interact primarily or solely
through the Web. These interfaces no longer present static content but rather
consume user input, perform computation based on these inputs, and generate
corresponding output. As a result, the Web has been transformed into an
important (and increasingly dominant) medium of interactive computation.

This rapid growth in the volume of interactively generated content might
suggest that Web page developers and programmers have mastered the me-
chanics of interactive Web content. In practice, however, as this chapter
� This research is partially supported by NSF grants CCR-0305949, ESI-0010064

and CAI-0086264.
�� Current affiliation: Galois Connections, Inc.

256 S. Krishnamurthi et al.

demonstrates, consumers still encounter many, and sometimes costly, pro-
gram errors as they utilize these new services. Furthermore, many of these
errors are caused precisely when users employ the interactive operations sup-
ported by Web browsers. A strong foundation for interactive computation
must therefore study and address the world of Web programs.

A Web program’s execution consists of a series of interactions between
a Web browser and a Web server. When a Web browser submits a request
whose path points to a Web program, the server invokes the program with
the request via any of a number of protocols (cgi [19], Java servlets [7], or
Microsoft’s asp.net [18]). It then waits for the program to terminate and
turns the program’s output into a response that the browser can display. Put
differently, each individual Web program simply consumes an http request
and produces a Web page in response. It is therefore appropriate to call such
programs “scripts” considering that they only read some inputs and write
some output. This very simplicity, however, is also what makes the design of
multistage Web dialogs difficult.

First, multistage interactive Web programs consist of many scripts, each
handling one request. These scripts communicate with each other via exter-
nal media, because the participants in a dialog must remember earlier parts
of a conversation. Not surprisingly, forcing the scripts to communicate this
way causes many problems, considering that such communications rely on
unstated, and therefore easily violated, invariants.

Second, the use of a Web browser for the consumer’s side of the dialog
introduces even more complications. The primary purpose of a Web browser
is to empower consumers to navigate among a web of hyperlinked nodes at
will. A consumer naturally wants this same power to explore dialogs on the
Web. For example, a consumer may wish to backtrack to an earlier stage
in a dialog, clone a page with choices and explore different possibilities in
parallel, bookmark an interaction and come back to it later, and so on. Hence,
a programmer must be extremely careful about the invariants that govern the
communications among the scripts that make up an interactive Web program.
What appears to be invariant in a purely sequential dialog context may not
be so in a dialog medium that allows arbitrary navigation actions.

In this chapter, we make three contributions to the problem of designing
reliable interactive Web programs. First, we develop a simple, formal model
of Web interactions. Using this model, we can explain the above problems
concisely. Second, we develop a type system that solves one of these problems
in a provable manner (relative to the model). Third, because not all the checks
can be performed statically, we suggest run-time checks to supplement the
type system.

Section 2 describes a problem on an actual corporate Web site that suc-
cintly demonstrates the style of problems we study. Section 4 introduces a
model of Web interactions suitable for understanding problems with sequen-
tial programs. Section 5 uses the model to demonstrate two major classes
of mistakes. Section 6 introduces a standard type system for the Web that

Modeling Web Interactions and Errors 257

eliminates the first class of mistakes. Section 7 introduces a dynamic check
into the programming language that warns consumers of potential problems.
Sections 3 and 8 place our work in context.

2 A Sample Problem

We illustrate one of the Web programming problems with an example from
the commercial world. Figure 1 contains snapshots from an actual interaction
with Orbitz,1 which sells travel services from many vendors. It naturally in-
vites comparison shopping. In particular, a customer may enter the origin and
destination airports to look for flights between cities, receive a list of flight
choices, and then conduct the following actions:

1. Use the “open link in new window” option to study the details of a flight
that leaves at 5:50 pm (step 1). The consumer now has two browser win-
dows open.

2. Switching back to the choices window (step 2), the consumer can inspect
a different option, e.g., a flight leaving at 9:30 am (step 3). Now the
consumer can perform a side-by-side comparison of the options in two
browser windows.

3. After comparing the flight details, the customer decides to take the first
flight after all. The consumer switches back to the window with the
5:50 pm flight (step 4). Using this window (form), the consumer submits
the request for the 5:50 pm flight (step 5).

At this point, the consumer expects the reservation system to respond with a
page confirming the 5:50 pm flight. Alarmingly, even though the page indicates
that clicking would reserve on the 5:50 pm flight, Orbitz instead selects the
9:30 am flight. A customer who doesn’t pay close attention may purchase a
ticket on the wrong flight.

The Orbitz problem dramatically illustrates our case. Sadly, this is not
an isolated error. It exists in other services (such as hotel reservations) on
the Orbitz site. Furthermore, as plain consumers, we have stumbled across
this and related problems while using several vendor’s sites, including Apple,
Continental Airlines, Hertz car rentals, Microsoft, and Register.com. Clearly,
an error that occurs repeatedly across organizations suggests not a one-time
programming fault but rather a systemic problem. Hence, we must develop a
foundational model to study Web interactions.

3 Prior Work

The Bigwig project [2] (a descendant of Bell Lab’s Mawl project [1]) provides
a radical solution to the problem. The main purpose of the project is to
1 The screenshots were produced on June 28, 2002.

258 S. Krishnamurthi et al.

Choices

Flight 1 Flight 2

Problem

Clone
and

Submit

Submit

Commit to
First Choice

Switch Windows

Switch Windows

1

2 3

4

5

Legend

Click Submit

Switch Windows

Fig. 1. Orbitz interactions

Modeling Web Interactions and Errors 259

provide a domain-specific language for composing interactive Web sessions.
The language’s runtime system enforces the (informal) model of a session as a
pair of communicating threads [3]. For example, clicking on the back button
takes the consumer back to the very beginning of the dialog. While such a
runtime system prevents damage, it is also overly draconian, especially when
compared to other approaches to dealing with Web dialogs.

John Hughes [15], Christian Queinnec [22], and Paul Graham [13] indepen-
dently had the deep insight that a browser’s navigation actions correspond to
the use of first-class continuations in a program. In particular, they show that
an interaction with the consumer corresponds to the manipulation of a con-
tinuation. If the underlying language and server support these manipulations,
a program doesn’t have to terminate to interact with a consumer but instead
captures a continuation and suspends the evaluation. Every time a consumer
submits a response, the computation resumes the proper continuation. Put
differently, the communication among scripts is now internalized within one
program and can thus be subjected to the safety checks of the language.

Our prior work explored the implications of Queinnec’s in two ways. First,
we built a Web server that enables Web programs to interact directly with
consumers [14]. Programming in this world eliminates many of the problems
in a natural manner. Second, because this solution only applies if the server
offers support for storing continuations, we explored the automatic generation
of robust Web programs via functional compilation techniques [17]. While this
idea works in principle, a full-fledged implementation requires a re-engineered
library system and runtime environment for the targeted language.

Thiemann [26] started with Hughes’s ideas and provides a monad-based
library for constructing Web dialogs. In principle, his solution corresponds
to our second approach; his monads take care of the “compilation” of Web
scripts into a suitable continuation form. Working with Haskell, Thiemann can
now use Haskell’s type system to check the natural communication invariants
between the various portions of a Web program. This work must accommodate
effects (interactions with file systems, data bases, etc.), which it does in a
somewhat unnatural manner. Specifically, for each interaction, the cgi scripts
are re-executed from the beginning to the current point of interaction, which
can be computationally expensive. This monad-based approach does, however,
avoid the re-execution of effects, thereby preserving observed behavior relative
to these effects.

4 Modeling the Web

As Web browsers proliferate, we expect that both the number and the nature
of problems induced by interaction will grow. Browsers are likely to introduce
interaction features that are especially convenient to a user but are equally
unanticipated by the application developer. It becomes increasingly difficult
to reason about the behavior of a program in the context of each particular

260 S. Krishnamurthi et al.

browser; we would, therefore, benefit from a foundational model that encap-
sulates a wide variety of these interactions in a small set of primitives, akin to
what Turing machines or lambda calculi do for standard computation. This
section presents our first attempt at constructing such a model.

The model we present has four characteristics. First, it consists of a single
server and a single client, because we wish to study the problems of sequential
Web interactions. Second, it deals exclusively with dynamically generated
Web pages, called forms, to mirror html’s sublanguage of requests. Third,
the model allows the consumer to switch among Web pages arbitrarily; as
we show later, this suffices to represent the problem in Sect. 2 and similar
phenomena. Finally, the model is abstract with respect to the programming
language so that we can experiment with alternatives; here we use a lambda
calculus for forms and basic data, though we could also have used a model
such as Classic Java [10].

Our model lacks several properties that are orthogonal to our goals. First,
the model ignores client-side storage, a.k.a. “cookies,” which primarily ad-
dresses customization and storage optimizations. Server-side storage suffices
for our goals. Second, Web programmers must address concurrency via lock-
ing, possibly relying on a server that serializes each session’s requests or rely-
ing on a database. Distributing the server software across multiple machines
complicates concurrency further. Third, monitoring and restarting servers im-
proves fault tolerance. Fourth, the model does not allow the user to add fields
to or drop fields from Web forms before submission. While the http protocol
permits this, browsers typically ensure that this does not happen. Accord-
ingly, Web applications can protect themselves against dropped fields through
a simple dynamic check that will not, in practice, ever fail. Finally, the model
neither addresses nor introduces any security concerns, but existing solutions
for ensuring authentication and privacy apply [8, 11].

4.1 Server and Client

Figure 2 describes the components of our model. Each Web configuration (W)
consists of a single server (S) and a single client (C). The server consists of
storage (Σ) and a dispatcher (see Fig. 4). The dispatcher contains a table P
(for “programs”) that associates urls with programs and an evaluator that
applies programs from the table to the submitted form. Programs are closed
terms (M◦) in a yet to be specified programming language.

The client consists of the current Web form and a set of all visited Web
forms. Initially, the set is a singleton consisting of only the home page. It
then grows as the consumer visits additional pages. The model assumes that
the consumer can freely (nondeterministically) replace the current page with
some previously visited page, or visit a new page. Since the current page
is always an element of all previously visited pages, the consumer can also
return to this page. We claim that this model of a consumer represents most

Modeling Web Interactions and Errors 261

� � � � �
� � � � �
� � � � 	
 � �
� �

programs� � � � �� �
� � �

form
� � 	 � � � � ��

Id � � � �
� � �

Int � String

�
“”, “� ”, “ � � � ”, “ � � � ” � � String�
x, y, z � � Id�
www.drscheme.org, www.plt-scheme.org � � Url

Fig. 2. Components of the Web model

interesting browser navigation actions, including some not yet conceived by
browser implementors.2

The model distills a Web page to a minimal representation. Every page is
simply a form (F). It contains the url to which the form is submitted and a
set of form fields. A field names a value that the consumer may edit at will.
Figure 3 presents a concrete WebL form and its equivalent in html.

(form www.plt-scheme.org/my-program.ss
(name " � � � � ") (time " � � � � "))

<html>
<body>
<form action="www.plt-scheme.org/my-program.ss"

method="post">
<input type="text" name="name" value="Paul" />
<input type="text" name="time" value="1:30" />
<input type="submit" value="Submit">

</form>
</body>
</html>

Fig. 3. WebL form and equivalent html form

Figure 4 illustrates how the pieces of the model interact. The bold-faced
letters correspond to the nonterminals in Fig. 2. The server and client may run
on different machines, connected by a network. The client sends its current
form to the server. The form names a program on the server; the server applies
this program to the form and produces a response, possibly accessing the store
2 Entering arbitrary urls into the browser is a degenerate case of the user creating

a brand new form, possibly with an incorrect number of fields (zero) or the wrong
field names.

262 S. Krishnamurthi et al.

Web Server

Σ
read

write

Dispatcher

Evaluator
�
�

�
�Programs

�
�

�
�

submit

response

Web Client

Current
Form

�
�

�
�switch

Forms

�

�

� � ��

Fig. 4. The Web picture

in the process. Finally, the response replaces the current form on the client
and appears in the client’s set of visited forms.

To specify behavior, we use rewriting rules on Web configurations. Figure 5
contains rules that determine the behavior of the client and server as far as
Web programs are concerned. Each rule is indexed by an operation and takes
a server–client pair to a new server–client pair, reflecting the change caused
by the operation.

dp : Σ × F −→ Σ × F

fill-form : W −→ W

〈s, 〈(form u
−−−→
(k v0)),

−→
f 〉〉 ↪→ 〈s, 〈(form u

−−−→
(k v1)), {(form u

−−−→
(k v1))} ∪ −→

f 〉〉

switch : W −→ W

〈s, 〈f0,
−→
f 〉〉 ↪→ 〈s, 〈f1,

−→
f 〉〉 wheref1 ∈ −→

f

submit : W −→ W

〈〈σ0, p〉, 〈f0,
−→
f 〉〉 ↪→ 〈〈σ1, p〉, 〈f1, {f1} ∪ −→

f 〉〉
where 〈σ1, f1〉 = dp(σ0, f0)

Fig. 5. Language transition relation

fill-form allows the client to edit the values of fields in the current form. The
form with the new data both becomes the current form and is added to
the cache. This rule does not affect the server.

switch brings to the foreground a (possibly) different Web form from the
client’s repository of visited forms. In practice, this happens in a number
of ways: switching active browser windows, revisiting a cached page3 using
the back or forward buttons, or selecting a bookmark. This, too, does not
affect the server.

3 The actual behavior of revisiting a page depends on whether the page is cached
or not. Returning to a non-cached page falls under the submit rule.

Modeling Web Interactions and Errors 263

submit dispatches on the current form’s url to find a program in the table
P . This program consumes the current server state and the submitted
form to generate an updated server state and a response form. The server
records this new state, while the new form is sent to the client and becomes
the new current form. Figure 6 depicts this flow of control.

Server

Σ0

dp

Σ1

Client

f0

f1

�

�

�

Fig. 6. Client–server control flow

The actual dispatching and evaluation (which is triggered by dispatching) are
specific to the programming language, which we introduce next.

4.2 Functional Web Programming

Figure 7 specifies WebL, a core Web programming language. WebL extends
the call-by-value λ-calculus [21] with integers, strings, and Web forms, which
are records with a reference to a program. The language layer connects to the
Web layer of the model (Fig. 2) by providing the two missing components: the
syntax (M) and semantics of program evaluation, and the language-sensitive
dispatch function dp.

The form construct creates Web forms. The M.Id construct extracts the
value of a form field with the name Id. We specify the semantics of WebL
with a reduction semantics [9]. There are two reductions: the βv reduction
substitutes an argument value for the formal parameter in the body of a
function at an application, while the select reduction performs field lookup.

The bottom half of Fig. 7 specifies dispatching. It shows how dp processes
a submitted form form0. First, it uses the url in form0 to extract a program
from its table P . Second, it applies the program to the form and reduces this
application to a value form1. The store σ0 remains the same, because thusfar
WebL has no imperative constructs.

264 S. Krishnamurthi et al.

Syntax
� �

V
� (M M)
� Id

� (form Url
� � � � �� � � � �)

� � � � �

V
� � � � (� (Id) M) � 	

Semantics

E = [] � (E M) � (V E)
� (form

 � � � � � � �� � � � � (Id E)
� � � � �� � � � �)

� � � � �

(� �) E[((� (x) body) v)] � � � E[body[x � v]]
(� � � �) E[(form url

� � � � �� � � � � � (
� 	 � 	

)
� � � � �� �
 �
 �) .

� 	
] � � � E[

� �
]

Language to Web Connection
� �

(
� �

, (form Url
� � � �� � � � �))

� � � � �
form �

�

where prog
�

P(Url) and (prog (form Url
� � � �� � � � �)) � � �� form �

Fig. 7. Web programming language

4.3 Stateful Web Programming

Up to this point, scripts in our model can only communicate with each other
through forms. In practice, however, Web scripts often communicate not only
via forms but also through external storage (such as files and servlet session
objects [7]). To model such stateful communications, we extend WebL with
read and write primitives. Figure 8 presents these language extensions. The
two primitives empower programs to read flat values from, and to write flat
values to, store locations. The reduction relation−→vσ is the natural extension
of the relation −→v. The extended relation relates pairs of terms and stores
rather than just terms. Consequently the dispatcher starts a reduction with
the invoked program and the current store. At the end it uses the modified
store to form the next Web configuration. Because only one program may
modify the store at a time, the server model is sequential.

5 Problems with Web Applications

Our model of Web interactions can represent some common Web programming
problems concisely. Here we present two of them. The first problem is that
a Web script expects a different kind of form than is delivered. We dub this
problem the “(script) communication problem.” The second problem reveals

Modeling Web Interactions and Errors 265

Syntax

M
� � � � � (read Id) � (write Id M)

Semantics
� � � � � �

� � � � � � � �
�

�
if

� � � � � �
�� � � � � � � � � 	
 � � � � � �

�
� � � � � � � � � � � � � � � � � �

�
� � � � � � �
 � � � � � �

�
� � � � � � � � � � � � � � �

�

where Id � dom(
�

),
� � � � �

Language to Web Connection
� �

(Id � � � �)

� �
(

� �
, (form Url

� � � �� � � 	 �))
� � �

�
�

form �

�

where prog
�

p(Url)� � � � � � � � � �
form

	
 � � � � ��
Id

	 � � �
�

� � �� � � �
�

�
form �

�

Fig. 8. Language extensions for storage

a weakness of the hypertext transfer protocol. Due to the lack of an update
method, information on client Web pages becomes obsolete over time and,
hence, may mislead the consumer. We dub this problem the “(http) observer
problem” indicating that the http protocol does not permit a proper imple-
mentation of the Observer pattern [12] (which enables dependent observers to
be notified of state changes).

5.1 The Communication Problem

Since standard Web programs must terminate to interact with a consumer,
nontrivial interactive software consists of many small Web programs. If the
software needs to interact N times with the client, it consists of N +1 scripts,
and all scripts must communicate properly with their successors.4 Worse,
since the client can arbitrarily resubmit pages, the programmer cannot assume
anything about the scripts’ execution sequence.

Even without the difficulties of unusual execution sequences, splitting Web
programs into pieces can introduce errors. Consider the example in Fig. 9. The
server’s table contains two programs with the filenames start.ss and next.ss.5

The start.ss program prompts for the user’s name and directs this information
to next.ss. This second program attempts to verify some properties about the
consumer. In doing so, it assumes that the input form contains both name
and phone fields, and attempts to extract both. The attempt to extract the
nonexistent phone field results in a runtime error. The diagram illustrates the
problem graphically. When programmers mistakenly encode field names as-
sumptions into the store—a mistake that is easily made with Java servlet and
4 A good programmer may recognize opportunities for aggregating some of the

programs. It is also possible to use a “multiplexer” technique that merges all these
scripts into one single file and uses a dispatcher to find the proper subroutine.
The problems remain the same, however, because the various pieces of the same
program communicate via http.

5 Typically, “.ss” is the suffix for Scheme programs; we use it here to be suggestive
since our Web programming language is based on Scheme.

266 S. Krishnamurthi et al.

plt-scheme.org/cgi/start.ss
��

(� (x)
(form plt-scheme.org/cgi/next.ss

(name " � � � � � � � � ")))

plt-scheme.org/cgi/next.ss
��

(� (x)
(form plt-scheme.org/cgi/done.ss

(confirm-name � � � � � �
)

(confirm-phone � � � � 	 � �
)))

� �

start

�
�

next
phone

submit

()

response

submit

(name)

(form start.ss)

(form next.ss
(name ""))

fill-form

(form next.ss
(name "
 � "))

�

�

�

�

�

�

Fig. 9. Collaborating programs

asp.net session objects—these safety errors concerning form field accesses
become even more nefarious.

By now, programmers are well-aware of this problem and employ extensive
dynamic testing to find these mistakes. In Sect. 6, we present a type system
that discovers such problems statically and still allows programmers to develop
complex interactive Web programs in an incremental manner.

5.2 The Observer Problem

In a model-view-controller (mvc) architecture, a change to the model triggers
notification to all the views to update their display. Web programs do not
enjoy this privilege, because http does not provide for an update (or “push”)
method. Once a browser receives a page, it becomes outdated when the mvc
model changes on the server, which may be due to additional form submissions
from the consumer.

Modeling Web Interactions and Errors 267

The Observer problem is often, but not always, due to a confusion of
environments and stores, or form and server-side storage. A program that
reserves flights needs to use both kinds of storage to represent different kinds
of information [17]. Unfortunately, programmers who don’t understand the
difference may place information into the store when it really belongs in the
Web form.

Figure 10 shows a reformulation of Orbitz’s problem (see Sect. 2) in WebL.
The first of these programs, pick-flight, asks the customer for a preferred flight
time. The second program, confirm-flight, writes the selected flight time into
external storage before asking the user to confirm the flight time. The third
program, receipt-flight, reads the selected flight from storage and charges the
customer for a ticket.

pick-flight
��

(� (empty-form) (form confirm-flight (departure-time " � � � � � ")))

confirm-flight
��

(� (first-form)
(write your-flight first-form.departure-time)
(form receipt-flight (confirm-time (read your-flight))))

receipt-flight
��

(� (confirmed-form)
(buy-flight (read your-flight))
(form next-action (itinerary (read your-flight))))

Fig. 10. Stateful Web programs

It is easy to see that the WebL program models the problem in Sect. 2.
Submitting two requests for the confirm-flight program results in two pages
displaying different flight times on the client, yet only the flight time from the
most recent request resides in the server’s external storage. Submitting the
outdated form that no longer matches the storage produces the mistake.

6 Type Checking Communication

Trying to extract a field from a form fails in WebL if the form does not contain
the named field. To prevent such errors, languages often employ a type system
(and/or safety checks). Our Web model shows, however, that straightforward
type checking doesn’t work, because programs consist of many separate scripts
loosely connected via forms and storage. Checking all the scripts together is
infeasible. Not only are these scripts developed and deployed in an incremental
manner, they may also reside on different Web servers and/or be written in
different programming languages. Furthermore, consumers can always edit a
url to generate a fresh request that the server has not seen before, akin to

268 S. Krishnamurthi et al.

a user typing a fresh command at the read-eval-print loop of an interactive
language implementation.

We therefore provide an incremental type system for Web applications.
When the server receives a request for a url not already in its table, it in-
stalls the relevant program to handle the request. Before installing the new
program, the server type checks the program, which is a check for internal
consistency. In addition, the server also derives constraints that this new pro-
gram imposes on the other programs on the server with which it interacts.
These constraints become external consistency checks. If either type checking
or constraint resolution fails, the program is rejected, resulting in an error. In
practice, a programmer may register several programs of one application and
have them typed checked before they are deployed.

The type system for internal consistency checking heavily borrows from
simply-typed λ-calculi with records [5, 20, 24]. Figure 11 defines the type
system. In addition to the usual function type (−→) and primitive types Int
and String, the type language also includes types for Web forms. Similar to
record types, form types contain the names and types of the form fields that,
according to their intended usage, must have flat (marshallable) types. We
overload the type environment to map both variables and store locations to
types. An initial type environment Γ0 maps locations in the external storage
to flat types. Typed WebL differs from WebL only by requiring types for
function arguments. That is, (λ(x)M) becomes (λ(x : τ)M) in Typed WebL.

The type system also serves as the basis for external consistency checking.
As the type checker traverses the program, it generates constraints on external
programs. The type judgments, as shown in Fig. 11, have antecedents (above
the bar) which, when conjoined, specify a condition. When this condition
holds, the consequent (below the bar) also holds. Each judgment rules that a
type environment (Γ) proves that a term has a particular type, and generates
a (possibly empty) set of constraints. A constraint Url: (form

−−−−→
(Id τ�)) insists

that the program associated with Url consume Web forms of type (form
−−−−→
(Id τ�)).

Most type rules in Fig. 11 handle constraints in a straightforward man-
ner. Checking atomic expressions yields the empty set of constraints. Check-
ing most expressions that contain subexpressions simply propagates the con-
straints from checking the subexpressions. The application rule says that if
the function position generates constraint ξ0 and the argument position gen-
erates constraint ξ1, then the entire application expression will generate the
union of these, i.e., the constraint ξ0 ∪ ξ1. The only expressions that generate
fresh atomic constraints are form expressions.

The expression (form: Url
−−−−→
(Id m)) constructs a form value, so its type

is similar to a record type. This form expression also indirectly connects the
program associated with Url to the form the consumer will submit later. If
the type-checker looked up the program associated with Url immediately and
compared the form type with the function’s argument type, this would suffice.

Modeling Web Interactions and Errors 269

Types
Type

�
Type � �

Type

� (form
� � � � � � � �� � � � � � � � �)

� � � � � �� � � � � �
String � Int

Type Judgments

� �
M : Type, �

where
� � � � 	

: (form
� � � �� � � � �) �

Type Derivation Rules

� �
string : String,

� �
� �

n : Int,
� �

� �
x � � �

� �
x :

� � � �
� �

� :
� � � �

:
� � �

� �
(� (x :

� �
) m) :

� � � � � � �

� � � �
:

� � � � � � � �
� � �

� :
� � � �

�

� � � � � �
� � :

� � � � � �
�

� � �
: (form

� � � � � � �� �� � � 	 � � 	 �)
� �

� � � � � � �
:

� � � � �

� � � � � � � � � � �� � �
:

� � � �

� �

(form Url
� � � � �� � � � �) : (form

� � � � �� � � � � �)
�

�
Url : (form

� � � � �� � � � � �) � � � ��

� �
 � � � �
� �

(read l) :
� � � � �

� �
 � � � � � � �
:

� � � �
� �

(write l m) :
� � � �

Fig. 11. Internal types for WebL

It would not, however, allow for independent development of connected Web
programs. Instead, type checking the form expression generates the constraint
Url: (form

−−−−→
(Id τ�)), which must be checked later.

Figure 12 extends the definition of the server state S with a set of con-
straints Ξ. The function Install-program adds a new programm to the server’s
table p at a given Url if the program is internally and externally consistent.
That is, the program must type check and the generated constraints must be
consistent with the constraints already on the server. A set of constraints is
consistent iff the set is a function from urls to types. The Constrain function
ensures that the program m is well typed, and it extends the existing set of
constraints ξ0 to include constraints generated during type checking ξ1.

The incremental type checker catches communication errors, including the
one demonstrated in Fig. 9. Adding type annotations results in the pair of
programs in Fig. 13. Type checking produces types and constraints for both
programs. The constraints, however, reveal a problem. Checking start.ss re-
sults in the following constraint:

{ next.ss : (form (name String))}
When the server installs next.ss, the Constrain function generates this con-
straint:

{next.ss : (form (name String) (phone String)) }

270 S. Krishnamurthi et al.

Server Extension and Additional Functions� � � � � � �
Install-program : Url

� � � � �
Install-program

	
 � � � � � � � � � � � � � � �
�

 � � � � � � �
 � � � � � �
Constrain

	 � �
 � � � �
� � �

�
when Consistent(Constrain(

�
, Url, m))

Consistent : � � �
boolean

Consistent(
�
) �

(Url : (form
� � � � � �	 � � � � �)) � � �

(Url : (form
� � � � � �	 � �

�
�

�)) � � � �
� � � � � �	 � � � � � � � � � � � �	 � �

�
�

�

Constrain : �
 � �
M � � �

Constrain(
� �

, Url, m)
�

� � � �
� � �

Url : (form
� � � � � � �	 � � � � � � �) �

where� � �
m : (form

� � � � � � �	 � � � � � � �)
� �

(form
� � � � � � � � �	 � � � � � � � � �),

�
�

Fig. 12. Constraint checking

plt-scheme.org/cgi/start.ss
��

(� ([x : (form)])
(form plt-scheme.org/cgi/next.ss

(name " � � � � � � � � ")))

plt-scheme.org/cgi/next.ss
��

(� ([x : (form (name String) (phone String))])
(form plt-scheme.org/cgi/done.ss

(confirm-name � � � � � �
)

(confirm-phone � � � � 	 � �
)))

Fig. 13. Typed collaborating programs

These two constraints are not Consistent, so the server rejects the next.ss
program.

With type annotations, type checking, constraint generation, and con-
straint checking in place, the system provides three levels of guarantees. The
first result shows that individual Web scripts respond to appropriately typed
requests without getting stuck.

Proposition 1. For all m in M, τ in Type, and set of Constraints ξ, if Γ0 -
m : τ, ξ then for some v in V, m −→∗

v ν.

The proof is essentially the same as the usual proof of strong normalization
for the simply-typed lambda calculus.

The second proposition shows that the server does not apply Web pro-
grams to forms of the wrong type, as long as the server starts in a good state.
Before we can state it, however, we need to explain what it means for a server
state to be well-typed and for a submitted form to be well-typed. A server
is well-typed when all the programs have function types that map forms to
forms and when all the constraints are consistent:

Modeling Web Interactions and Errors 271

server-typechecks(〈σ, p, ξ〉) iff Consistent(ξ) and for each Url in dom(p),

Γ0 - p (Url) : (form
−−−−−→
(Id1τ�1)) −→ (form

−−−−−→
(Id2τ�2)), ξUrl and

ξUrl ⊂ ξ and Url: (form
−−−−→
(Idτ�1)) ∈ ξ

A form is well typed with respect to a server if it refers to a program on the
server that accepts that type of form.

form-typechecks (〈σ, p, ξ〉, (form Url
−−−−→
(Id v�))) iff

there are types −→τ� such that
−−−−−−−−−−→
Γ0 - v� : τ�, {} and

Url : (form
−−−−→
(Id τ�)) is in ξ and

and Url ∈ dom(p)

Proposition 2. If server-typechecks(s0) and form-typechecks (s0, f0) then for
some 〈s1, 〈f1,

−→
f 〉〉,

〈s0, 〈f0,
−→
f 〉〉 ↪→submit 〈s1, 〈f1,

−→
f 〉〉.

If the server’s set of constraints is closed, the resulting configuration also
guarantees the success of the next submission.

Proposition 3. If 〈〈σ, p, ξ〉, 〈f0,
−→
f 〉〉 ↪→submit 〈s1, 〈f1,

−→
f 〉〉,

server-typecheck(〈σ, p, ξ〉), form-typechecks(〈σ, p, ξ〉, f0),

and for each constraint Url : (form
−−−→
(Idτ)) in ξ, if Url is in dom(p) then

server-typecheck(s1) and form-typechecks(s1, f1).

In practice these checks only need to be performed upon demand. This
strategy makes it possible to incrementally install programs that refer to other
programs that have not yet been written and that are used only in rare cases,
with the caveat that they are only checked when they are installed.

Alternative Web Programming Languages

It is not necessary to instantiate our model with a functional programming
language. Instead, we could have used a language such as <bigwig>, which is
the canonical imperative while-loop language over a basic data type of Web
documents [25]. Furthermore, the <bigwig> language already provides an in-
ternal type system that derives and checks information about Web documents.
Its type system is stronger than ours, allowing programmers to use complex
mechanisms for composing Web documents.

The <bigwig> project and our analysis differ with respect to the ultimate
goal. First, our primary goal is to accommodate the existing Web browser
mechanisms. In contrast, <bigwig>’s runtime system disables the browser’s
navigation functionality. Second, we wish to accommodate an open world,
where scripts in asp.net, Perl, or Python can collaborate. Our propositions
show how type checks in the language and in the server can accommodate just

272 S. Krishnamurthi et al.

this kind of openness. The <bigwig> project does not provide a model and
therefore does not provide a foundation for investigating Web interactions in
general.

Separating constraints on collaborating programs from the type checking
of individual programs lends the system flexibility. For Typed WebL pro-
grams, the set of forms produced could be computed simply by examining the
program’s return type. For other languages the local type checking and the
constraint generation may be less connected.

Extending our constraint checking to dynamically typed languages requires
a type inference system capable of determining the types of all possible forms
a program might produce. Though this is not necessary for Typed WebL, we
choose to keep the constraint generation separate to emphasize the indepen-
dence of the constraints from the languages used for individual scripts.

7 Addressing Outdated Observers

Section 5.2 describes the Observer problem, and points out that it is caused
by the Web’s lack of a “push” method. Some Web sites simulate pushing
data by using a “meta” tag in html that forces the generated page to refresh
its content periodically. A näıve implementation of this technique suffers from
obvious scalability problems. More germane to our discussion, however, is that
this does not actually implement the desired user interaction.

To understand this, consider the example in Sect. 2. The user opens a new
window in step 1 to explore the flight departing at 5:50 pm. When the user
examines a different flight in step 3, a push implementation would eventually
update the information in the window for the 5:50 pm flight, to maintain its
currency with the server’s state. While this makes the flight reservation made
after step 5 consistent with the information on the window, it means that the
user’s mental association of the first window with the flight at 5:50 pm has
been silently invalidated by the update. This error is just as insidious as that
in Sect. 2.

A better solution is to modify the server so that it detects when a submit-
ted form does not reflect the server state. Roughly speaking, this corresponds
to the execution of a safety check like the one for array indexing or list de-
structuring. If the “up-to-date” test fails, the server informs the consumer of
the situation, which prevents the erroneous computation from causing further
damage. Again, in analogy to safety checks, the server signals an exception and
thus informs the consumer at the earliest opportunity that something went
wrong. We believe that this approach is general because it is independent
of the scripting language. Further, dynamic checking is an appropriate com-
promise because these kinds of situations depend on dynamic configurations
rather than on static properties of the program.

To check on the datedness of a submitted form, the server must perform
some additional bookkeeping. Specifically, determining if something is out-

Modeling Web Interactions and Errors 273

dated requires a notion of time, and therefore the server must keep track of
time [23]. For us, time is the number of processed submissions. The external
storage Σ changes so that it maps locations not only to flat values but also
to a timestamp for the last write, i.e., Σ � Id −→ Time× V� (compare to the
signature in figure 8).

In addition, the server maintains a carrier set of all storage locations read
or written during the execution of a script. When it sends each page to the
consumer, the server adds the current time stamp and this set of locations as
an extra hidden field on the page.

With this additional bookkeeping, the server can now check whether each
request is up-to-date. When a request arrives, the server extracts both the
carrier set and the page creation time. If any of the timestamps attached to
the locations in the carrier set are out of date, then the submitted form may
be inconsistent with the data in the current server store, and the server signals
an exception identifying the out-of-date items:

A form with carrier set CS and time stamp T submitted to a server
with current state σ is out of date if and only if any of the locations
in CS have a time stamp in σ that is larger than T .

The actual size of the carrier set will vary based not only on the script’s
function but also on its implementation (i.e., depending on how stateful it is).

Clearly, a näıve use of this test produces many false positives. For example,
a script may use and modify the server state to compute a page counter, a set
of advertisements, or other information irrelevant to the consumer. If a form
is out of date only for “irrelevant” storage locations, the consumer should
clearly not receive a warning. We therefore allow programs to specify whether
reading or writing a location in the server state is a relevant or irrelevant action
from the consumer’s perspective. Assuming that language implementors make
this change, the Web server can reduce the carrier set that it collects during
a script execution and the number of warnings it issues.

8 Conclusion

This chapter introduces a formal model of sequential, interactive Web pro-
grams. We use the model to describe classes of errors that occur when con-
sumers interact with programs using the natural capabilities of Web browsers.
The analysis pinpoints two classes of problems with scripting languages and
servers.

To remedy the situation, languages used for scripting should come with
type checkers that compute the shape of expected forms on the input side
and the shape of forms that the scripts may produce. These languages should
also allow scripts to specify which actions on the server’s state are relevant for
the consumer. Furthermore, servers should be modified to integrate the type

274 S. Krishnamurthi et al.

information from the scripts. In particular, servers should only submit forms
to a script if the form is well-typed and its content is up-to-date.

Most combinations of Web servers and Web application programming lan-
guages fail to implement either kind of test. All of them, in particular, fail to
check for the currency of data, even those whose authors are keenly aware of
the problem described in Sect. 2. While we have implemented our model in a
toy Web server, we have not (yet) ported the code to our PLT Web server [14].
Similarly, WASH/CGI [26] is based on a purely functional programming lan-
guage in recognition of the problems involving state; the careful management
of state appeares to address the problem of Section 2. This design is, however,
deceiving. The true culprit is a lack of server-based checks that warn users
about outdated information.

This formal model has already proven useful in other work. Web programs
naturally give rise to temporal properties governing their execution over the
course of a workflow, making model checking [6] an attractive verification
technique. A näıve model construction based purely on the program source,
however, fails to take into consideration the many interaction possibilities
introduced by browsers, and thus fails to catch errors of the sort discussed
in this paper. To model each browser primitive would, however, be onerous.
Our work on model checking of Web programs [16] therefore uses the model of
this paper to constrain the language of analysis, and can thus verify programs
that operate in any browser so long as all their interaction primitives can be
reduced to the ones presented in this paper.

In short, the formal model helps us to first reduce the complexity of Web
interaction primitives to a small and manageable number. It then helps us
describe common Web problems in terms of these primitives. We can then
derive verification techniques to address these problems. We hope to exploit
this knowledge to build better languages for programming applications that
reside on servers and in Web browsers.

Acknowledgment

Thanks to Jacob Matthews for helping us experiment with WASH/CGI, and
to Scott Smolka for his careful editorial work.

References

1. Atkins, D. L., T. Ball, G. Bruns and K. C. Cox. Mawl: A domain-specific
language for form-based services. Software Engineering, 25(3):334–346, 1999.

2. Brabrand, C., A. Møller, A. Sandholm and M. Schwartzbach. A language for
developing interactive Web services, 1999. Unpublished manuscript.

3. Brabrand, C., A. Møller, A. Sandholm and M. I. Schwartzbach. A runtime
system for interactive Web services. In Journal of Computer Networks, pages
1391–1401, 1999.

Modeling Web Interactions and Errors 275

4. BrightPlanet. DeepWeb.
http://www.completeplanet.com/Tutorials/DeepWeb/.

5. Cardelli, L. Type systems. In Handbook of Computer Science and Engineering.
CRC Press, 1996.

6. Clarke, E., O. Grumberg and D. Peled. Model Checking. MIT Press, 2000.
7. Coward, D. Java servlet specification version 2.3, October 2000.

http://java.sun.com/products/servlet/.
8. Dierks, T. and C. Allen. The transport layer security protocol, January 1999.

http://www.ietf.org/rfc/rfc2246.txt.
9. Felleisen, M. and R. Hieb. The revised report on the syntactic theories of

sequential control and state. Theoretical Computer Science, 102:235–271, 1992.
Original version in: Technical Report 89-100, Rice University, June 1989.

10. Flatt, M., S. Krishnamurthi and M. Felleisen. Classes and mixins. In
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 171–183, January 1998.

11. Freier, A. O., P. Karlton and P. C. Kocher. Secure socket layer 3.0, November
1996. IETF Draft http://wp.netscape.com/eng/ssl3/ssl-toc.html.

12. Gamma, E., R. Helm, R. Johnson and J. Vlissides. Design Patterns, Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1994.

13. Graham, P. Beating the averages. http://www.paulgraham.com/avg.html.
14. Graunke, P. T., S. Krishnamurthi, S. van der Hoeven and M. Felleisen. Program-

ming the Web with high-level programming languages. In European Symposium
on Programming, pages 122–136, April 2001.

15. Hughes, J. Generalising monads to arrows. Science of Computer Programming,
37(1–3):67–111, May 2000.

16. Licata, D. R. and S. Krishnamurthi. Verifying interactive Web programs. In
IEEE International Symposium on Automated Software Engineering, pages 164–
173, September 2004.

17. Matthews, J., R. B. Findler, P. T. Graunke, S. Krishnamurthi and M. Felleisen.
Automatically restructuring programs for the Web. Automated Software Engi-
neering, 11(4):337–364, 2004.

18. Microsoft Corporation. http://www.microsoft.com/net/.
19. NCSA. The Common Gateway Interface. http://hoohoo.ncsa.uiuc.edu/cgi/.
20. Pierce, B. C. Types and Programming Languages. MIT Press, 2002.
21. Plotkin, G. D. Call-by-name, call-by-value, and the λ-calculus. Theoretical

Computer Science, pages 125–159, 1975.
22. Queinnec, C. The influence of browsers on evaluators or, continuations to pro-

gram Web servers. In ACM SIGPLAN International Conference on Functional
Programming, pages 23–33, 2000.

23. Reed, D. P. Implementing atomic actions on decentralized data. In ACM Trans-
actions on Computer Systems, pages 234–254, February 1983.

24. Rémy, D. Typechecking records and variants in a natural extension of ML. In
ACM Symposium on Principles of Programming Languages, pages 77–88, 1989.

25. Sandholm, A. and M. I. Schwartzbach. A type system for dynamic Web docu-
ments. In Symposium on Principles of Programming Languages, pages 290–301,
2000.

26. Thiemann, P. WASH/CGI: Server-side Web scripting with sessions and typed,
compositional forms. In Practical Applications of Declarative Languages, pages
192–208, 2002.

Composition of Interacting Computations

Farhad Arbab1,2

1 Center for Mathematics and Computer Science (CWI), Amsterdam, The
Netherlands

2 Leiden University, Leiden, The Netherlands

Summary. The field of programming has been concerned with software composi-
tion since its very inception. Our models for software composition have brought us
up to a new plateau of software complexity and composition. To tackle the challenges
of composition at this level requires new models for software composition centered
on interaction as a first-class concept. Interaction has been studied as an insepara-
ble concern within concurrency theory. Curiously, however, interaction has not been
seriously considered as a first-class concept in constructive models of computation.

Composition of systems out of autonomous subsystems pivots on coordination
concerns that center on interaction. Coordination models and languages represent a
recent approach to design and development of concurrent systems. In this chapter,
we present a brief overview of coordination models and languages, followed by a
framework for their classification. We then focus on a specific coordination language,
called Reo, and demonstrate how it provides a powerful and expressive model for
flexible composition of behavior through interaction.

Reo serves as a good example of a constructive model of computation that treats
interaction as a (in fact, the only) first-class concept. It uniquely focuses on the
compositional construction of connectors that enable and coordinate the interactions
among the constituents in a concurrent system, without their knowledge. We show
how Reo allows complex behavior in a system to emerge as a composition of primitive
interactions.

1 Introduction

Naturalization of computing and information technologies into human enter-
prises propels the emergence of complex, dynamically evolving, distributed
information-intensive systems. The interest in understanding, design, spec-
ification, and validation of the architectures of these systems motivates the
study of models for a-posteriori composition of concurrent computations, their
interactions, and their coordination. The desire to compose running systems
by gluing together existing pieces of software and subsystems as reusable com-
ponents, and to verify that they conform to such architectures, gives practical
relevance and urgency to this undertaking.

278 F. Arbab

Software composition has been a concern since the inception of program-
ming. Recognizing the need to go beyond the success of available tools is
sometimes more difficult than accepting to abandon what does not work. Our
models for software composition have served us well-enough to bring us up
to a new plateau of software complexity and composition requirements be-
yond their own effectiveness. In this sense, they have become the victims of
their own success. We now need to tackle dynamic composition of behavior
by orchestrating the interactions among independent distributed subsystems
or services whose actual code and algorithms must remain independent of
one another. This requires new models for software composition centered on
interaction as a first-class concept. Various aspects of interaction protocols
have been studied in concurrency theory. Curiously, however, interaction has
not been seriously considered as a first-class concept in constructive models of
computation.

Different models of computation exist to serve different purposes. Tur-
ing machines, for instance, capture the essence of algorithmic computing as
a sequence of mechanical operations that, if terminates, transforms its given
input into an output. Turing machines were devised to explore the expres-
siveness of this notion of computing, and its limits. They are not (meant to
be) useful for the actual construction of computing systems, hardware or soft-
ware. Examples of constructive models of computation include the so-called
von Neumann model, functional programming, logic programming, imperative
programming, and object oriented programming.

Concurrent Turing machines do not add expressiveness over what a single
universal Turing machine offers: whatever algorithmic computation a set of
concurrent Turing machines can perform, can also be performed on a single
Turing machine. In spite of this expressive equivalence, models of computa-
tion that have proven effective for construction of sequential programs are
notoriously inadequate for construction of concurrent systems. Calculi such
as CSP [1], CCS [2], the π-calculus [3, 4], process algebras [5, 6, 7], and the ac-
tor model [8] are among the various models of computation specifically aimed
at the complexities that arise in the construction of concurrent systems.

Wegner’s proposal of interaction machines [9, 10] and the claim that they
model more than the algorithmic notion of computing captured by Turing ma-
chines have drawn considerable attention on interaction as a new paradigm in
computing. However, interaction machines, as well as most subsequent work
on interaction, e.g., by Goldin, et al. [11], and van Leeuwen and Wieder-
mann [12, 13], focus on expressiveness issues. As such, one may regard them as
the “Turing machine level” work for the new paradigm of interaction. Wegner
and Goldin have proposed interaction as a framework for modeling of complex
systems [14].

Currently, what has emerged out of decades of experience with concur-
rency forms the mainstay of models and tools for construction and analysis of
interactive computing systems. However, one should not misconstrue the lack
of better tools and familiarity of existing ones as evidence for their adequacy.

Composition of Interacting Computations 279

The fact that we currently apply languages and tools based on various con-
current object oriented models, the actor model, and various process algebras,
etc., simply means that they comprise the best in our available arsenal, but
it does not mean that they necessarily embody the most appropriate models
for tackling interaction in practice. If interaction identifies a distinctive shift
within (or out of) concurrency, of a magnitude deserving recognition as a new
paradigm, then this must surely have at least some nontrivial practical im-
plications on suitable models and tools for construction of systems exploiting
that distinction. What exactly are the properties that give rise to this distinc-
tion and how can they be utilized to offer more effective constructive models
of interaction?

The most striking hallmark of interaction is that it is a phenomenon that
involves two or more actors. This is in contrast to action, which is what a
single actor manifests. A model of interaction must allow us to directly specify,
represent, construct, compose, decompose, analyze, and reason about that
which transpires among two or more engaged actors, without the necessity to
be specific about their actions.

Contemporary models of concurrency predominantly treat interaction as
a secondary or derived concept. Process calculi, for instance, are models for
constructing processes. They offer operators for composing atomic processes
or primitive actions into more complex processes. Interaction ensues only as
a consequence of the unfolding of the behavior of the processes involved in
a concurrent system. For example, as a process p unfolds and performs its
actions, one of its primitive actions, such as a send, collides with a compatible
primitive action, such as a receive, performed by another process q. It is this
collision of actions that forms an interaction. Whether this collision occurs
by dumb luck, divine intervention, or intelligent design, is irrelevant. A split-
second earlier or later, perhaps in a different run, the same two actions could
have collided with other actions of other processes, yielding entirely different
interactions. Actions and their composition have explicit constructs used to
define a system. Interaction is ephemeral and implicit, and plays no structural
role in the construction of a system. Other contemporary models for software
composition, such as the object oriented paradigm or the actor model, fair no
better than process calculi in this regard.

A constructive model in the paradigm of interactive computing must treat
interaction as a first-class concept. This means that it must offer (1) primitive
interactions, and (2) rules of composition for combining (primitive) interac-
tions into more complex interactions, without the need to specify (the actions
of) the actors involved.

The coordination language Reo serves as a good example of a construc-
tive model of interaction. In this chapter, we first present a brief overview of
coordination models and languages, followed by a framework for their classifi-
cation. We then describe Reo and demonstrate that it provides a powerful and
expressive model for flexible composition of behavior through interaction. Reo
uniquely focuses on the compositional construction of connectors that enable

280 F. Arbab

and coordinate the interactions among the constituents in a concurrent sys-
tem, without their knowledge. Reo shows how complex behavior in a system
can emerge as a composition of primitive interactions.

2 Coordination

When a group of people collaborate to achieve a common objective, it is quite
usual for an individual to emerge or be designated as their leader. An impor-
tant role of the leader is to coordinate the activities of the other collaborators
to ensure that the group objective is achieved. A good deal of what a leader
does to coordinate the activities of the others in the group is independent of
the true nature of those activities and the group objective; furthermore, there
is a great deal of overlap and congruence among the coordinating activities of
the leaders of various groups working to achieve different objectives. Had this
not been the case, management as a separate discipline would not have made
any sense. The need for leadership and coordination among people increases
as the number of collaborators and the complexity of their interactions in-
crease. Analogously, our increasingly more complex computing applications
involve intricate interactions among multitudes of constituents (e.g., agents,
threads, processes, objects, components, etc.) and exhibit the need for explicit
attention to their coordination and systematic mechanisms for its implemen-
tation. Whether this coordination is distributed or centralized is irrelevant
here. What matters is recognizing that (1) the nature of coordination activity
is different than and independent of specific applications, and (2) coordination
activity in all applications involves a common set of primitive concepts.

Coordination languages, models, and systems constitute a recent field of
study in programming and software systems, with the goal of finding solutions
to the problem of managing the interaction among concurrent programs. Coor-
dination can be defined as the study of the dynamic topologies of interactions
among interaction machines, and the construction of protocols to realize such
topologies that ensure well-behavedness. Analogous to the way in which topol-
ogy abstracts away the metric details of geometry and focuses on the invariant
properties of (seemingly very different) shapes, coordination abstracts away
the details of computation in interaction machines, and focuses on the invari-
ant properties of (seemingly very different) programs. As such, coordination
focuses on patterns that specifically deal with interaction.

Coordination languages can be thought of as the linguistic counterpart
of the ad hoc platforms that offer middle-ware support for software com-
position. The inability of traditional middle-ware software to deal with the
cooperation model of a concurrent application in an explicit form contributes
to the difficulty of developing working concurrent applications that contain
large numbers of active entities with nontrivial cooperation protocols. In spite
of the fact that the implementation of a complex protocol is often the most
difficult and error prone part of an application development effort, the end

Composition of Interacting Computations 281

result is typically not recognized as a “commodity” in its own right, because
the protocol is only implicit in the behavior of the rest of the concurrent soft-
ware. This makes maintenance and modification of the cooperation protocols
of concurrent applications much more difficult than necessary, and their reuse
next to impossible. In contrast to middle-ware software such as PVM [15],
MPI [16], COM+ [17], CORBA [18], etc., coordination models and languages
are meant to offer a systematic means to close the conceptual gap between
the cooperation model of an application and the lower-level communication
model used in its implementation.

Coordination languages are most relevant specifically in the context of
open systems, where the entities that participate in a system are not fixed
at the outset. Coordination is also relevant in design, development, debug-
ging, maintenance, and reuse of all concurrent systems, where it addresses a
number of important software engineering issues. The current interest in con-
structing applications out of independent software components necessitates
specific attention to the so-called glue-code. The purpose of the glue-code is
to compose a set of components by filling the significant interface gaps that
naturally arise among them, simply because they are not (supposed to be)
tailor-made to work with one another. Using components, thus, means under-
standing how they individually interact with their environment, and specifying
how they should engage in mutual, cooperative interactions in order for their
composition to behave as a coordinated whole. Many of the core issues in-
volved in component composition have already been identified and studied as
key concerns in work on coordination. Coordination models address such key
issues in component based software engineering as specification, interaction,
and dynamic composition of components. Specifically, exogenous coordination
models provide a very promising basis for the development of effective glue-
code languages because they enable third-party entities to wield coordination
control over the interaction behavior of mutually anonymous entities involved
in a collaboration activity from outside of those participating entities.

One of the best known coordination languages is Linda [19, 20], which is
based on the notion of a shared tuple space. Linda is not really a full pro-
gramming language: its small set of primitives is meant to augment existing
programming languages. The tuple space of Linda is a centrally managed
resource and contains all pieces of information that processes wish to com-
municate with each other. Linda processes can be written in any language
augmented with Linda primitives. There are only four primitives provided by
Linda, which treat the tuple space as associative memory and operate on sin-
gle tuples. The primitive in searches the tuple space for a matching tuple and
deletes it; out adds a tuple to the tuple space; read searches for a matching
tuple in the tuple space; and eval starts an active tuple (i.e., a process). Nu-
merous other coordination models and language extensions, e.g., JavaSpace
of Jini [21, 22], are based on Linda-like models.

282 F. Arbab

Besides the “generative tuple space” of Linda, a number of other interest-
ing models have been proposed and used to support coordination languages
and systems. Examples include various forms of “parallel multiset rewriting”
or “chemical reactions” as in Gamma [23], models with explicit support for
coordinators as in Manifold [24, 25], “software bus” as in ToolBus [26], and
a calculus of generalized-channel composition as in Reo [27]. A significant
number of these models are based on a few common notions, such as pattern-
based, associative communication [28], that complement the name-oriented,
data-based communication of traditional languages for parallel programming.
See [29] for a comprehensive survey of coordination models.

Coordination languages have been applied to the parallelization of compu-
tation intensive sequential programs in the fields of simulation of fluid dynam-
ics systems, matching of DNA strings, molecular synthesis, parallel and dis-
tributed simulation, monitoring of medical data, computer graphics, analysis
of financial data integrated into decision support systems, and game playing
(chess). See [30, 31, 32, 33] for some concrete examples.

3 Classification of Coordination Models

Some of the important properties of different coordination languages become
clear when we classify them along the following three dimensions: focus of
coordination, locus of coordination, and modus of coordination. Although a
detailed description of most individual coordination models is beyond the
scope of our interest in this chapter, an overview of the dimensions of this
classification helps to clarify the issues they address, and thus the concerns of
coordination as a field.

3.1 Focus

Focus of coordination refers to the aspect of the applications that a coor-
dination model emphasizes as its primary concern. Significant aspects used
by various models as their focus of coordination include data, control, and
dataflow, respectively yielding data-oriented, control-oriented, and dataflow-
oriented families of coordination models.

For instance, Linda uses a data-oriented coordination model, whereas
Manifold is a control-oriented coordination language. The activity in a data-
oriented application tends to center around a substantial shared body of data;
the application is essentially concerned with what happens to the data. Ex-
amples include database and transaction systems such as banking and airline
reservation applications. On the other hand, the activity in a control-oriented
application tends to center around processing or flow of control and, often, the
very notion of the data, as such, simply does not exist; such an application is
essentially described as a collection of activities that genuinely consume their
input data, and subsequently produce, remember, and transform “new data”

Composition of Interacting Computations 283

that they generate by themselves. Examples include applications that involve
work-flow in organizations, and multiphase applications where the content,
format, and/or modality of information substantially changes from one phase
to the next.

Dataflow-oriented models, such as Reo, use the flow of data as the only
(or at least the primary) control mechanism. Unlike data-oriented models,
dataflow models are oblivious to the actual content, type, or structure of
data and are instead concerned with the flow of data from their sources to
their destinations. Unlike control-oriented models, events that trigger state
transitions are limited to only those that arise out of the flow of data.

3.2 Locus

Locus of coordination refers to where coordination activity takes place, clas-
sifying coordination models as endogenous or exogenous. Endogenous models,
such as Linda, provide primitives that must be incorporated within a compu-
tation for its coordination. In contrast, exogenous models, such as Manifold
and Reo, provide primitives that support coordination of entities from with-
out. In applications that use exogenous models, primitives that affect the
coordination of each module are outside the module itself.

Endogenous models are sometimes more natural for a given applica-
tion. However, they generally lead to an intermixing of coordination prim-
itives with computation code, which entangles the semantics of computation
with coordination protocols. This intermixing tends to scatter communica-
tion/coordination primitives throughout the source code, making the coop-
eration model and the coordination protocol of an application nebulous and
implicit: generally, there is no piece of source code identifiable as the coop-
eration model or the coordination protocol of an application, that can be
designed, developed, debugged, maintained, and reused, in isolation from the
rest of the application code. Figure 1 uses the dining philosophers problem
to illustrate endogenous coordination in C-Linda. Observe that the decisions
about the total number of philosophers (in this case, 4), the number of forks
(also 4), and the actual scheme for prevention of deadlock (the “meal tickets”
scheme, the number of available meal tickets, and the adherence to their use),
which comprise the coordination protocol of this application, are all explicit
concerns inside the code of philosophers.

On the other hand, exogenous models encourage development of coordina-
tion modules separately and independently of the computation modules they
are supposed to coordinate. Consequently, the result of the substantial effort
invested in the design and development of the coordination component of an
application can manifest itself as tangible “pure coordinator modules” which
are easier to understand, and can also be reused in other applications.

284 F. Arbab

#define TRUE 1

philosopher(int i)

{
while(TRUE) {

think();

in("meal ticket"); in("fork", i); in("fork", (i+1)%5);

eat();

out("fork", i); out("fork", (i+1)%5); out("meal ticket");

} }

real main()

{
int i;

for (i=0, i<5, i++){
out("fork", i);

eval(philosopher(i));

if (i<4) out("meal ticket");

}
}

Fig. 1. The dining philosophers in C-Linda

3.3 Modus

Modus of coordination refers to how coordination is carried out: how the co-
ordination rules of an application are defined and enforced. The substance of
the repertoire of coordination rules supported by different coordination mod-
els can be very different. Some, e.g., Linda, Manifold, and Reo, provide prim-
itives for building coordination rules. Others propose rule-based languages
where rules act as trigger conditions for action or as constraints on the be-
havior of active agents to coordinate them in a system. One way or the other,
coordination rules provide a level of abstraction which hides much of the com-
plexity of coordination activity from programmers. Explicit declarative rules
can themselves be subjected to formal reasoning. Therefore, models that use
more declarative coordination rules can support increased reasoning power.

A coordination model may allow only a single medium of coordination
that enforces the rules; such is the case in Linda. Other Linda-like models
allow multiple data-spaces, together with provisions for defining, selecting,
or otherwise determining which coordinated entities are assigned to which
data-space. Other coordination languages, such as Manifold and Reo, allow
dynamic construction and reconfiguration of the coordination medium.

A related issue is the extent to which a model considers an “enforcer of
the rules” or a “coordinator” to itself be amenable to other sets of (meta-)
coordination rules. In many models, “the coordinator” is either implicit or is a
single privileged entity that cannot be subjected to programmer defined rules.
Other models allow more than one coordinator entities, which may or may not

Composition of Interacting Computations 285

be subject to some form of meta-coordination rules. Few models, e.g., Manifold
and Reo, treat coordinators as normal entities that can be subjected to the
same coordination rules, thus eliminating the distinction between coordinators
and meta-coordinators.

4 Reo

Reo is a channel-based exogenous coordination model wherein complex coor-
dinators, called connectors, are compositionally built out of simpler ones. The
simplest connectors in Reo are a set of channels with well-defined behavior
supplied by users [27]. The emphasis in Reo is on connectors, their behavior,
and their composition, not on the entities that connect, communicate, and
cooperate through them. The behavior of every connector in Reo imposes
a specific coordination pattern on the entities that perform normal I/O op-
erations through that connector, without their knowledge. This makes Reo a
powerful “glue language” for compositional construction of connectors to com-
bine component instances into a software system and exogenously orchestrate
their mutual interactions.

4.1 Components

Reo’s notion of components and connectors is depicted in Fig. 2, where com-
ponent instances are represented as boxes, channels as straight lines, and
connectors are delineated by dashed lines. Each connector in Reo is, in turn,
constructed compositionally out of simpler connectors, which are ultimately
composed out of primitive channels.

(b) a 6−way connector(a) a 3−way connector (c) two 3−way connectors and a 6−way connector

C4

C5

C6C2

C3

C1C4

C5

C6C3

C2

C1C2

C3

C1

Fig. 2. Connectors and component composition

Every component instance consists of one or more active entities whose
only means of communication with other entities outside of that component
instance is through regular input/output of passive data. A component in-
stance performs its I/O operations following its own timing and logic, inde-
pendently of the others. None of these component instances is aware of the

286 F. Arbab

existence of the others, the specific connector used to glue it with the rest, or
even of its own role in the composite system. Each connector represents a spe-
cific interaction protocol and ensures that this protocol is enforced among its
connected component instances. The behavior of a connector is independent
of the components that it connects.

4.2 Channels

Reo defines a number of operations for components to (dynamically) com-
pose, connect to, and perform I/O through connectors. Atomic connectors
are channels. The notion of channel in Reo is far more general than its com-
mon interpretation.

Reo defines a channel as a primitive communication medium with its own
unique identity, that has exactly two ends together with a constraint that in-
terrelates the timing and the content of the I/O operations through these ends.
There are two types of channel ends: source end through which data enters
and sink end through which data leaves a channel. A channel must support a
certain set of primitive operations, such as I/O, on its ends; beyond that, Reo
places no restriction on the behavior of a channel. Reo does not even insist
that a channel must have one source and one sink; it also admits channels with
two sources or two sinks. This allows an open-ended set of different channel
types to be used simultaneously together in Reo, each with its own policy for
synchronization, buffering, ordering, computation, data retention/loss, etc.

A Sampler of Channels

Figure 3 shows a sample set of primitive channel types and the graphical
symbols we use to represent them.

P
DFilter(P)

Lossy Synchronous

Synchronous

Asynchronous Drain

Synchronous Spout

Synchronous Drain

FIFO1(D)

FIFO1

FIFO

Fig. 3. A set of primitive channel types and their graphical symbols

A synchronous channel, Sync, graphically represented as a solid arrow, has
a source- and a sink-end. This channel synchronizes the success of the two I/O
operations on its two ends. In other words, it blocks a write operation on its
source end or a take operation on its sink end, as necessary, to ensure that
these two operations succeed atomically.

Composition of Interacting Computations 287

SyncDrain is a synchronous channel with two source ends; it has no sink
end. This means no one can ever take any data out of this channel. Therefore,
all data entered into this channel are lost. SyncDrain is a synchronous channel
in exactly the same sense as a Sync channel: it synchronizes the two I/O
operations on its ends. In this case they must both be write operations, and
SyncDrain blocks either of the two, as necessary, to ensure that they succeed
atomically.

FIFO is an asynchronous channel with a source end and a sink end with
an unbounded buffer to contain data. Its buffer is initially empty. With an
unbounded buffer, a write operation on its source end always succeeds, placing
its data in the buffer. With a nonempty buffer, a take on the sink end of this
channel succeeds and removes the oldest data item in the buffer. When the
buffer is empty, a take operation on the sink end of this channel blocks, waiting
for the status of the buffer to change.

LossySync is a synchronous channel with a behavior very similar to that
of the Sync channel. Just as for a Sync channel, a take operation on the
sink end of a LossySync blocks until a write is performed on its source end.
Unlike the case of the Sync channel, all write operations on the source end
of a LossySync immediately succeed: if there is a pending take on its sink
end, then the written data item is transferred; otherwise, the write operation
succeeds, but the written data item is lost.

A synchronous spout, SyncSpout, disposes data items out of its two ends
only synchronously. The actual values it produces through its ends are non-
deterministic.

FIFO1 is an asynchronous channel with a source end and a sink end and
a bounded buffer with the capacity to contain at most 1 data item. Its buffer
is initially empty. With an empty buffer, a write operation on its source end
succeeds and fills the buffer. With a nonempty buffer, a take on the sink end of
this channel succeeds and removes the data. Otherwise, I/O operations block
waiting for the status of the buffer to change. FIFO1(D) is a variant of the
FIFO1 channel whose buffer initially contains the data item D.

A Filter(P) channel is a synchronous channel with a source and a sink
end that takes a pattern P parameter upon its creation. It behaves like a
Sync channel, except that only those data items that match the pattern P
can actually pass through it; others are always accepted by its source, but are
immediately lost.

An asynchronous drain AsynchDrain is the dual of a SyncDrain: it allows
the two write operations on its two ends to succeed only one at a time, i.e.,
never simultaneously together.

4.3 Connector

A connector is a set of channel ends organized in a graph of nodes and edges
such that:

288 F. Arbab

1. Zero or more channel ends coincide on every node.
2. Every channel end coincides on exactly one node.
3. There is an edge between two (not necessarily distinct) nodes if and only

if there is a channel one end of which coincides on each of those nodes.

4.4 Nodes

A node is an important concept in Reo. Not to be confused with a location
or a component, a node is a logical construct representing the fundamental
topological property of coincidence of a set of channel ends, which has specific
implications on the flow of data among and through those channel ends.

The set of channel ends coincident on a node A is disjointly parti-
tioned into the sets Src(A) and Snk(A), denoting the sets of source and
sink channel ends that coincide on A, respectively. A node A is called a
source node if Src(A) �= ∅ ∧ Snk(A) = ∅. Analogously, A is called a sink
node if Src(A) = ∅ ∧ Snk(A) �= ∅. A node A is called a mixed node if
Src(A) �= ∅ ∧ Snk(A) �= ∅. Figures 4.(a) and (b) show sink nodes with, re-
spectively, two and three coincident channel ends. Figures 4.(c) and (d) show
source nodes with, respectively, two and three coincident channel ends. Fig-
ure 4.(e) shows a mixed node where three sink and two source channel ends
coincide.

a c d eb

Fig. 4. Sink, source, and mixed nodes

The expressive power of Reo stems from the behavior of its nodes. Reo
provides operations that enable components to connect to and perform I/O
on source and sink nodes only; components cannot connect to, read from, or
write to mixed nodes. At most one component can be connected to a (source or
sink) node at a time. A component can write data items to a source node that
it is connected to. The write operation succeeds only if all (source) channel
ends coincident on the node accept the data item, in which case the data item
is transparently written to every source end coincident on the node. A source
node, thus, acts as a replicator. A component can obtain data items from a
sink node that it is connected to through destructive (take) and nondestructive
(read) input operations. A take operation succeeds only if at least one of the
(sink) channel-ends coincident on the node offers a suitable data item; if more
than one coincident channel end offers suitable data items, one is selected
nondeterministically. A sink node, thus, acts as a nondeterministic merger. A
mixed node is a self-contained “pumping station” that combines the behavior

Composition of Interacting Computations 289

of a sink node (merger) and a source node (replicator) in an atomic iteration
of an endless loop: in every iteration a mixed node nondeterministically selects
and takes a suitable data item offered by one of its coincident sink channel
ends and replicates it into all of its coincident source channel ends. A data
item is suitable for selection in an iteration, only if it can be accepted by all
source channel ends that coincide on the mixed node.

It follows that every channel represents a (simple) connector with two
nodes. More complex connectors are constructed in Reo out of simpler ones
using its join operation. Joining two nodes destroys both nodes and produces
a new node on which all of their coincident channel ends coincide.

This single operation allows construction of arbitrarily complex connectors
involving any combination of channels picked from an open-ended assortment
of user-defined channel types. The semantics of a connector is defined as a
composition of the semantics of its (1) constituent channels, and (2) nodes.
The semantics of a channel is defined by the user who provides it. Reo defines
the semantics of its three types of nodes, as mentioned above.

5 Coordination by Connectors

Figures 5.(a) and (b) show two Reo connectors. The enclosing thick boxes in
these figures represent hiding: the topologies of the nodes (and their edges)
inside the box are hidden and cannot be modified, yielding a connector with
a number of input/output ports, represented as nodes on the border of the
bounding box, which can be used by other entities outside the box to interact
with and through the connector.

A

B C

in

outo

FIFO2

Router
Exclusive

(b)(a)

Fig. 5. An exclusive router and a shift-lossy FIFO1

The simplest channels used in these connectors are synchronous (Sync)
channels, represented as simple solid arrows. A Sync channel has a source and

290 F. Arbab

a sink end, and no buffer. It accepts a data item through its source end if and
only if it can simultaneously dispense it through its sink. A lossy synchronous
(LossySync) channel is similar to a Sync channel, except that it always accepts
all data items through its source end. If it is possible for it to simultaneously
dispense the data item through its sink (e.g., there is a take operation pending
on its sink) the channel transfers the data item; otherwise the data item is
lost. LossySync channels are depicted as dashed arrows, e.g., in Fig. 5.(a).
The edge connecting the bottom-most two nodes inside the enclosing box in
Fig. 5.(b) represents an asynchronous channel with the bounded capacity of 1
(FIFO1), with the small box in the middle of the arrow representing its buffer.
This channel can have an initially empty buffer, or as in Fig. 5.(b), contain
an initial data value (in this case, the “o” in the box representing its buffer).
Analogously, the edge connecting the top-most two nodes inside the enclosing
box in Fig. 5.(b) represents an asynchronous FIFO channel with the bounded
capacity of 2 (FIFO2), with its obvious semantics.

An example of the more exotic channels permitted in Reo is the syn-
chronous drain channel (SyncDrain), whose visual symbol appears as the
middle vertical edge in Fig. 5.(a) and the leftmost vertical edge in Fig. 5.(b).
A SyncDrain channel has two source ends. Because it has no sink end, no data
value can ever be obtained from this channel. It accepts a data item through
one of its ends if and only if a data item is also available for it to simultane-
ously accept through its other end as well. All data accepted by this channel
are lost. A close kin of SyncDrain is the asynchronous drain (AsyncDrain)
channel (not shown in Fig. 5): it has two source ends through which it accepts
and loses data items, but never simultaneously. SyncSpout and AsyncSpout
are dual to the drain channel types as they have two sink ends [27].

5.1 Exclusive Router

Figure 5.(a) shows the Reo network for an exclusive router connector. A data
item arriving at the input port A flows through to only one of the output ports
B or C, depending on which one is ready to consume it. If both output ports are
prepared to consume a data item, then one is selected nondeterministically.
The input data is never replicated to more than one of the output ports.
Figure 5.(a) shows that the exclusive router is obtained by composing two
LossySync channels, a SyncDrain channel, and six Sync channels. See [34]
for a more formal treatment of the semantics of this connector.

5.2 Shift-Lossy FIFO1

Figure 5.(b) shows a Reo network for a connector that behaves as a lossy
FIFO1 channel with a shift loss-policy. This channel is called shift-lossy FIFO1
(ShiftLossyFIFO1). It behaves as a normal FIFO1 channel, except that if its
buffer is full then the arrival of a new data item deletes the existing data
item in its buffer, making room for the new arrival. As such, this channel

Composition of Interacting Computations 291

implements a “shift loss-policy” losing the oldest contents in its buffer in favor
of the latest arrivals. This is in contrast to the behavior of an overflow-lossy
FIFO1 channel, whose “overflow loss-policy” loses the new arrivals when its
buffer is full. The connector in Fig. 5.(b) is composed of an exclusive router
(shown in Fig. 5.(a), an initially full FIFO1 channel, an initially empty FIFO2
channel, and four Sync channels. See [34] for a more formal treatment of the
semantics of this connector.

The shift-lossy FIFO1 circuit in Fig. 5.(b) is indeed so frequently useful
as a connector in construction of more complex circuits, that it makes sense
to have a special graphical symbol to designate it as a short-hand. Figure 7
shows a circuit that uses two instances of our shift-lossy FIFO1. The graphical
symbol we use to represent this circuit is intentionally similar to that of a
regular FIFO1 channel, to hint at the similarity of the behavior of these two
connectors. As seen in Fig. 7, our graphical symbol for a shift-lossy FIFO1
“channel” has a half-dashed box instead of the solid box of a regular FIFO1
channel: the sink-side half of the box representing the buffer of this channel is
dashed, to suggest that it loses the older values to make room for new arrivals,
i.e., it shifts to lose.

5.3 Write-Cue Regulator

Consider the connector in Fig. 6.(a), composed out of the three channels ab,
cd, and ef. Channels ab and cd are of type Sync and ef is of type SyncDrain.
This connector shows one of the most basic forms of exogenous coordination:
the number of data items that flow from a to d is the same as the number of
write operations that succeed on f. The analogy between the behavior of this
connector and a transistor in the world of electronic circuits is conspicuous.
A component instance connected to f can count and regulate the flow of data
between the two nodes a and d by the timing and the number of write opera-
tions it performs on f. The entity that regulates and/or counts the number of
data items through f need not know anything about the entities that write to
a and/or consume data items from b, nor that its write actions actually reg-
ulate this flow. The two entities that communicate through a and d need not
know anything about the fact that they are communicating with each other,
nor that the volume of their communication is regulated and/or measured by
a third entity at f.

5.4 Barrier Synchronizers

We can build on our write-cue regulator to construct a barrier synchronization
connector, as in Fig. 6.(b). The four channels ab, cd, gh, and ij are all of type
Sync. The SyncDrain channel ef ensures that a data item passes from a to
d only simultaneously with the passing of a data item from g to j (and vice
versa). This simple barrier synchronization connector can be trivially extended
to any number of pairs, as shown in Fig. 6.(c).

292 F. Arbab

(b) a 6−way connector(a) a 3−way connector (c) two 3−way connectors and a 6−way connector

C4

C5

C6C2

C3

C1C4

C5

C6C3

C2

C1C2

C3

C1

Fig. 6. Examples of connector circuits in Reo

5.5 Ordering

The connector in Fig. 6.(d) consists of three channels: ab, ac, and bc. The
channels ab and ac are SyncDrain and Sync, respectively. The channel bc
is of type FIFO1. The behavior of this connector can be seen as imposing an
order on the flow of the data items written to a and b, through to c: the data
items obtained by successive read operations on c consist of the first data
item written to a, followed by the first data item written to b, followed by the
second data item written to a, followed by the second data item written to b,
etc. The coordination pattern imposed by our connector can be summarized
as c = (ab)∗, meaning the sequence of values that appear through c consist
of zero or more repetitions of the pairs of values written to a and b, in that
order.

5.6 Sequencer

Consider the connector in Fig. 6.(e). The enclosing box represents the fact
that the details of this connector are abstracted away and it provides only the
four nodes of the channel ends a, b, c, and d for other entities (connectors
and/or component instances) to (in this case) read from. Inside this connector,
we have four Sync, an initialized FIFO1, and three FIFO1 channels connected
together. The initialized FIFO1 channel is the leftmost one and is initialized
to have a data item in its buffer, as indicated by the presence of the symbol
“o” in the box representing its buffer. The actual value of this data item is
irrelevant. The read operations on the nodes (with channel ends) a, b, c, and
d can succeed only in the strict left to right order. This connector implements
a generic sequencing protocol: we can parameterize this connector to have as
many nodes as we want, simply by inserting more (or fewer) Sync and FIFO1
channel pairs, as required.

Composition of Interacting Computations 293

5.7 Variable

The Reo circuit in Fig. 7 implements the behavior of a dataflow variable. It
uses two instances of the shift-lossy FIFO1 connector shown Fig. 5.b, to build
a connector with a single input and a single output nodes. Initially, the buffers
of its shift-lossy FIFO1 channels are empty, so an initial take on its output
node suspends for data. Regardless of the status of its buffers, or whether or
not data can be dispensed through its output node, every write to its input
node always succeeds and resets both of its buffers to contain the new data
item. Every time a value is dispensed through its output node, a copy of
this value is “cycled back” into its left shift-lossy FIFO1 channel. This circuit
“remembers” the last value it obtains through its input node, and dispenses
copies of this value through its output node as frequently as necessary: i.e., it
can be used as a dataflow variable.

out

in

Fig. 7. Dataflow variable

The variable circuit in Fig. 7 is also very frequently useful as a connector
in construction of more complex circuits. Therefore, it makes sense to have a
short-hand graphical symbol to designate it with as well. Figure 8 shows three
instances of our variable used in two connectors. Our symbol for a variable is
similar to that for a regular FIFO1 channel, except that we use a rounded box
to represent its buffer: the rounded box hints at the recycling behavior of the
variable circuit, which implements its remembering of the last data item that
it obtained or dispensed.

5.8 Time and Temperature Display

Figure 8.(a) shows a system composed of two components connected via a
Reo connector. The two components are represented as thick-bordered boxes
labeled Clock and Display in this figure. The clock component periodically—
say every 30 seconds or so—produces a text string announcing the current
time. The display component periodically reads and consumes a text string
and displays it.

294 F. Arbab

DisplayClock

Display

Clock

Thermo

Sequencer

(b)(a)

Fig. 8. A time/temperature display system

The connector used in Fig. 8.(a) between Clock and Display is the
dataflow variable channel presented in Fig. 7. The purpose of the variable
channel in this system is to temporally decouple the clock and the display,
while facilitating their communication. Regardless of the state of the display,
the clock can always write its current time into the channel, which may lose
its old content, if any, to accommodate the new value. As frequently as it
wishes, the display can read the current content of the channel, if any, which
will be not older than the temporal resolution (i.e., the update cycle) of the
clock. If the display’s cycle is faster than that of the clock, the display will
read the last value it read, again. If the clock’s cycle is faster than that of the
display, it may produce a new value before an older one is consumed by the
display. The variable channel allows the new value to override the old. Thus,
the system in Fig. 8.(a) periodically displays the current time.

Figure 8.(b) shows a system composed of three components connected
by some Reo circuitry. Two of the components are the same clock and dis-
play of Fig. 8.(a). The third one, shown as the box labeled Thermo in this
figure, is a thermometer that similar to the clock, periodically produces a
text string announcing the current temperature. The two variable channels
support communication and temporal decoupling of the clock and the ther-
mometer components from the rest of the system. The input to the display
component is regulated by a two-node version of the sequencer connector pre-
sented in Fig. 6.(e). Thus, the system in Fig. 8.(b) alternately displays current
time and temperature.

The interesting point about this system is that none of the components
involved is aware of the function of the system or of its own collaboration in
realizing this “complex” coordinated behavior: the behaviors of the individual
components are composed and coordinated exogenously (i.e., from outside of
the components) by the Reo connectors to realize this collaborative behavior.
Such “ignorant” components are highly generic and reusable, precisely because
they are oblivious to whether they are used in a system like in Fig. 8.(a), or
to build a system with a more complex coordination scheme as in Fig. 8.(b).

Composition of Interacting Computations 295

Reo has been used to model business processes, such as electronic auc-
tions [35], coordination in biological systems [36], and composition of web ser-
vices [37]. Reo circuits can be used to construct and compositionally reason
about the properties of component connectors in soft-real-time applications,
e.g., involving multimedia [38].

6 Expressiveness

Figure 6.(f) shows a simple example of the utility of our sequencer. The con-
nector in this figure consists of a two-node sequencer, plus a pair of Sync chan-
nels and a SyncDrain channel connecting each of the nodes of the sequencer
to the nodes a and c, and b and c, respectively. The connector in Fig. 6.(f)
is another connector for the coordination pattern c = (ab)∗, although there
is a subtle difference between the behavior of this connector and the one in
Fig. 6.(d). See [27] for more detail.

It takes little effort to see that the connector in Fig. 6.(g) corresponds to
the meta-regular expression c = (aab)∗. Figures 6.(f) and (g) show how easily
we can construct connectors that exogenously impose coordination patterns
corresponding to the Kleene-closure of any “meta-word” made up of atoms
that stand for I/O operations, using a sequencer of the appropriate size.

Channel composition in Reo is a very powerful mechanism for construction
of connectors. The expressive power of connector composition in Reo has been
demonstrated through many examples in [27, 39]. For instance, exogenous co-
ordination patterns that can be expressed as (meta-level) regular expressions
over I/O operations performed by component instances can be composed in
Reo out of a small set of only five primitive channel types1. A Turing machine
consists of a finite state automaton for its control, and an unbounded tape.
Since an unbounded tape can be simulated by two unbounded FIFO channels,
adding FIFO to the above set of channel types makes channel composition in
Reo Turing complete.

7 Dining Philosophers

We can vividly demonstrate the significance of exogenous coordination in
system composition through the classical dining philosophers problem. In this
section we use instances of two components, Phil and Chop, to (1) compose
a dining philosophers application that exhibits the famous deadlock problem;
1 In fact, Reo more naturally models infinite behavior through infinite streams

(see Sect. 8). As such, composition of this set of primitive channels actually
yields the equivalent of ω-regular expressions, rather than (finite) regular ex-
pressions. Therefore, for instance, the behavior of the connector in Fig. 6.(g),
more accurately corresponds to the meta-regular expression c = (aab)ω, rather
than c = (aab)∗.

296 F. Arbab

and (2) compose another dining philosophers application that prevents the
deadlock.

Figure 9 shows the C code of the two processes that we use as our Phil and
Chop components in this example. The main program of our Phil component
parses its command-line arguments to initialize its own id (which is actually
not essential in this simplified example) and four output file descriptors: lt,
lf, rt, and rf. All that a philosopher knows is that when its write operation
on the file descriptor lt (for left-take) succeeds, it has obtained exclusive
access to its left-hand chopstick; the success of its write operation on the
file descriptor rt (for right-take) indicates that it has exclusive access to
its right-hand chopstick; and the success of its write operations on the file
descriptors lf (for left-free) and rf (for right-free) indicate its successful
release of its left- and right-hand chopsticks, respectively. Thus, a philosopher
instance enters an endless loop in which it thinks; then attempts to obtain
its two chopsticks (first left then right); eats; and releases its chopsticks (for
good form, in the reverse order of their acquisition).

#define TRUE 1 #define TRUE 1

int int

main(int argc, char *argv[]) main(int argc, char *argv[])

{ {
/* Philosopher process */ /* Chopstick process */

FILE *lt = NULL; FILE *t = NULL;

FILE *lf = NULL; FILE *f = NULL;

FILE *rt = NULL; int token = 0;

FILE *rf = NULL;

int id = 0; parse chop cmdline(argc, argv,

&t, &f);

parse phil cmdline(argc, argv, while(TRUE) {
&id, <, &lf, &rt, &rf); scanf(t, "%d", &token);

while(TRUE) { /* in use by token */

think(); scanf(f, "%d", &token);

fprintf(lt, "%d\n", id); }
fprintf(rt, "%d\n", id); }
eat();

fprintf(rf, "%d\n", id);

fprintf(lf, "%d\n", id);

}
}

Fig. 9. Philosopher and chopstick processes

The main program for our Chop component parses its command-line ar-
guments to initialize two input file descriptors: t and f. All that a chopstick
knows is that initially it is free and it can be alternately taken and freed.

Composition of Interacting Computations 297

Thus, a chopstick instance enters an endless loop in which it first reads a
token (presumably, the id of its user philosopher) from its t (for take) file
descriptor, and then reads a token from its f (for free) file descriptor. The
success of its respective read operation indicates the acquisition or the release
of a chopstick.

It is instructive to compare the code in Figs. 9 and 1. Contrary to the code
in Fig. 1, there is no hint of any coordination or awareness of other instances
anywhere in the philosopher (or the chopstick) process in Fig. 9. The only
interaction of each process is through normal anonymous I/O of passive data
with its environment. These processes are perfect candidate components for
exogenous coordination. In Reo, any number of instances of these components
can be composed in various ways and different configuration topologies.

In order to compose a system of dining philosophers in Reo, a separate
program must instantiate an appropriate number of the processes in Fig. 9
and join their respective file descriptors with one another using appropriate
channels and nodes. Figure 10.(a) shows the configuration of one such system
representing four philosophers and four chopsticks around a virtual round
table. In this figure, philosophers face the table, thus their sense of left and
right is obvious. The file descriptors of philosophers and chopsticks constitute
their respective ports, which Reo sees as nodes. Chopstick ports on the outer-
edge of the table correspond to their t and the ones closer to the center of
the table are their f file descriptors. The t port of each chopstick is connected
to the rt and the lt ports of its adjacent philosophers (on its left and right,
respectively), and its f port to their respective rf and lf ports. All channels
are of type Sync.

a b

P
h
il
2

P
h

il
3 P

h
il4

Chop1

P
h
il1

Chop3

C
h

o
p
4

C
h

o
p
2

Chop1

P
h
il1P

h
il
2

Chop3

P
h

il
3 P

h
il4

C
h

o
p
2

C
h

o
p
4

Fig. 10. Dining philosophers in Reo

298 F. Arbab

Consider what happens in the node at the three-way junction connected
to the t port of Chop1. If Chop1 is free and is ready to accept a token through
its t port, as it initially is, whichever one of the two philosophers Phil1 and
Phil4 happens to write its take request token first will succeed to take Chop1.
Of course, it is possible for Phil1 and Phil4 to attempt to take Chop1 at
the same time. In this case, the semantics of this mixed node guarantees that
only one of them succeeds, nondeterministically; the write operation of the
other remains pending until Chop1 is free again. Because a philosopher frees
a chopstick only after it has taken it, there is never any contention at the
three-way junction connected to the f port of a chopstick.

The composition of channels in this Reo application enables philosophers
to repeatedly go through their “eat” and “think” cycles at their leisure, re-
solving their contentions for taking the same chopsticks nondeterministically.
The possibility of starvation is ruled out because the nondeterminism in Reo
nodes is assumed to be fair. This simple glue code composed of nothing but
common generic Sync channels directly renders a faithful implementation of
the dining philosophers problem; all the way down to its possibility of dead-
lock. Because all philosophers are instances of the same component, they all
attempt to fetch their chopsticks in the same order: left-first. If all chopsticks
are free and all philosophers attempt to take their left chopsticks at the same
time, of course, they will all succeed. However, this leaves no free chopstick
for any philosopher to take before it can eat. No philosopher will relinquish its
chopstick before it finishes its eating cycle. Therefore, this application dead-
locks, as expected.

Observe that deadlock is not inherent in the behavior of any one of the
individual components in this system—it is an emergent behavior arising out
of the particular way in which they are composed to interact with one another.
It is natural, then, to wonder if the very same components can be composed
differently to give rise to a different emergent behavior, specifically, one where
deadlock is impossible. Interestingly, with Reo, this is possible.

In order to prevent the possibility of a deadlock, all we need to do is to
change the way in which we compose our application out of the very same
components, without any extra code, central authority, or modification to
a component. Figure 10.(b) shows a slightly different composition topology
of the same set of Sync channels comprising the glue code that connects
the exact same instances of Phil and Chop as before. We have flipped one
philosopher’s left and right connections to its adjacent chopsticks (in this
particular case, those of Phil2) without its knowledge. None of the components
in the system are aware of this change, nor is any of them modified in any
way to accommodate it. Our flipping of these connections is purely external
to all components.

It is not difficult to see why this new topology prevents deadlock. If all
philosophers attempt to take their left chopsticks now at the same time, one
of them, namely Phil2, will actually reach for the one on its right-hand-side.
Of course, Phil2 is unaware of the fact that as it reaches out through its left

Composition of Interacting Computations 299

port to take its first chopstick, it is actually the one on its right-hand-side it
competes to take. In this case it competes with Phil3, which is also attempting
to take its first chopstick. It makes no difference which one of the two wins
this competition, one will be denied access to its first chopstick. This ensures
that at least one chopstick will remain free (no philosopher attempts to take
Chop2 as its first chopstick) to enable at least one philosopher to obtain its
second chopstick as well and complete its eating cycle.

Comparing the composition topologies in Figs. 10.(a) and (b), we see that
in Reo (1) different glue code connecting the same components produces dif-
ferent emergent system behavior; and (2) coordination protocols are imposed
by glue code on components that cooperate with one another through the glue
code, without being aware of each other, their cooperation, or the glue code.
The two systems in Figs. 10.(a) and (b) are made of the same number of con-
stituent parts of the same types: the same number of component instances of
the same kinds, and the same number of primitive connectors (Sync channels).
The only difference between the two is in the topology of their interconnec-
tions. This topological difference is the only cause of the difference between
the different emergent behavior in these two systems.

8 Abstract Behavior Types

An abstract data type (ADT) defines a data type as an algebra of opera-
tions with mathematically well-defined semantics, without specifying any de-
tail about (1) the implementation of those operations or (2) the data structures
they operate on. As such, ADT is a powerful abstraction and encapsulation
mechanism that groups data together with their related operations into logi-
cally coherent and loosely-dependent entities, such as objects, yielding better
structured programs. ADT has served as a foundation model for structured
and object oriented programming for some thirty years.

The most basic inherent property of an ADT, i.e., that it provides a set
of operations, subverts attempts to abstract away from their invocations in
models where software composition reduces to a variant of ADT composition.
Like procedure calls, operation invocations result in an asymmetric seman-
tic dependency among ADTs that entangles interaction with composition of
algorithms. For instance, when an ADT, T , invokes the top operation of a spe-
cific stack ADT, S, this “interaction” weaves the semantics of S (as defined by
both the “state” of S as well as the entire set of operations defined in the stack
ADT) into the semantics of T . The ADT T must “know” what it composes
with in its interaction, i.e., the specific stack S as opposed to another, e.g.,
S′, while clearly, S remains oblivious to its composition with T . However, at a
more abstract level, it is useful to consider the fact that two entities interact,
without considering that this interaction invokes an operation with certain
semantics. For instance, which parties are involved in an interaction, what

300 F. Arbab

other interactions take place atomically with, or before/after this interaction,
and the attributes of the communication (e.g., synchronous, asynchronous,
buffered, rendezvous, etc.) involved in the interaction may constitute legiti-
mate issues of concern at this level of abstraction. Expressing the semantics
of “interaction composition” in a language like Reo requires a formal model
of behavior that is more abstract than the ADT model.

The notion of abstract behavior type (ABT) as a higher-level analogue
to ADT is introduced in [40] and proposed as a proper foundation model for
both components and their composition. The ABT model supports a much
looser coupling than is possible with the operational interfaces of ADTs, and
is inherently amenable to exogenous coordination. Both of these are highly
desirable, if not essential, properties for models of component behavior and
composition of interactions.

An ABT defines an abstract behavior as a relation among the observable
input/output that occur through a set of “contact points” (e.g., ports of a
component instance) without specifying any detail about the operations that
may be used to implement such behavior, or the data types those operations
may manipulate for the realization of that behavior. This definition parallels
that of an ADT, which abstracts away from the instructions and the data
structures that may be used to implement the operational interface it defines
for a data type. In contrast, an ABT defines a behavior in terms of a relation
(i.e., constraint) on the observable input/output of an entity, without saying
anything about how it can be realized.

There are several different ways to formalize the concept of ABT. For
instance, process calculi, Petri nets, logic expressions, automata, or labeled
transition systems can be used to describe transformations of input to output
sequences of observables. Process calculi tend to emphasize processes rather
than explicit expression of their input/output behavior. Petri nets are too low
level to directly represent the rich set of behavioral relations involving nonde-
terminism, combination of synchrony and asynchrony, and compositionality
that we are interested in. Automata can characterize the relation among the
observable input/output sequences of an ABT. Indeed, the ABT model is
properly formalized by constraint automata [34], precisely because they were
devised to represent the operational semantics of Reo connector circuits for
model checking.

Constraint automata can be considered generalizations of probabilistic au-
tomata, where data constraints, instead of probabilities, label state transitions
and influence their firing. Timed-data-streams, which were introduced to de-
fine a coalgebraic semantics for Reo [39, 41], are also the referents in the
language of constraint automata. Constraint automata seem to be more use-
ful than labeled transition systems for modeling of systems composed of both
synchronous and asynchronous components, and in practice, their composition
tends to yield smaller models [42, 43].

For example, we show in [34] how the constraint automaton describing the
behavior of the exclusive router circuit in Fig. 5.(a) is obtained by composing

Composition of Interacting Computations 301

the eight constraint automata of its constituent channels and the constraint
automaton for the merger inside its middle node. The resulting automaton has
a single state and only two transitions. This is not so dramatic, because every
one of the nine automata in this example has a single state and, therefore their
product automaton also has a single state. If for simplicity we assume a single-
ton data domain, then the constraint automaton representing the behavior of a
FIFO1 channel has two states and two transitions. Composing the sink end of a
FIFO1 with the source end of another must yield a FIFO2 channel (after hiding
the joined node to make its dataflow events invisible). The product of the two
constraint automata in this case has four states and six transitions. Hiding the
joined node simplifies the composed automaton, yielding one with only three
states and five transitions, which are precisely what we need to represent the
observable behavior of a FIFO2 channel. Composing the constraint automaton
representing the behavior of the ShiftLossyFIFO1 channel of Fig. 5.(b) in-
volves forming the product of the automata of a merger, an exclusive router,
and a SyncDrain channel, each of which has a single state, together with that
of a FIFO1, which has two states, and a FIFO2, which has three states. Instead
of six states, the resulting constraint automaton has only two states and three
transitions (after hiding of its internal nodes), which are precisely what we
need to represent the observable behavior of a ShiftLossyFIFO1 channel [34].

8.1 Relational View of ABT

The formalization presented in [40] defines an ABT as a (maximal) relation
on a set of timed data streams, which emphasizes the relational aspect of
the ABT model explicitly and abstracts away any hint of an underlying op-
erational semantics of its implementation. This helps to focus on behavior
specifications and their composition, rather than on operations that may be
used to implement entities that exhibit such behavior and their interactions.

A stream (over A) is an infinite sequence of elements of some set A. The
set of all streams over A is denoted as Aω. Streams in DS = Dω over a set of
(uninterpreted) data items D are called data streams and are typically denoted
as α, β, γ, etc. Zero-based indices are used to denote the individual elements of
a stream, e.g., α(0), α(1), α(2), ... denote the first, second, third, etc., elements
of the stream α. We use the infix “dot” as the stream constructor: x.α denotes
a stream whose first element is x and whose second, third, etc. elements are,
respectively, the first and its successive elements of the stream α.

Following the conventions of stream calculus [44], the well-known opera-
tions of head and tail on streams are called initial value and derivative: the
initial value of a stream α (i.e., its head) is α(0), and its (first) derivative (i.e.,
its tail) is denoted as α′. Relational operators on streams apply pairwise to
their respective elements, e.g., α ≥ β means α(0) ≥ β(0), α(1) ≥ β(1), α(2) ≥
β(2),

Constrained streams in TS = IRω
+ over positive real numbers representing

moments in time are called time streams and are typically denoted as a, b,

302 F. Arbab

c, etc. To qualify as a time stream, a stream of real numbers a must be (1)
strictly increasing, i.e., the constraint a < a′ must hold; and (2) progressive,
i.e., for every N ≥ 0 there must exist an index n ≥ 0 such that a(n) > N .

We use positive real numbers instead of natural numbers to represent time
because, as observed in the world of temporal logic [45], real numbers induce
the more abstract sense of dense time instead of the notion of discrete time
imposed by natural numbers. Specifically, we sometimes need finitely many
steps within any bounded time interval for certain ABT equivalence proofs
(see, e.g., [39]). This is clearly not possible with a discrete model of time. Recall
that the actual values of “time moments” are irrelevant in our ABT model;
only their relative order is significant and must be preserved. Using dense
time allows us to locally break strict numerical equality (i.e., simultaneity)
arbitrarily while preserving the atomicity of events [40].

A timed data stream is a twin pair of streams 〈α, a〉 in TDS = DS × TS
consisting of a data stream α ∈ DS and a time stream a ∈ TS, with the
interpretation that for all i ≥ 0, the input/output of data item α(i) occurs
at “time moment” a(i). Two timed data streams 〈α, a〉 and 〈β, b〉 are equal if
their respective elements are equal, i.e., 〈α, a〉 = 〈β, b〉 ≡ α = β ∧ a = b.

Formalization of ABT in terms of timed data streams provides a simple
yet powerful framework for the formal semantics of Reo. Timed data streams
are used to model the flows of data through channel ends.2 A channel itself is
just a (binary) relation between the two timed data streams associated with
its two ends. A more complex connector is simply an n-ary relation among
n timed data streams, each representing the flow of data through one of the
(non-hidden) n nodes of the connector.

The simplest channel, Sync, is formally defined as the relation:

〈α, a〉 Sync 〈β, b〉 ≡ α = β ∧ a = b.

The equation states that every data item that goes into a Sync channel
comes out in the exact same order. Furthermore, the arrival and the departure
times of each data item are the same: there is no buffer in the channel for a
data item to linger on for any length of time.

2 The infinity of streams naturally models the infinite behavior of perpetual sys-
tems. Finite behavior can be modeled in at least three different ways. First, we
can allow finite streams as well. Second, it can be modeled as a special case of
infinite behavior, e.g., where after a certain time moment, only the special symbol
⊥ appears as values in all time streams. Although viable, we ignore both of these
schemes because they do not add conceptual novelty, yet dealing with the special
cases that they involve requires a somewhat more complex formalism. The third
way to model finite behavior is to ensure that after a certain point in time, the
system has no observable behavior. This is possible with or without finite streams.
See footnote 3 in Sect. 8.5.

Composition of Interacting Computations 303

A FIFO channel is defined as the relation:

〈α, a〉 FIFO 〈β, b〉 ≡ α = β ∧ a < b.

As in a synchronous channel, every data item that goes in, comes out of a
FIFO channel in exactly the same order (α = β). However, the departure time
of each data item is necessarily after its arrival time (a < b): every data item
must necessarily spend some non-zero length of time in the buffer of a FIFO
channel.

A FIFO1 channel is similar to a FIFO:

〈α, a〉 FIFO1 〈β, b〉 ≡ α = β ∧ a < b < a′.

Again, everything that goes in comes out in the same order (α = β). But,
not only the departure time b(i) of every data item α(i) = β(i) is necessarily
after its arrival time (a(i) < b(i)), but since the channel can contain no more
than 1 element, the arrival time a(i+ 1) of the next data item α(i+ 1) must
be after the departure time b(i) of its preceding element (a < b < a′ ≡ a(i) <
b(i) < a(i+ 1)).

A FIFO1(D) represents an asynchronous channel with the bounded capac-
ity of 1 filled to contain the data item D as its initial value. The behavior of
a FIFO1(D) channel is very similar to that of a FIFO1:

〈α, a〉 FIFO1(D) 〈β, b〉 ≡ β = D.α ∧ b < a < b′.

This channel produces an output data stream β = D.α consisting of the initial
data item D followed by the input data stream α of the ABT, and for i ≥ 0
performs its ith input operation some time between its ith and (i+1)st output
operations (b < a < b′).

A SyncDrain channel merely relates the timing of the operations on its
two ends:

〈α, a〉 SyncDrain 〈β, b〉 ≡ a = b.

The replication that takes place at Reo nodes can be defined in terms of
the ternary relation Rpl:

Rpl(〈α, a〉; 〈β, b〉, 〈γ, c〉) ≡ β = α ∧ γ = α ∧ b = a ∧ c = a.

The semicolon delimiter separates “input” and “output” arguments of the
relation. The relationRpl represents the replication of the single “input” timed
data stream 〈α, a〉 into two “output” timed data streams 〈β, b〉 and 〈γ, c〉.

The nondeterministic merge that happens at Reo nodes is defined in terms
of the ternary relation Mrg:

304 F. Arbab

Mrg(〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡⎧⎪⎪⎨
⎪⎪⎩

α(0) = γ(0) ∧ a(0) = c(0) ∧Mrg(〈α′, a′〉, 〈β, b〉; 〈γ′, c′〉) if a(0) < b(0)
∃t : a(0) < t < min(a(1), b(1)) ∧ ∃r, s ∈ {a(0), t}∧ if a(0) = b(0)
r �= s ∧ Mrg(〈α, r.a′〉, 〈β, s.b′〉; 〈γ, c〉)

β(0) = γ(0) ∧ b(0) = c(0) ∧Mrg(〈α, a〉, 〈β′, b′〉; 〈γ′, c′〉) if a(0) > b(0).

.

8.2 ABT Composition

Because an ABT is a relation, two ABTs can be composed to yield another
ABT through a relational composition similar to the join operation in rela-
tional databases. This yields a simple, yet powerful formalism for specification
of complex behavior as a composition of simpler ones. Composition of simple
interaction primitives into nontrivial behavior, such as the Reo circuits in the
above examples, can be expressed as ABT composition [40].

Defining observable behavior in terms of input/output implants a dataflow
essence within ABTs akin to such dataflow-like networks and calculi as [46,
47], and especially [48]. The coalgebraic model of ABT differs from all of the
above-mentioned work in a number of respects. Most importantly, the ABT
model is compositional. Its explicit modeling of ordering/timing of events
in terms of separate time streams provides a simple foundation for defin-
ing complex synchronization and coordination protocols using a surprisingly
expressive small set of primitives. Any behavior that can be expressed as ω-
regular expressions over I/O operations can be composed in Reo out of a
small set of only four primitive channel types (Sync, LossySync, FIFO1, and
SyncDrain) [27]. Adding the unbounded FIFO to the above set of channel
types makes channel composition in Reo Turing complete. This means that
under ABT composition, the set of ABTs defining these primitive channels,
plus the ABTs for merge and replication, is Turing complete.

The relational (as opposed to functional) nature of our formalism allows a
composition of ABTs to mutually influence and constrain each other, yielding
their collective behavior, analogous to how a set of constraints in a constraint
satisfaction problem resolve into a solution. The use of coinduction as the main
definition and proof principle to reason about both data and time streams
allows simple compositional construction of ABTs representing many different
generic coordination schemes involving combinations of various synchronous
and asynchronous primitives that are not present (and not even expressible)
in any of the aforementioned models.

8.3 Fibonacci Series

A simple example of how a composition of a set of components yields a system
that delivers more than the sum of its parts is the computation of the classical
Fibonacci series. To assemble a component based application to deliver this
series we actually need only one (instance of one) adder component plus a
number of channels.

Composition of Interacting Computations 305

Figure 11 shows a component (the outermost thick enclosing box) with
only one output port (the only exposed node on the right border of the box).
This is our application for computing the Fibonacci series. Peeking inside this
component, we see how it is made out of an instance of an adder (labeled
AdderX), a FIFO1(1), a FIFO1(0), a FIFO1, and five Sync channels. AdderX
represents a simple adder that repeatedly takes two input values, x and y,
respectively through its input ports A andB, and produces a result, z, through
its output port C, which is the sum of x and y.

C

B

A

1

0

AdderX〈α, a〉

〈1.α, b〉

〈α, a〉〈0.1.α, d〉

〈0.1.α, c〉

〈1.α, b〉

Fig. 11. Fibonacci series in Reo

Distinguishing semantics and behavior, as in [49], is useful here. In Sect. 8.4
we define a few ABTs that formalize (the semantics and) the observable be-
havior of some of the alternative adders mentioned in [49]. Semantically, we
can use any one of the adders we define in Section 8.4 in the composition in
Fig. 11. That is why the box representing the adder in this figure is labeled
AdderX . However, the extra-semantic behavior of some of these adders makes
them unsuitable for the specific circuit in Fig. 11. To understand how this cir-
cuit is expected to work, suppose AdderX has a behavior “compatible” with
the circuit. We consider other alternatives in Sect. 8.5.

Intuitively, as long as the FIFO1(0) channel is full, nothing can happen:
there is no way for the value in FIFO1(1) to move out. At some point in time,
the value in FIFO1(0) moves into the FIFO1 channel. Thereafter, the FIFO1(0)
channel becomes empty and the two values in the FIFO1(1) and the FIFO1
channels become available for AdderX to consume. The intake of the value
in FIFO1(1) by AdderX inserts a copy of the same value into the FIFO1(0)
channel. When AdderX is ready to write its computed value out, it suspends
waiting for some entity in the environment to accept this value. Transfer of
this value to the entity in the environment also inserts a copy of the same
value into the now empty FIFO1(1) channel. At this point we are back to the
initial state, but with different values in the buffers of the FIFO1(1) and the
FIFO1(0) channels.

306 F. Arbab

8.4 Adders

To illustrate the expressiveness of the ABT model and the utility of ABT
composition, consider the adder component described in [49] and used in our
Fibonacci example in Sect. 8.3. We define a few of the alternative versions of
the behavior for this adder, below, each as a different ABT:

Adder1(〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡
γ(0) = α(0) + β(0) ∧
∃t : max(a(0), b(0)) < t < min(a(1), b(1)) ∧ c(0) = t ∧
Adder1(〈α′, a′〉, 〈β′, b′〉; 〈γ′, c′〉).

Adder1 defines the behavior of a component that repeatedly reads a pair of
input values from its two input ports, adds them up, and writes the result out
on its output port. As such, its output data stream is the pairwise sum of its
two input data streams. This component behaves asynchronously in the sense
that it can produce each of its output data items with some arbitrary delay
after it has read both of its corresponding input data items (c(0) = t ∧ t >
max(a(0), b(0))). However, it is obligated to produce each of its output data
items before it reads in its next input data item (t < min(a(1), b(1))).

Adder2(〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡
γ(0) = α(0) + β(0) ∧
c(0) = max(a(0), b(0)) ∧
Adder2(〈α′, a′〉, 〈β′, b′〉; 〈γ′, c′〉).

Adder2 behaves very much like Adder1, except that it produces the sum of
every pair of input values atomically (i.e., synchronously) together with its
consuming of its second input value (c(0) = max(a(0), b(0))).

Adder3(〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡
γ(0) = α(0) + β(0) ∧
a(0) < b(0) < c(0) < a(1) ∧
Adder3(〈α′, a′〉, 〈β′, b′〉; 〈γ′, c′〉).

Adder3 also behaves very much like Adder1, except that it always sequentially
consumes an element from α first, then it consumes an element from β, then
it produces their sum, before reading another element from α.

Adder4(〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡
γ(0) = α(0) + β(0) ∧
a = b = c ∧
Adder4(〈α′, a′〉, 〈β′, b′〉; 〈γ′, c′〉).

Adder4 behaves very much like Adder1, except that the consuming of every
pair of input values and the production of their sum is one single atomic
(synchronous) action.

Composition of Interacting Computations 307

Adder5(〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡
γ(0) = α(0) + β(0) ∧
c(0) = min(a(1), b(1)) ∧
Adder5(〈α′, a′〉, 〈β′, b′〉; 〈γ′, c′〉).

Adder5 behaves very much like Adder1, except that it produces the sum of
every pair atomically together with its reading of the first of its next pair of
input values.

These examples show how the diluted notion of local time and its explicit
representation in timed data streams enable us to concisely define and dis-
tinguish subtle differences in the behavior of various components that arise
out of the delicate temporal order of their observable actions. The ability to
make such distinctions differentiates otherwise equivalent behavior of simi-
lar components whose “equivalent behavior” leads to the Brock–Ackerman
anomalies [50] concerning the input-output relation of components in nonde-
terministic dataflow models.

8.5 Analysis of ABT Compositions

Suppose we use Adder4 of Sect. 8.4 to construct our Fibonacci circuit of
Fig. 11. Formally, the ABT models of the component Adder4, channels, and
Reo nodes that we presented earlier suffice for an analysis of the behavior of
their composition in this example. We briefly sketch such a formal analysis
here to demonstrate the utility of the ABT model and the significance of the
distinction we made earlier between semantics and behavior.

Let 〈α, a〉 be the output of our system, as indicated in Fig. 11. Form the
ABT definition of the replicator (Rpl) inherent in the mixed node immediately
on the left of this node, and the ABT definition of its three coincident Sync
channels, we easily conclude that the output of Adder4 and the input of
FIFO1(1) are also the same: 〈α, a〉.

From the ABT definition of the FIFO1(1) channel, we conclude that the
output of this channel is the timed data stream 〈1.α, b〉, where b < a < b′.
From the ABT definition of the replicator (Rpl) inherent in the mixed node
at the output on this channel and the ABT definition of its coincident Sync
channels, we conclude that the input to the FIFO1(0) channel and the lower-
input to Adder4 are also the same timed data stream.

From the ABT definition of the FIFO1(0) channel, we conclude that the
output of this channel is the timed data stream 〈0.1.α, c〉, where c < b <
c′. Given this as its input, the ABT definition of the FIFO1 channel yields
〈0.1.α, d〉 for its output, where c < d < c′.

The ABT definitions of the behavior of all of the above adders invariably
yield α = 0.1.α+1.α, which is simply a short-hand for the series of equations:

308 F. Arbab

α(0) = 0 + 1 = 1
α(1) = 1 + α(0) = 1 + 1 = 2
α(2) = α(0) + α(1) = 1 + 2 = 3
α(3) = α(1) + α(2) = 2 + 3 = 5
...

Thus, α indeed represents the Fibonacci series.
However, the ABT definition of the behavior of Adder4 requires a = b = d,

whereas the condition on the output of the FIFO1(1) channel, above, states
that b < a < b′. This leads to the contradiction of having both a = b and
b < a. What this contradiction tells us is that our composed system using
Adder4 will produce no output at all! 3

A closer examination reveals the reason: Adder4 is a synchronous com-
ponent; it must be able to consume both of its input values and produce its
output, all in one single atomic step (i.e., transaction). The atomic reading of
its lower input (b) together with the writing of its output (a) conflicts with the
behavior of the FIFO1(1) channel. To comply with the behavior of Adder4,
the FIFO1(1) channel must atomically both provide its output as the input
to Adder4, and consume the output of Adder4 as its own input. The ABT
definition of the behavior of FIFO1(1) simply does not allow this to happen.

The only way to use such a synchronous adder as Adder4 in this system,
is to break this conflict, e.g., by replacing the Sync channel that connects the
output of Adder4 to the input of the FIFO1(1) channel, with a FIFO1 channel.

On the other hand, our circuit in Fig. 11 works perfectly if we use an adder
with a different behavior, e.g., Adder3. The two adders produce the same data
streams and the only difference between them is in their time streams. Using
Adder3, we have d < b < a < d′. Because this equation implies d < b,
which implies d′ < b′, we can expand this equation as d < b < a < d′ < b′,
which complies with the b < a < b′ condition on the output of the FIFO1(1)
channel, above. The timing conditions on the output of the FIFO1(0) channel
(c < b < c′), and that of the FIFO1 channel (c < d < c′) conform with
the temporal constraints of Adder3 as well. The assumption of dense time
allows an infinity of viable solutions to the resulting system of equations. In
the context of Adder3, what matters is that the FIFO1 channel produces its
output after it obtains the contents of the FIFO1(0) channel (c < d), but
before the next input into the latter channel takes place (c′ < d′ and c′ < b′).

3 This example shows that the composition of two ABTs may yield the empty
relation, which simply means the result has “no externally observable behavior.”
Although “no externally observable behavior” can be interpreted as deadlock,
there is nothing inherently wrong with or undesirable about it, because it can
also be interpreted as normal termination. Thus, a composition that yields an
empty ABT can be a perfectly legitimate way to model finite behavior in an
otherwise perpetual systems. An example of such “desired deadlock” situations
is presented in the inhibitor example in [27].

Composition of Interacting Computations 309

Whether this next input occurs before Adder3 writes it output (c′ < a),
simultaneously (c′ = a), or after (a < c′), is irrelevant.

Similarly, we can show that the behavior of Adder1 or Adder5 is also com-
patible with the context of the circuit in Fig. 11 for producing the Fibonacci
series. On the other hand, using Adder2 in this circuit may or may not work.
The behavior specification of Adder2 allows it to always consume its B input
(from the FIFO1(1) channel) first. In this case, the circuit indeed produces
the Fibonacci series. But, Adder2 is also allowed to take its A input first. If
Adder2 always takes its A input first, then the circuit hangs and produces
nothing at all, due to the same timing conflict as with Adder4. If Adder2
internally decides afresh each time which input to take first, then the circuit
will produce a finite sequence of the first n ≥ 0 Fibonacci series, before it
hangs and stops producing any further output.

Observe that all entities involved in this composed application are com-
pletely generic and, of course, neither knows anything about the Fibonacci
series, nor the fact that it is “cooperating” with other entities to compute
it. It is the specific glue code of this application, made by composing eight
simple generic channels in a specific topology in Reo, that coordinates the
communication of the components (in this case, only one) with one another
(in this case, with itself) and the environment to compute this series. It is also
worth noting that the possible or definite hanging behavior of this circuit with
Adder2 or Adder4, for instance, is just another perfectly legitimate behavior.
There is nothing inherent in such “deadlocks” that says they must necessarily
be avoided. Any behavior of any circuit (including “deadlock”) is objectively
as valid and legitimate as any other. What constitutes (un)desirable behavior
is a “subjective” matter for the context to decide. Additional circuitry may
be necessary to ensure or prevent a particular behavior of a (sub-)circuit.

9 Petri Nets

Petri nets are frequently used to model interaction protocols and the behav-
ior of complex systems. In some respects, Reo circuits resemble Petri nets.
However, there are major differences between the two.

Petri nets are extensions of the finite state automata that incorporate a
notion of concurrency. There are many different types of Petri nets, from basic
nets defined by Carl A. Petri in 1962 to place/transition nets, colored Petri
nets, stochastic Petri nets, etc., each of which extends the basic Petri net
model with higher level concepts [51]. In this section, we consider only the
elementary Petri nets, or the E/N systems. However, because we focus on the
essential common features of all Petri nets, the distinctions we draw between
Reo and the E/N systems also apply (with small alterations) to other Petri
nets. Petri nets are formal systems and there exists an extensive body of work

310 F. Arbab

and theory behind them. Below, we give a brief informal description of the
“dynamics” of Petri nets, which suffices for our purposes in this section.

Petri nets consist of places and transitions with interconnecting arcs.
Places can either be empty or hold tokens. In lower-level Petri nets, e.g.,
E/N systems, tokens are not distinguishable from one another. In colored
Petri nets, each token can have a color that distinguishes it from the others.
Multiple places can hold tokens in a Petri net at the same time. In E/N sys-
tems, each place can hold at most one token, but in higher-level Perti nets, a
place can hold multiple tokens as well. The well-formedness condition of Petri
nets ensures that an arc emanating from a place ends with a transition, and
an arc emanating from a transition ends with a place. Multiple arcs can em-
anate and/or end at the same place or transition. In graphical models of Petri
nets, transitions are often represented as solid rectangles; arcs as arrows; and
places as either (1) hollow circles, if they are empty, or otherwise (2) circles
that contain smaller (colored) solid circles representing their (colored) tokens.
See Figs. 12 and 14 for examples.

dcba

Fig. 12. Petri net transition firing in E/N systems

An input place of a transition t is one that is connected to t with an arc that
ends at t. Similarly, an output place of a transition t is one that is connected to
t with an arc that emanates from t. In Fig. 12, for instance, the places above
each transition are its input places, and the ones below each transition are its
output places. A transition can fire in an E/N system if and only if all of its
input places contain tokens and all of its output places are empty. Firing of a
transition consumes a token out of every one of its input places and deposits
a token in every one of its output places. Fig. 12 illustrates firing in E/N
systems. The transition in the Petri net in Fig. 12.(a) can fire, resulting in the
Petri net in Fig. 12.(b). The transition in Fig. 12.(c) cannot fire because not
all of its input places contain tokens. The transition in Fig. 12.(d) cannot fire
because not all of its output places are empty.

The places, transitions and arcs in Petri nets can be seen as a fixed set of
building blocks, each with a fixed behavior, for construction of Petri nets. In
contrast, Reo defines a fixed set of composition rules and allows an arbitrary
set of channels as primitives with arbitrary behavior, on which its composition
rules can be applied to construct connector circuits. This readily allows in-

Composition of Interacting Computations 311

corporation of arbitrary computational entities into a composed Reo system.
More importantly, it allows the harmonious combinations of synchrony and
asynchrony in the same model which is not possible in Petri nets.

The similarity of the Petri net construction rules with Reo composition
rules allows a direct translation of Petri nets into Reo circuits. Although direct
translations of higher-level Petri nets into Reo circuits are also possible, here
we consider only E/N systems.

Figure 13 shows the Reo equivalent constructs (the bottom row) for Petri
net building blocks (the top row). An empty place corresponds to a FIFO1
channel (see Fig. 3 in Sect. 4.2). A filled place containing a token • corresponds
to a FIFO1(•) 4. An arc corresponds to a Sync channel. A transition with a
single incoming arc and n > 0 outgoing arcs corresponds to a node with one
incoming and n outgoing Sync channels. A transition with m > 1 incoming
and n > 0 outgoing arcs corresponds to a degenerate barrier synchronizer
(Figs. 6.(b) and (c) in Sect. 5.4) Reo subcircuit withm−1 SyncDrain channels,
m input nodes, and a single output node, as shown in the bottom-right of
Fig. 13. All n Sync channels that correspond to the outgoing arcs of this
transition are connected to the single output node of this subcircuit.

Fig. 13. Reo circuit equivalents for Petri net constructs

Using Fig. 13, it is straightforward to directly translate a Petri net into
a Reo circuit. For example, applying this translation to the Petri net in
Fig. 14.(a) yields the Reo circuit in Fig. 14.(b). (The gray box in Fig. 14.(b)
represents a “degenerate barrier synchronizer” as shown in the lower-right
corner of Fig. 13.) In this sense, every Petri net can be trivially considered to
be a Reo circuit. The inverse translation, however, is far from trivial.

In Reo, synchrony and exclusion constraints propagate through (the syn-
chronous subsections of) circuits. This is generally not the case in Petri nets,
because their transitions are local. What sets Petri nets apart from classical
automata is their transition nodes, which enable them to directly synchronize

4 In higher-level Petri nets a place can hold multiple tokens. Instead of (initialized
or empty) FIFO1 channels, bag channels [27] must be used as their equivalents in
Reo circuits (in the left two columns of the bottom row in Fig. 13).

312 F. Arbab

ba

Fig. 14. Translation of Petri nets into Reo circuits

otherwise unrelated events (it is no accident that a nontrivial Petri net transi-
tion node translates into a barrier synchronizer in Reo). A Petri net transition
node enforces synchronous and of several arcs/events. However, Petri nets
have no primitive for the dual synchronous or of several arcs, and there can
be no arc between two places, nor between two transitions. The latter disal-
lows nested ands of arcs. More significantly, the or of several arcs/transitions
is possible only if they emanate from or end in the same place, which implies
the commitment of moving a token from or into that place. This means that
arcs/events can be directly and-synchronized to compose more complex syn-
chronous transitions (i.e., one-step atomic transactions), but a synchronous
or of arcs/events is not possible, i.e., two transitions cannot be connected
together without an intervening place/commitment. This disallows a direct
modeling of composite atomic transactions in Petri nets and prevents arbi-
trary combinations of synchrony and asynchrony.

The ability to construct arbitrarily complex synchronous subcircuits (rep-
resenting one-step atomic transactions) with asynchronous behavior in be-
tween, is unique in Reo and simplifies expressions of complex behavior. For
example in the context of e-commerce, [35] and [52] show the construction of
nontrivial Reo circuits that implement negotiation protocols for competition
and collaboration in electronic auctions. The Petri net models of these same
protocols would be substantially more complex and elaborate, because they
would have to “simulate” all atomic transactions involved.

10 Synchronous Languages

Synchronous languages [53] like Esterel [54, 55], Lustre [56], and Signal [57],
emerged in the 1980s for modeling and programming of reactive systems, sig-
nal processing, and critical control software. Because they involve synchronous
dataflow networks, they address issues that are also of concern in Reo: spec-
ification of nontrivial synchronous behavior. However, there are significant

Composition of Interacting Computations 313

differences between Reo and all synchronous dataflow networks, including
synchronous languages.

Esterel [54, 55] is an imperative program generator language, essentially
for defining the behavior of finite state automata. It is used to generate pro-
grams that constitute the reactive kernels of reactive systems, with actual
interfaces and data handling specified in some other host language. Using
Esterel, replication (of transitions, states, etc.) in the automata of complex
systems are eliminated by the structural constructs of the language and com-
putation. This makes it more convenient to describe the behavior of complex
systems in Esterel, rather than directly as automata. Lustre [56] is a declar-
ative dataflow kernel language very close to Esterel. They originally shared
intermediate language and compilation tools. Signal [57] is another declara-
tive synchronous language. Unlike Lustre, Signal is not a dataflow language,
but deals with sequences of input and output signals and their relative order.

These languages have no specific explicit notion of time. Repetition of any
event or signal abstractly indicates passage of time. In contrast, Reo has an
explicit notion of dense time, represented separately from data, in its time
streams. This allows direct expressions of temporal constraints (order, syn-
chrony, and asynchrony) explicitly and independently of the data streams,
which is not possible in synchronous languages. Synchronous languages have
an implied notion of state, wherein actions and computation take place syn-
chronously, taking “zero time” and transitions between states depend on their
input/output data (but not time). Whereas synchronous and asynchronous be-
havior correspond to states and transitions in synchronous languages, both are
specified in Reo uniformly as compositions of temporal and data constraints.

In synchronous languages, everything that happens in a “state” is syn-
chronous and takes no time. However, in every state, the environment is always
assumed to be ready to accept every output of that state (output enabled-
ness). This prevents the propagation synchrony and exclusion. In Reo, the
synchronous merge/replicate behavior inherent in its nodes allows two-way
propagation of synchrony and exclusion constraints.

Synchronous languages originally produced executable code only for mono-
processor platforms, although recently some are being extended to produce
code for distributed architectures as well. The execution model of the code
generated by synchronous languages is generally different than the conceptual
model of their program specification: they are not designed to allow dynamic
changes to program specifications. In contrast, Reo connector circuits are
inherently distributed, mobile, and dynamically reconfigurable.

11 Interaction as Building Block

The vast majority of classical models and paradigms for construction and
study of complex systems use actions as their fundamental primitives. Exam-
ples include various object oriented programming models, the actor model [8],

314 F. Arbab

CSP [1], CCS [2], the π-calculus [3, 4], and process algebras [5, 6, 7]. Because
an action is something that a single actor performs, system construction in
these models espouses a single-actor-at-a-time perspective. Complex global
properties of a system involving more than one actor become difficult or im-
possible to verify and study, because they cannot be expressed explicitly in
these models.

As a building block, an interaction can explicitly appear in the form of a
relation that holds among a set of actors and constrains every one of them to
coordinate their collective behavior. Such explicitly specified constraints can
be composed together in various ways to yield more complex constraints (i.e.,
interaction protocols), without the need to specify the action sequences of
any actors. A model that uses interaction as its primitive building blocks can
offer a dual perspective wherein interaction among the actors/subsystems that
comprise a complex system attains first class status with direct representation,
making it easier to express and study its properties.

Reo is a good example of such a model. It offers (1) primitive interactions,
in the form of channels, as building blocks, plus (2) composition rules for com-
bining (primitive) interactions into more complex interactions (i.e., circuits),
without the need to specify (the actions of) the actors involved. Indeed, every
channel in Reo specifies a primitive interaction as a relational constraint that
must hold between the I/O actions performed on its two ends, without saying
anything about those actions or who performs them. These constraints specify
the relative timing (i.e., synchrony/asynchrony) of (the success of) the I/O
actions, and the desired data dependencies between them (e.g., buffering, or-
dering, selection, conversion, filtering, loss, and/or expiration of data). Reo’s
compositional operators indeed compose such relations to produce the more
complex constraints that constitute the behavior of their resulting connec-
tors. As an explicit, tangible piece of specification or program code, the same
connector can be employed to engage entirely different sets of actors to yield
entirely different systems. Perhaps more interestingly, the same set of actors
can be composed together with different connectors, producing systems with
very different emergent behavior [40].

In contrast to Reo which directly models interaction, process algebras (as
well as process calculi, the actor model, object oriented models, etc.) directly
model things that interact, rather than interaction itself. Interaction and com-
munication protocols ensue only as ancillary consequences of the unfolding of
the collective behavior of the processes involved in a concurrent system and
have no explicit constructs to directly express them. The compositionality of-
fered by process algebras convolutes composed interaction protocols: to learn
how a process r that is a parallel composition of processes p and q inter-
acts with its environment, one must unravel the actions of p and q and con-
sider all of their possible combinations. Whereas process algebras explicitly
compose and construct processes making the interaction relations amongst
them implicit, Reo explicitly composes and constructs interaction relations
and makes processes that engage in those relations implicit. Reo’s liberal no-

Composition of Interacting Computations 315

tion of channels and its fundamental notion of channel/connector composition
allow, among other things, explicit construction of connectors that specify in-
teraction protocols involving an expressive mix of synchrony and asynchrony.

The resounding similarity of Reo circuits with electronic circuits suggests
new interaction-based approaches for the design of complex systems analogous
to those used in computer aided design (CAD) of electronic circuits. Interac-
tion protocols can be specified in a visual programming environment for Reo,
the same way as CAD tools allow direct drawing of electronic circuits. Synthe-
sis of electronic circuits from automata specifications is well-understood, and
in some cases, modern CAD tools can synthesize a circuit from the Boolean
logic expression that defines what it is expected to do. Using such high-level
specifications instead of direct drawing of circuits relieves designers from the
chore of actual detailed circuit design. Because, like electronic circuits, Reo cir-
cuits have a mathematically well-defined semantic basis, one hopes analogous
synthesis of Reo circuits from higher-level (e.g., temporal logic or automata)
specifications should be possible. On the other hand, interaction protocols
(and Reo circuits) can express far more complex behavior than that of digital
circuits, including combinations of synchrony and asynchrony, and relational,
as well as simple (input/output) functional, interdependencies. In the light of
this fact, it is far from obvious if synthesis of Reo circuits from suitable high-
level automata specifications is possible at all, and if so, whether it can be done
efficiently. As a first step in this direction, we have presented an algorithm for
synthesis of Reo circuits from constraint automata specifications [58]. Syn-
thesis of Reo circuits automatically yields decentralized implementation of
interaction protocols for distributed systems from a high-level specification of
their desired behavior.

12 Epilogue

The increased complexity of monolithic programs for more sophisticated ap-
plications quickly renders them prohibitively unmanageable. Viewing such
systems as coordinated collaborations of interacting entities is a natural ap-
proach to tackle and break down this complexity. Furthermore, this view is
congruent with contemporary issues that arise out of distribution, heterogene-
ity, mobility, and the intensifying requirement to reuse coarse-grain pieces of
third-party software whose source code is unavailable, as building block com-
ponents. Traditional models for software composition, such as procedure calls,
module interconnection, object oriented method invocation, etc., break down
this complexity using structural decomposition models that are based on sim-
ple, fixed interaction and coordination schemes. An application’s interaction
and coordination requirements that do not perfectly match with the patterns
directly supported by such a model (e.g., synchronous method invocation)
must then be explicitly programmed within the native interaction coordi-
nation scheme supported by the model. This motivates models for software

316 F. Arbab

composition that provide richer and more flexible interaction and coordina-
tion primitives, and support mechanisms to compose them into more complex
interaction coordination protocols.

Specification and study of global properties of complex systems become
easier in a computational model that allows direct and explicit representation
of interaction. Coordination languages offer systematic middle-ware support
and models for software composition in concurrent settings. They focus on
interaction and the dominant role that it plays in compositional construc-
tion of parallel and distributed systems out of simpler computing devices. As
such, they illustrate the necessary shift of attention in the design of such sys-
tems, away from the algorithmic computation within individual computing
devices, onto their interactions with one another. However, as in other models
of concurrency, coordination languages generally do not treat interaction as a
first-class concept either.

Reo is a coordination language which serves as a good example of a con-
structive model of computation that treats interaction as a (in fact, the only)
first-class building block. Every channel in Reo directly specifies a primitive
interaction as a relational constraint, and Reo’s calculus of channel compo-
sition allows construction of complex interaction protocols through arbitrary
combination of these primitive interactions. By its very nature, a channel
decouples the communicating parties at its two ends, making their commu-
nication indirect. Every channel independently coordinates the actions of the
parties at its two ends, yielding decentralized coordination.

Abstract behavior types offer a simple and flexible model for interaction
of components and their composition. An ABT is a mathematical construct
that defines and/or constrains the behavior of an entity (e.g., a component)
without any mention of operations or data types that may be used to real-
ize that behavior. This puts the ABT model at a higher-level of abstraction
than abstract data types and makes it more suitable for components. The
endogenous nature of their composition means that it is not possible for a
third party, e.g., an entity in the environment, to compose two objects (or
two ADTs) “against their own will” so to speak. In contrast, the composition
of any two ABTs is always well-defined and yields another ABT.

The building blocks in the mathematical construction of the ABT model
are the (generally) infinite streams that represent the externally observable
sequences of I/O events that occur at an entity’s interaction points (e.g.,
ports) through which it exchanges data with its environment. Such infinite
structures, and thus the ABT model, naturally lend themselves to coalgebraic
techniques and the coinduction reasoning principle. The ABT model supports
a much looser coupling than is possible with ADT and is inherently amenable
to exogenous coordination. Both of these are highly desirable, if not essential,
properties for component based and interactive systems.

The ABT model provides a simple formal foundation for definition and
composition of components and coordination of their interactions. However,
direct composition of component ABTs does not generally provide much of an

Composition of Interacting Computations 317

opportunity to systematically wield exogenous coordination. Reo is a channel-
based exogenous coordination model that can be used as a glue language for
dynamic compositional construction of connectors in (non-)distributed and/or
mobile interactive system systems. Connector construction in Reo can be seen
as an application of the ABT model. The behavior of a Reo node is defined
as an ABT. A channel in Reo is just a special kind of an atomic connector.
Because all Reo connectors are ABTs, the semantics of channel composition
in Reo can be defined in terms of ABT composition.

Indirect communication and decentralized coordination have been identi-
fied as essential ingredients for construction of large complex systems based
on how successful complex biological systems involving simple agents, such as
swarms, foraging ants, termite colonies, etc., have evolved in nature [59]. For
instance, foraging ants indirectly and anonymously interact with each other
to identify their path to a food source by depositing pheromones (evaporating
scent chemicals) as they walk. Because ants tend to follow pheromone trails,
successful paths to a food source emerge out of “random walks” by individual
ants since they correspond to heavily traveled (and hence stronger and more
attractive) pheromone trails. This is known as stigmergy, a feature of natu-
ral systems in which the behavior of agents is shaped by interactions with
anonymous other agents [59].

Indirect communication and decentralized coordination already exist in a
coordination model like Linda, where the shared tuple space is used as a per-
sistent medium for asynchronous anonymous communication among agents.
A coordination language like Reo adds a new orthogonal dimension: it allows
construction and reconfiguration of the very communication medium through
which agents interact. Using Reo, part of the sophistication of the emergent
behavior of a system can be programmed as inherent features of the tailor-
made communication medium that it uses, analogous to how “programmed”
features of a terrain such as obstacles, troughs, walls, and bridges can affect
the behavior of foraging ants.

References

1. Hoare, C.: Communicating Sequential Processes. Prentice Hall International
Series in Computer Science. Prentice-Hall, 1985.

2. Milner, R.: A Calculus of Communicating Systems. Volume 92 of Lecture Notes
in Computer Science. Springer, 1980.

3. Milner, R.: Elements of interaction. Communications of the ACM 36, 1993, pp.
78–89.

4. Sangiorgi, D., Walker, D.: The Pi-Calculus - A Theory of Mobile Processes.
Cambridge University Press, 2001.

5. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication.
Information and Control 60, 1984, pp. 109–137.

318 F. Arbab

6. Bergstra, J.A., Klop, J.W.: Process algebra: specification and verification in
bisimulation semantics. In Hazewinkel, M., Lenstra, J.K., Meertens, L.G.L.T.,
eds.: Mathematics and Computer Science II. CWI Monograph 4. North-Holland,
Amsterdam, 1986, pp. 61–94.

7. Fokkink, W.: Introduction to Process Algebra. Texts in Theoretical Computer
Science, An EATCS Series. Springer-Verlag, 1999.

8. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, 1986.

9. Wegner, P.: Interaction as a basis for empirical computer science. ACM Com-
puting Surveys 27, 1995, pp. 45–48.

10. Wegner, P.: Interactive foundations of computing. Theoretical Computer Sci-
ence 192, 1998, pp. 315–351.

11. Goldin, D., Smolka, S., Attie, P., Sonderegger, E.: Turing machines, transition
systems, and interaction. Information and Computation Journal 194, 2004, pp.
101–128.

12. van Leeuwen, J., Wiedermann, J.: On the power of interactive computing. In van
Leeuwen, J., Watanabe, O., Hagiya, M., Mosses, P.D., Ito, T., eds.: Proceedings
of the 1st International Conference on Theoretical Computer Science — Explor-
ing New Frontiers of Theoretical Informatics, IFIP TCS’2000 (Sendai, Japan,
August 17-19, 2000.. Volume 1872 of LNCS. Springer-Verlag, Berlin-Heidelberg-
New York-Barcelona-Hong Kong-London-Milan-Paris-Singapore-Tokyo, 2000,
pp. 619–623.

13. van Leeuwen, J., Wiedermann, J.: Beyond the turing limit: Evolving interactive
systems. In Pacholski, L., Ruicka, P., eds.: SOFSEM 2001: Theory and Practice
of Informatics: 28th Conference on Current Trends in Theory and Practice of
Informatics. Volume 2234 of Lecture Notes in Computer Science. Springer-
Verlag, 2001, pp. 90–109.

14. Wegner, P., Goldin, D.: Interaction as a framework for modeling. Lecture Notes
in Computer Science 1565, 1999, pp. 243–257.

15. (PVM) http://www.csm.ornl.gov/pvm.
16. (MPI) http://www-unix.mcs.anl.gov/mpi/.
17. (COM+) http://www.microsoft.com/com/tech/COMPlus.asp.
18. (CORBA) http://www.omg.org.
19. Carriero, N., Gelernter, D.: Linda in context. Communications of the ACM 32,

1989, pp. 444–458.
20. Leler, W.: Linda meets Unix. IEEE Computer 23, 1990, pp. 43–54.
21. (Jini) http://www.sun.com/jini.
22. Oaks, S., Wong, H.: Jini in a Nutshell. O’Reilly & Associates, 2000.
23. Banâtre, J.P., Le Métayer, D.: Programming by multiset transformations. Com-

munications of the ACM 36, 1993, pp. 98–111.
24. Arbab, F., Herman, I., Spilling, P.: An overview of Manifold and its implemen-

tation. Concurrency: Practice and Experience 5, 1993, pp. 23–70.
25. Bonsangue, M., Arbab, F., de Bakker, J., Rutten, J., Scutellá, A., Zavattaro,

G.: A transition system semantics for the control-driven coordination language
Manifold. Theoretical Computer Science 240, 2000, pp. 3–47.

26. Bergstra, J., Klint, P.: The ToolBus Coordination Architecture. In Ciancarini,
P., Hankin, C., eds.: Proc. 1st Int. Conf. on Coordination Models and Languages.
Volume 1061 of Lecture Notes in Computer Science., Cesena, Italy, Springer-
Verlag, Berlin, 1996, pp. 75–88.

Composition of Interacting Computations 319

27. Arbab, F.: Reo: A channel-based coordination model for component composi-
tion. Mathematical Structures in Computer Science 14, 2004, pp. 329–366.

28. Andreoli, J.M., Ciancarini, P., Pareschi, R.: Interaction Abstract Machines. In:
Trends in Object-Based Concurrent Computing. MIT Press, 1993, pp. 257–280.

29. Papadopoulos, G., Arbab, F.: Coordination models and languages. In Zelkowitz,
M., ed.: Advances in Computers – The Engineering of Large Systems. Volume 46.
Academic Press, 1998, pp. 329–400.

30. Andreoli, J.M., Hankin, C., Le Métayer, D., eds.: Coordination Programming:
Mechanisms, Models and Semantics. Imperial College Press, 1996.

31. Ciancarini, P., Hankin, C., eds.: 1st Int. Conf. on Coordination Languages and
Models. Volume 1061 of Lecture Notes in Computer Science. Springer-Verlag,
1996.

32. Garlan, D., Le Métayer, D., eds.: 2nd Int. Conf. on Coordination Languages and
Models. Volume 1282 of Lecture Notes in Computer Science. Springer-Verlag,
1997.

33. Omicini, A., Zambonelli, F., Klusch, M., Tolksdorf, R.: Coordination of Internet
Agents: Models, Technologies, and Applications. Springer, ISBN 3-540-41613-7,
2001.

34. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors
in Reo by Constraint Automata. Science of Computer Programming 61, 2006,
pp. 75–113 extended version.

35. Zlatev, Z., Diakov, N., Pokraev, S.: Construction of negotiation protocols for
E-Commerce applications. ACM SIGecom Exchanges 5, 2004, pp. 11–22.

36. Clarke, D., Arbab, F., Costa, D.: Modeling coordination in biological systems.
In: Proc. of the International Symposium on Leveraging Applications of Formal
Methods (ISoLA 2004), 2004.

37. Diakov, N., Arbab, F.: Compositional construction of web services using Reo.
In: Proc. of International Workshop on Web Services: Modeling, Architecture
and Infrastructure (WSMAI), INSTICC Press, 2004, pp. 49–58.

38. Arbab, F., Baier, C., de Boer, F., Rutten, J.: Models and temporal logics for
timed component connectors. In: Proc. of the IEEE International Conference on
Software Engineering and Formal Methods (SEFM), IEEE Computer Society,
2004, pp. 198–207.

39. Arbab, F., Rutten, J.: A coinductive calculus of component connectors. In
M. Wirsing, D.P., Hennicker, R., eds.: Recent Trends in Algebraic Development
Techniques, Proceedings of 16th International Workshop on Algebraic Develop-
ment Techniques (WADT 2002). Volume 2755 of Lecture Notes in Computer
Science., Springer-Verlag, 2003, pp. 35–56.

40. Arbab, F.: Abstract Behavior Types: A foundation model for components and
their composition. Science of Computer Programming 55, 2005, pp. 3–52 ex-
tended version.

41. Rutten, J.: Component connectors. In [60], 2004, pp. 73–87.
42. Mehta, N., Sirjani, M., Arbab, F.: Effective modeling of software architectural

assemblies using Constraint Automata. Technical Report SEN-R0309, Cen-
trum voor Wiskunde en Informatica, Kruislaan 413, 1098 SJ Amsterdam, The
Netherlands, 2003.

43. Mehta, N.R., Medvidovic, N., Sirjani, M., Arbab, F.: Modeling behavior in
compositions of software architectural primitives. In: Automated Software En-
gineering, IEEE Computer Society, 2004, pp. 371–374.

320 F. Arbab

44. Rutten, J.: Elements of stream calculus (an extensive exercise in coinduction). In
Brookes, S., Mislove, M., eds.: Proc. of 17th Conf. on Mathematical Foundations
of Programming Semantics, Aarhus, Denmark, pp. 23–26, May 2001. Volume 45
of Electronic Notes in Theoretical Computer Science. Elsevier, Amsterdam,
2001.

45. Barringer, H., Kuiper, R., Pnueli, A.: A really abstract current model and
its temporal logic. In: Proceedings of Thirteenth Annual ACM Symposium on
principles of Programming Languages, ACM, 1986, pp. 173–183.

46. de Bakker, J., Kok, J.: Towards a Uniform Topological Treatment of Streams
and Functions on Streams. In Brauer, W., ed.: Proceedings of the 12th Inter-
national Colloquium on Automata, Languages and Programming. Volume 194
of Lecture Notes in Computer Science., Nafplion, Springer-Verlag, 1985, pp.
140–148.

47. Kok, J.: Semantic Models for Parallel Computation in Data Flow, Logic- and
Object-Oriented Programming. PhD thesis, Vrije Universiteit, Amsterdam,
1989.

48. Broy, M., Stolen, K.: Specification and development of interactive systems.
Volume 62 of Monographs in Computer Science. Springer, 2001.

49. Arbab, F.: Computing and Interaction. In [61], 2006.
50. Brock, J., Ackerman, W.: Scenarios: A model of non-determinate computation.

In: Proceedings of the International Colloquium on Formalization of Program-
ming Concepts, Springer-Verlag, 1981, pp. 252–259.

51. (Petri Nets World) http://www.informatik.uni-hamburg.de/TGI/PetriNets/.
52. Diakov, N., Zlatev, Z., Pokraev, S.: Composition of negotiation protocols for

e-commerce applications. In Cheung, W., Hsu, J., eds.: The 2005 IEEE In-
ternational Conference on e-Technology, e-Commerce and e-Service, 2005, pp.
418–423.

53. Halbwachs, N.: Synchronous programming of reactive systems. Kluwer Aca-
demic Publishers, 1993.

54. Berry, G.: The Esterel v5 language primer version 5.21 release 2.0. Technical
report, INRIA, 1999. ftp://ftp-sop.inria.fr/meije/esterel/papers/primer.pdf.

55. Berry, G., Cosserat, L.: The synchronous programming languages Esterel and
its mathematical semantics. In Brookes, Winskel, G., eds.: Seminar on Con-
currency. Volume 197 of Lecture Notes in Computer Science. Springer Verlag,
1984, pp. 389–448.

56. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language Lustre. Proceedings of the IEEE 79, 1991, pp. 1305–
1320.

57. le Guernic, P., Benveniste, A., Bournai, P., Gautier, T.: Signal – a data
flow-oriented language for signal processing. IEEE Transactions on Acoustics,
Speech, and Signal Processing [see also IEEE Transactions on Signal Processing]
34, 1986, pp. 362–3740.

58. Arbab, F., Baier, C., de Boer, F., Rutten, J., Sirjani, M.: Synthesis of Reo
circuits for implementation of component-connector automata specifications.
In Jacquet, J.M., Picco, G., eds.: Proc. of the 7th International Conference
on Coordination Models and Languages (Coordination 2005). Volume 3454 of
Lecture Notes in Computer Science., Springer-Verlag, 2005, pp. 236–251.

59. Keil, D., Goldin, D.: Modeling indirect interaction in open computational sys-
tems. In: Proc. 1st Int’l workshop on Theory and Practice of Open Computa-
tional Systems (TAPOCS), IEEE Computer Society Press, 2003.

Composition of Interacting Computations 321

60. Panangaden, P., van Breugel, F., eds.: Mathematical Techniques for Analyz-
ing Concurrent and Probabilistic Systems. CRM Monograph Series. American
Mathematical Society, 2004. ISSN: 1065-8599.

61. Goldin, D., Smolka, S., Wegner, P., eds.: Interactive Computation: The New
Paradigm. Springer-Verlag, 2006 (this volume).

From Information-Centric to Experiential
Environments

Rahul Singh1 and Ramesh Jain2

1 San Francisco State University, San Francisco, CA, USA
2 University of California, Irvine, CA, USA

Summary. With progress in technology, information management systems are
transitioning from storing well defined entities and relationships to the challenge
of managing multifarious heterogeneous data. Underlying such data is often a rich
diversity of information with emergent semantics. Recognizing this characteristic is
essential to executing the transition from data to knowledge. In this context, this
chapter presents the paradigm of experiential environments for facilitating user–
data interactions in information management systems. Experiential environments
emphasize obtaining information and insights rather than pure data lookup. To fa-
cilitate this aim, the paradigm utilizes the sentient nature of human beings, their
sensory abilities, and interactive query–exploration–presentation interfaces to expe-
rience and assimilate information.

1 Introduction

In the good old days, just a decade or so ago, to exemplify the requirements
and structure of a database, we typically considered a corporate database.
Within it, entities, such as “employee”, “address”, or “salary” consisted of
alphanumeric fields. Each such field represented some attribute that had been
modeled. Users would pose queries, for example, to discover an employee at-
tribute or to find all employees that satisfied certain attribute-related predi-
cates.

Although in the new millennium users have vastly different expectations,
most databases still retain the design philosophy of yesteryear: Users ask
queries to get answers in an information-centric environment. This premise
holds as long as all users have same or similar requirements. The database can
then act as a resource that provides a well-defined environment for articulating
queries on a fixed information structure. However, the emergence of Internet
based systems, including the WWW, and progress in computing and storage
technologies has fundamentally changed, the kind of data that is in common
use today. This change is both quantitative and qualitative and has important
consequences for paradigms used for interacting with data. Taken together,

324 R. Singh and R. Jain

the situation contrasts sharply with the scenario that was common even just
a decade ago and creates a mismatch between existing design paradigms and
evolving requirements. A simple analysis of the nature of the data and ex-
pectations of users from current and next generation systems highlights the
emerging issues:

• Volume of data is growing by orders of magnitude every year.
• Multimedia and sensor data is becoming more and more common.
• Different data sources provide facets of information which have to be com-

bined to form a holistic picture.
• The goal of data assimilation increasingly requires that spatio-temporal

characteristics of the data are taken into account.
• In many applications, real-time data processing is essential.
• Exploration, not querying, is the predominant mode of interaction, which

makes context and state critical.
• The user is interested in experience and information, independent of the

medium and the source.

In the chapter, we explore the paradigm of experiential computing for
designing information management systems. The idea of experiential comput-
ing is built on the fact that humans are sentient observers. Therefore, this
paradigm emphasizes interactivity and support for experiential user factors
in the quest for information assimilation.

1.1 Issues Motivating the Need for Experiential Computing

Let’s look at some of the basic issues that underlie this change. We motivate
our perspective by noting three critical factors that influence the situation.
These include: How the data is modeled and its implications (the data model),
the presence of different data types and their implications (data heterogene-
ity), and finally, the expectation of users as they interact with the data (user
requirements).

Data model : A data model can be thought of as an abstraction device
through which a reasonable interpretation of the data can be obtained [53].
Keeping this in mind, we can identify two types of data sources, those that are
strongly modeled and those that are weakly modeled. Conventional databases
such as an inventory database or a corporate database are examples of strongly
modeled sources of data. In them, data and relationships amongst data are
stored with very specific goals in mind. Information from such databases can
be retrieved (in the sense of normal queries) only in terms of the data and
relations that are explicitly modeled or derivations based on them (e.g., joins
on tables). Weakly modeled data sources on the other hand are less specific
about the interpretations of the data that are made available through them.
A general web-page is an example of a weakly modeled data source. While
thematically coherent, a general web-page, unlike the above examples, does

From Information-Centric to Experiential Environments 325

not seek to limit access to information present in it through a limited set of
entities and relations.

Data heterogeneity: Data in traditional databases is synonymous with al-
phanumeric information. However, many contemporary applications are char-
acterized by the fact that information is represented through different types of
data like text (alphanumeric), images, audio, video, or other specialized data
types. The proliferation of physically different data types (or data heterogene-
ity) is driven both by the increasing capabilities of computational systems as
well as the increasing sophistication and ease of use of digital sensor tech-
nologies coupled with their decreasing cost. One of the important challenges
in situations that involve heterogeneous data types lies in that the semantics
associated with complex media (like video or images) is emergent, i.e., media
is endowed with meaning by placing it in context of other similar media and
through user interactions [44]. This has strong bearing on the systems that
are designed to work with such data. For instance, the emergent semantics
of complex media imply that such information is necessarily weakly modeled.
To capture such issues, we distinguish two types of data: alphanumeric and
media-based, where the latter may include alphanumeric data when occurring
in conjunction with other data types.

User requirements: User requirements for the data fall into roughly two
categories: information and insight. For example, in some cases, a user is just
looking for some information, such as the location of a specific restaurant. In
other cases the user may be interested in more complex insights such as how
cosmopolitan is a particular city. These two types of requirements present
completely different set of challenges for the design of information manage-
ment systems.

1.2 Towards a New Paradigm

The matrix in Fig. 1 captures the relationships between the aforementioned
issues. Each cell of this matrix lists the paradigms which can be used to
address requirements at the intersection of these issues.

In this matrix, predictably, databases lie in the lower left quadrant at
the intersection of information and strongly modeled sources; they are ide-
ally suited for obtaining precise information in well specified domains. The
bottom right quadrant is occupied by search engines. They are well tailored
for generic searches across weakly modeled information sources. Such sources
may either be alphanumeric or have heterogeneous data typically with textual
annotations. The primary intention of search engines is to provide informa-
tion through responses to specific (keyword-based) queries and not to directly
facilitate exploration.

In this matrix, predictably, databases lie in the lower left quadrant at
the intersection of information and strongly modeled sources; they are ide-
ally suited for obtaining precise information in well specified domains. The

326 R. Singh and R. Jain

Experiential Environments

Insight

Information

Visualization (Indirect
Experiential Environments)

Data Mining

Direct (heterogeneous data) or
Indirect (alphanumeric data)
Experiential Environments

Strongly Modeled Sources Weakly Modeled Sources

Current Databases Search Engines

Experiential Environments

Insight

Information

Visualization (Indirect
Experiential Environments)

Data Mining

Direct (heterogeneous data) or
Indirect (alphanumeric data)
Experiential Environments

Strongly Modeled Sources Weakly Modeled Sources

Current Databases Search Engines

Fig. 1. Paradigms at the intersection of data modeling, data heterogeneity, and
user requirements

bottom right quadrant is occupied by search engines. They are well tailored
for generic searches across weakly modeled information sources. Such sources
may either be alphanumeric or have heterogeneous data typically with textual
annotations. The primary intention of search engines is to provide informa-
tion through responses to specific (keyword-based) queries and not to directly
facilitate exploration.

The top half of Fig. 1 consists of paradigms, many of which demonstrate
characteristics that are partially or wholly experiential. This transition is re-
flected in the top left quadrant which consists of approaches that support
gaining insights from precise sources. Techniques commonly employed for this
goal include data mining and visualization. The latter is of special interest to
us as it seeks to transform and present data in a manner that allow users to
gain insights by “seeing” the patterns and relationships that may be present.
This attribute, where the human senses are involved directly, as the reader
will see from the ensuing sections, is a key characteristic of the experiential
paradigm.

Finally, the top right quadrant addresses the intersection of insight and
imprecise data sources. This intersection produces challenges which can be
addressed through experiential environments, a new way of interacting with
data that will become increasingly common in most data-intensive applica-
tions: In such cases, users encounter immense volumes of multifarious data
from disparate, distributed, sometimes even unknown, data sources. To gain
insights from such data, one must be immersed in it, just as one would be im-
mersed in a real life situation to experience it first hand. Humans are sentient
observers. They want to explore and experience information. Furthermore,

From Information-Centric to Experiential Environments 327

they typically prefer to directly interact with the data without complicated
intervening metaphors. This tendency probably stems from the fact that we
humans are all immersed in the real world where the real world is really
different attributes at different points surrounding us. We use our senses to
measure or infer the various attributes. For example, our visual system is a
powerful mechanism that allows us to infer different kinds of attributes about
the environment surrounding us. Similarly, tactile senses allow us to measure
other characteristics of the environment that are in close proximity to us. As
these examples illustrate, we have complementary sensors to facilitate our ex-
plorations and experiences. Vision and sound are our sensors to infer about
the world without the constraint of close proximity and we use these for ex-
perience as well as for communications. Other sensors, like touch, are used in
situations where a certain amount of proximity and intimacy is required.

We develop the ideas initially proposed in [28] to point out two types of
experiential environments that may be contemplated: The first of these is the
indirect experiential environments. Within these environments, data is trans-
formed to present it in manners where users can involve their senses to discern
patterns and relationships. Techniques in information visualization as well as
more evolved and integrated approaches such as the business activity moni-
toring application covered in Sect. 4.2 of this chapter fall in this category. The
second type of experiential environment is called a direct experiential environ-
ment. The fundamental difference of such environments from those in the first
category lies in their ability to deal with data types such as imagery or audio
that can be directly presented to users. Therefore there is no interpretation or
selection of transformations involved (Sect. 4 describes an example of such a
system directed at the problem of personal multimedia information manage-
ment). Finally, user-information interactions are also direct in that they do
not use any intermediate metaphors or transformations.

1.3 From Data to Information and now to Insights: The Etudes of
Experiential Computing

There is a very clear trend in the evolution of computing approaches from
databases to search engines. Belew [2] presents this trend by comparing the key
characteristics of these systems. In Table 1, we extend Belew’s observations
to include experiential environments. Our extension highlights the trend from
data to information and now to insights.

Traditional databases were designed to provide an environment where user
could articulate their information needs using precisely specified logical rela-
tionships. The database would then respond by providing the information.
On-Line-Analytical-Processing (OLAP) and visualization-based approaches
are based on the same systems, but go farther by pulling out a volume of data
and then using visualization tools to allow exploration of the retrieved dataset.
Search engines directly adopted the basic concept of query from databases.

328 R. Singh and R. Jain

Table 1. Data to information (and now) to insights

Database Information
retrieval

Experiential
environment

Basic goal Provide data Provide
information
sources

Provide
insight

Data type Alphanumeric Text Multimedia

User query Specific General Emergent

System
provides

Data item Pointer Heterogeneous
data

Retrieval
method

Deterministic Probabilistic Hybrid

Success
criterion

Efficiency Utility User
satisfaction

Thus, in most of the current systems, a user articulates a query and gets an an-
swer for it. If further information is needed, a new query must be articulated.
Current information environments actually work against the human–machine
synergy. Humans are very efficient in conceptual and perceptual analysis and
relatively weak in mathematical and logical analysis; computers are exactly
the opposite. In an experiential environment, users directly use their senses
to observe data and information of interest related to an event and they in-
teract naturally with the data based on their particular set of interests in the
context of that event. Experiential environments have the following important
characteristics:

• They are direct: These environments provide a holistic picture of the event
without using any unfamiliar metaphors and commands. Within them,
users employ intuitive actions based on commonly used operations and
their anticipated results. In experiential environments, a user is presented
data that is easily and rapidly interpreted by human senses and then the
user interacts with the dataset to get a modified dataset.

• They provide the same query and presentation spaces: Most current in-
formation systems use different query and presentation spaces. Consider
popular search engines. They provide a box to enter keywords and the sys-
tem responds with a list of thousands of entries spanning over hundreds
of pages. A user has no idea how the entries on the first page may be

From Information-Centric to Experiential Environments 329

related to the entries on the last, or how many times the same entry ap-
pears, or even how the entries on the same page are related to each other.
Contrast this to a spreadsheet. The user articulates a query by changing
certain data that is displayed in context of other data items. The user’s
action results in a new sheet showing new relationships. Here the query
and presentation spaces are the same. These systems are called What-You-
See-Is-What-You-Get or WYSIWYG.

• They consider both the user state and context: Information system should
know the state and context of the user and present information that is
relevant to this particular user in the given state and context. People
operate best in known contexts and do not like instantaneous context
switching. Early information systems, including databases, were designed
to provide scalability and efficiency. These considerations led to designs
that were stateless. The efficiency of relational databases is the result of
this decision. This is also the reason why Internet search engines, which
do not store user states, can be dissatisfying, as users seek to drill-down
on information obtained from previous queries.

• They promote perceptual analysis and exploration: Experiential systems
promote perceptual analysis and exploration. Because users involve their
senses in analyzing, exploring, and interacting with the system, these sys-
tems are more compelling and understandable. Text based systems provide
abstract information in visual form. Video games and many simulation sys-
tems are so engaging because they provide powerful visual environment,
sound, and in some cases tactile inputs to users.

In this chapter, we begin by discussing the data engineering challenges
that underlie the development of experiential environments in Sect. 2. This
is followed by a description of event-based modeling in Sect. 3. In this sec-
tion, we discuss how event-based organization and management of data facil-
itates development of contextual and personalized experiential environments.
In Sect. 4, we present descriptions of two experiential systems in the areas
of personal information management and business activity monitoring respec-
tively. These examples illustrate how the ideas espoused in the previous sec-
tions can be realized in designing real-world systems. We conclude this chapter
in Sect. 5 by reiterating the fundamental ideas behind the paradigm of expe-
riential environments and outlining its broad applicability in the evolution of
the next generation information and data management systems.

2 Data Engineering Challenges for Designing
Experiential Environments

Experiential computing environments require supporting user interactions
such as browsing, exploration, and queries on information represented through
different media. The direct nature of experiential environments implies that

330 R. Singh and R. Jain

the results of such interactions are expressed in the native format(s) of the
underlying data. The data engineering challenges that are encountered in de-
signing such systems span issues related to modeling and representation of
heterogeneous data as well as design of user-data interfaces that support in-
teractions that are direct and user context aware.

In experiential computing, the problem of heterogeneity, arises in many
forms, including: infrastructural heterogeneity (due to different types of hard-
ware and software platforms that may be involved), logical heterogneity (aris-
ing out of different data models or schemata used for providing a logical
structure to the data), and physical heterogeneity (owing to the presence of
fundamentally distinct types of data such as text, audio, images, or video).
Amongst these, the problem of logical heterogeneity has typically been con-
sidered in traditional database research, while that of physical heterogeneity
has been the focus in multimedia data modeling.

It can be postulated that physical heterogeneity leads to logical hetero-
geneity, since the need to capture specificities of each media would result
in the development of different data models and schemata, which ultimately
need to be integrated. This is reflected in the similarities that can be dis-
cerned between the approaches to addressing heterogeneity in database and
multimedia research. For example, the idea of using local-as-view and global-
as-view approaches [25] for specifying the correspondences between data at
the source and in the global schema bears parallels to the principles of auton-
omy and uniformity suggested in [51] for media integration. However, till date,
the issue of integration, when the heterogeneity is due to different media, has
typically remained unaddressed both in multimedia and database research, as
techniques have tended to concentrate on issues that arise in media-specific
management. The result of this research focus manifests itself today in a large
number of media specific solutions, such as those for images, audio, or video,
but hardly any, that span different media.

Our emphasis in this chapter is on the problem of dealing with heterogene-
ity by starting from the physical level. Consequently, the following sections
explicitly deal with issues that arise when information is represented using
multiple and distinct media. As explained above, such a formulation sub-
sumes the problem of dealing with logical heterogeneity. Furthermore, this
approach allows us to address issues that occur due to the increasing avail-
ability of sensor-based data in applications varying from personal information
management, to ubiquitous computing and sensor networks. We refer readers
who are specifically interested in the issues of managing logical heterogeneity
to introductory material well codified in textbooks such as [15, 38] along with
the reviews [27, 31] and references therein. In this context, we also emphasize
that the principles of experiential computing are not limited to the availability
of multimedia information and are equally applicable to domains where the
data is alphanumeric. In Sect. 4 this is illustrated through two examples, one
of which deals with multimedia data in the domain of personal information
management and the other, with alphanumeric data, in business intelligence.

From Information-Centric to Experiential Environments 331

2.1 Understanding (Physical) Heterogeneity

Fundamentally, multimedia data has a gestalt nature. This implies that it
is comprised of more than one media that are semantically correlated and
that the complete semantics conveyed in the data cannot be discerned by
considering the data streams individually. The classical example of captur-
ing an explosion using image-based data (video) and sound (audio) is often
forwarded to underline this aspect. In the case of this example, either of the
media (a flash of light or a loud sound) taken in isolation, is insufficient to
determine that an explosion occurred. A unified data model is thus essential
not only for preserving the semantic integrity of the information, but also for
conveying the same by supporting query-retrieval and user interactions with
the data. The principal characteristics of multimedia data that have influence
on its modeling and subsequent usages include:

• Semantic correlations across media: As briefly described above, represent-
ing the semantic correlations across different media is fundamental to stor-
age, processing, query-retrieval, and utilization of multimedia information.
How do we represent heterogeneous multimedia data in a general and uni-
fied way that emphasizes the semantic correlations between the media?
Different media, such as audio and images, have different form and charac-
teristics. A unified data model needs to address these issues. This issue also
expresses itself in terms of the problem of multiple representations where
a single object, entity, or phenomenon may be captured and represented
in different media formats. For example, the state of a patient’s health
may be recorded using biomedical imagery data including time-varying
imaging, alphanumeric data detailing blood pressure, body-temperature,
or patient-weight, and audio-transcripts. A data model should be capable
of seamlessly resolving across the various representations.

• Temporal characteristics of the data: From surveillance videos, to personal
photographs, to biomedical imagery (for example, tracking of synaptic ac-
tivation in the brain), temporal and dynamic phenomena are commonly
represented through multimedia data. The aforementioned applications
and many others are characterized by data in which the time of occur-
rence or changes over time denote valuable information. A multimedia
data model, therefore, should be able to represent, query, and reason about
time and time-based relationships. Directly using traditional data models,
such as the entity-relationship paradigm, to reason about dynamic data
is complicated because such an approach is primarily designed to reflect
a set of static relationships between entities. In dynamic environments
not only the attributes associated with entities, but also the relationships
between entities change with time. In modeling multimedia data, an addi-
tional challenge is faced in situations that require integrating semantically
related dynamic and static media. This can happen for example, when
information about a sporting event is available through a video-recording
and a text report.

332 R. Singh and R. Jain

• Spatial characteristics of the data: Much of multimedia data has inherent
characteristics that can be correlated with location. For example, auto-
mated traffic monitoring at intersections provides video footage distinct
from those taken at highways. In bio-medical imaging the location (organ
or tissue) is of critical importance for analysis and interpretation of the
images. Personal videos of trips can be categorized by the geographical
locations visited. These examples indicate that the semantics, the form,
and the relationships expressed in multimedia data are often influenced
by location and relationships such as adjacency, connectivity, proximity,
or containment that can be defined over space.

• User interactions with the data: Current multimedia systems typically con-
sider information in a manner that is independent of the user and context.
Further, they make an implicit assumption that acquisition of knowledge
by the user (based on the media) is a linear process and can be ade-
quately represented by the rendering of the media alone. Therefore, they
support limited interactions between the user and the data. This causes
a significant loss in the totality of information being communicated be-
tween creation of the media and its consumption by users, as the media
is presented in isolation from the context of its creation [49] as well as
the context of the user. For instance, the rendering of a video is typically
from a single perspective and users have little or no control in interac-
tively exploring a scene using multiple perspectives. Additionally, in true
multi-media settings, disparate data sources need to be united for pre-
sentation, query, and exploration in manners where the users are free to
state their requests in natural form based on objects and event relation-
ships of interest. The entire set of aforementioned issues is complicated by
the fact that the semantics associated with complex media (like video or
images) is emergent. Developing user–data interaction paradigms that ad-
dress such issues requires support from underlying data models to impart
the appropriate structure to the information.

2.2 Previous Research in Multimedia and Databases

In recent years, a number of data models have been developed to address the
structure and semantics of media data like images and video [9, 10, 11, 12,
16, 20, 21, 33, 37, 46, 50] or sound [7, 55]. Such research has typically fo-
cused on the development of powerful features to describe the corresponding
media and the use of similarity functions to answer queries based on these
features [43]. This approach simplifies the general multimedia database prob-
lem, because a database is assumed to contain only a specific type of media
data [13]. A related line of research has focused on developing models that
support the structure of media data and the syntactic operations that are typ-
ically performed on them. For example [19] proposes as a basic abstraction
the notion of “timed streams” of media elements like video, audio samples,
and musical notes. This model considers issues like the temporal nature of

From Information-Centric to Experiential Environments 333

media data (defined in terms of real time presentation constraints and me-
dia synchronization) along with operations like media derivation and media
composition. Similarly [34] considers temporal access control issues like re-
verse, fast-forward, and midpoint suspension/resumption in their model. An
object-relational model that builds upon [19] is proposed in [13] where a three-
layered structure is defined. The lowermost layer consists of raw data (byte
sequences). The middle layer consists of multimedia entities, called multime-
dia type, which can be images, image stacks, sound, video, or text. The top
layer consists of logical entities that model the domain semantics and interact
with entities representing multimedia types. Additionally, specialized entities,
containing visual and spatial information can be defined at the top layer to
be used for content-based querying. Layered architectures such as [56] or the
one described above, break down the complexity of multimedia modeling by
seeking clear distinction between raw data modeling, conceptual modeling,
and presentation management.

The Garlic project at IBM [8, 24], uses an object-oriented data model as
middleware to integrate multiple (potentially multimedia) databases. Transla-
tions of data types and schemas between individual repositories and Garlic are
accomplished using repository wrappers. A repository of complex objects is
provided for integration of multimedia data and legacy data. Query processing
and data manipulation are supported through the Garlic system.

The papers reviewed above catalog a rich diversity of research approaches
towards modeling information represented through multimedia data. However,
to the best of our knowledge, no research till date has attempted to address
within a single framework, the problem of multimedia information manage-
ment, in context of all the issues we enumerated early on in this section.
Towards this, in the following section we introduce the rudiments of event-
based modeling that form the basis of our research in designing experiential
systems.

3 Event-Based Unified Modeling of Multimedia Data

3.1 The Conceptual Model

The fundamental idea underlying the data model being considered by us is
the notion of an event which may be defined as under [47]:

Definition 1. An event is an observed physical reality parameterized by space
and time. The observations describing the event are defined by the nature or
physics of the observable, the observation model, and the observer.

Certain key issues in this definition need to be highlighted. First, events
are treated as a fundamental physical reality and the observations (or data)
that describe them are defined to depend on the observation model and the
observer. The observation model may include among others, the observation
method (e.g., audio, video, images, or other data types such as alphanumeric

334 R. Singh and R. Jain

data), sampling model (e.g., video-rate), and sampling period. The role of
the observer is fulfilled by users involved in creation or consumption of the
information. Events thus constitute the unifying notion that brings together
heterogeneous data that is semantically correlated. This idea is illustrated in
Fig. 2. Using events as the central semantic notion, a conceptual model can
therefore be developed. As part of the conceptual model, the specification of
an event covers three primary aspects:

Fig. 2. Intuition behind the event-based unified multimedia data model

• Event information: The information component of the event may consist of
specific attributes. Since events are spatio-temporal constructs, the event
information component necessarily contains the time period of the activity
and its spatial characteristics, e.g., its location. Additionally, information
required to uniquely identify an event are also stored here. Further, entities
like people or objects that participate in an event may be described here
along with other types of domain specific information.

• Event relations: Events (and the activities underlying them) may be re-
lated to other events (activities) that occur in the system. Examples of such
relations can be temporal and spatial co-occurrences, temporal sequenc-
ing, cause–effect relations, and aggregations of events. This information is
modeled and described in the event relations component.

• Media Support: Each event is a unifying point for the various observations
that describe it. These observations are available to us through different
types of media data. Specific media data is said to support an event, if

From Information-Centric to Experiential Environments 335

it captures (describes) that event. We note that the exact form of the
description depends on the characteristics of the media. For example, a
basketball game may be described by video, photographs, and mixed text-
image new article. Each of these descriptions exemplifies specific media
that have different characteristics, while supporting the same event. Such
media data may reside as multimedia files in a file system or in media
specific databases. In the media support component, information such as
media types, resource locators, or indexes corresponding to specific media
that support the given event are stored. It should be noted that the con-
ceptual model imposes no restrictions on the same media simultaneously
supporting multiple events.

3.2 Multilevel Events

For broad usability, in the context of media-rich data, a data model and its
physical implementations need to incorporate domain-level semantics so that
users can interact with the information at the semantic level rather than at the
level of nonintuitive media-specific features. This requires a model to span and
seamlessly transition between low-level signal-centric modeling to high-level
concept and semantic modeling. As an example of this, consider the problem
of mapping an image with large number of “red” colored pixels to an entity
with clear semantics associated with it, such as “tomato” or “sunset”. This
issue is synonymous with the problem of bridging the signal-to-symbol gap
(the gap between the signal-level description of the content and the symbolic
meaning associated with it).

One of the primary goals of event-based modeling is to relate media to se-
mantically meaningful entities and concepts. This requires bridging the signal-
to-symbol gap. To assist in building models that encompass such a transition,
we distinguish between three types of events. We call the first of these data
events, the second elemental events, and the last semantic events.

Data events model the physical characteristics of the information. For ex-
ample, a photograph or video clip consists of pixels that contain illumination-
intensity information of the scene. Similarly, an (digital) audio-clip consists of
samplings of a sound wave. These are examples of data events. As these exam-
ples illustrate, the media support for each data event is a nonempty singleton
set, consisting of a specific media instance. The reader will note that given
the signal-level nature of data events, issues such as the nature or physics
of the observable and the observation model have a strong bearing on their
definition of data events.

An elemental event on the other hand is a conceptual entity and reflects an
interpretation or analysis of information that is partially inspired by domain
semantics while retaining the dependence on signal-level information (data
events). For example, detecting a “person speaking” based on audio-visual
data is an example of an elemental event. While being independent of data
characteristics per se, the formulation of elemental events draws on detection

336 R. Singh and R. Jain

of data features and may form the focal point for multimedia unification. In
context of the earlier example, detecting that a person is speaking may be done
by analyzing the sound-level (pure audio-based), analysis of lip movements
(pure video-based), or through an analysis involving both audio and video.
An elemental event therefore, may have either homogeneous or heterogeneous
media support based on the constituent data events.

Finally, a semantic event captures the conceptual (or semantic) interpre-
tation of the data and is based on the underlying elemental events. For in-
stance, “giving a speech” is an example of a semantic event. This event may
be based on the elemental event “person speaking” and be temporally related
with other elemental events such as “coming to the podium”. Thus, semantic
events do not have direct media support, but function as a unifying point for
all the underlying media.

The reader may note that denotation of data, elemental, and semantic
levels in the multilevel event model does not imply that implementations are
restricted to have only three levels in the transition from a signal-centric to a
semantics-centric modeling of the information. Indeed, in an implementation,
one or more of the levels defined above may consist of sublevels to assist in
the transition. This will especially be true for the highest level where semantic
events are represented. Conversely, an implementation may choose to collapse
these three levels into a single layer. This could occur, for example, in situa-
tions where users directly annotate media to endow high-level semantics to it.
In such a case the signal-to-symbol gap is bridged using cognitive input. The
system described in Sect. 4 for personal multimedia information management
takes this approach.

3.3 Modeling Time and Space

Time and Space are two of the fundamental attributes of the event model and
how they are represented significantly impacts our ability to reason with the
proposed model. It may be noted that modeling of time and space has received
significant attention in both database and knowledge representation commu-
nities (see [54] and references therein) and our approach draws significantly
from prior results in the area. In the context of temporal representation, a
simple approach is to tag each attribute (or tuple) with a discrete timestamp.
Its deficiency lies in that common algebraic operations like addition, multipli-
cation, and division are not applicable to timestamps. Further, information
that is not explicitly represented becomes difficult to query.

Research in temporal databases has also explored interval-based models
of time. Such representations are ideally suited to describe events (such as
a game or a meeting) that occur over a period of time. However, the mod-
eling problem we are considering is significantly more complex and cannot
be sufficiently addressed through interval-based models only. As an illustra-
tion, consider the example of parents taking a digital photograph of the “first
smile” of their child. The photograph is in itself an event (a data event, in the

From Information-Centric to Experiential Environments 337

three-layered hierarchy), that has an infinitesimal duration (manifested using
a single timestamp). Further, based on that single photograph, an interval
cannot be defined for the (semantic) event “first smile”. In such cases either
the fundamental nature of the event or lack of domain semantics precludes
the use of interval representations. We therefore propose two temporal data
types: infinitesimal time points and time intervals to temporally characterize
events. In the following, we denote time points with a lowercase letter, poten-
tially with subscripts (e.g., t1, t2) and time intervals with upper case letters
T = [t1, t2). Algebraic operators can be used to convert information among
these types. For example, time intervals can be added or subtracted from time
points to yield new time points. Further, time points can be subtracted to de-
termine time intervals. Three classes of relationships can then be defined to
reason about temporal data. These include:

• Point–point relations : Assuming a complete temporal ordering, two arbi-
trary time points t1 and t2 can be related as: t1 < t2 (Before); t1 = t2
(Simultaneous); t1 > t2 (After), and the negations t1 ≥ t2 (Not Be-
fore); and t1 ≤ t2 (Not After).

• Point–interval relations: The relations between an arbitrary time point t1
and an arbitrary time interval T= [ta, tb), are: t1 < T ⇒ t1 < ta (Before);
t1 ∈ T ⇒ ta < t1 < tb (During); t1 > T ⇒ t1 > tb (After), t1 ≥ ta (Not
Before); and t1 ≤ tb (Not After).

• Interval–interval relations: Given two intervals T= [ta, tb) and U =
[ua, ub), the possible relations between them are [1]: tb < ua (Before);
ta = ua and tb = ub (Equal); tb = ua (Meet); ta < ua and tb < ub and
ua < tb (Overlap) ta > ua and tb < ub (During); ta = ua and tb < ub

(Start); ta > ua and tb = ub (Finish); and the corresponding symmetric
relationships (excluding the case for Equal).

These relations allow us to deal with relative position of intervals and are
necessary to reason about effects that may influence the occurrence of each
other (causality) or manifest themselves with delay. A graphical description
of these relations is shown in Fig. 3.

The ability to reason about space, analogous to reasoning about time is a
key component in a model that seeks to describe data collected in dynamic
settings. Multimedia data, like photographs and videos have obvious spatial
(geographic location) characterization associated with them. A wide range
of examples from application areas can also be observed. For instance, in
biomedical imaging, the location of a tumor in the body is a critical piece of
information for diagnostics and treatment. Similarly, in weather forecasting,
the localization of severe weather phenomena is critical.

Research in spatial databases suggests two alternative ways of representing
space. The first involves describing space itself, i.e., describing every point
in space. The second involves representing distinct entities. However, such
a bifurcation introduces the problem of reconciling spatial granularity. This
can potentially be resolved [23], by supporting concepts for modeling single

338 R. Singh and R. Jain

TimeBefore Simultaneous After

Before During After

Before Equal StartMeet Overlap During Finish

Not Before Not After

Not Before Not After Time

Time

Fig. 3. Illustration of the three types of temporal relationships in the event-based
model: The point–point relations are shown at the top, the point–interval relations
are shown in the middle, and the interval–interval relations are shown at the bottom

objects (represented as points, lines, or regions) and spatially related collection
of objects (represented as partitions or networks). One unified representation
that can support this is the concept of realm, introduced in [22], where a
realm is defined as a constrained finite set of points and line segments over a
discrete grid, and conceptually represents the complete underlying geometry
of one particular application space. The constraints ensure the necessity and
sufficiency of the grid points for spatial representation. Abstractions such as
points, lines, regions, partitions, and networks can either be described either
as elements of a realm or represented on top of such elements. This approach
appears to hold promise for modeling spatial attributes, by layering events
in a hierarchy such that events in each layer share the same semantics of
space. Other representations like TIN (triangulated irregular networks) [45]
or constraint databases [30] can also be used to address such problems.

To facilitate reasoning with space, spatial algebras or spatial data types
need to be defined, so that they capture the fundamental spatial abstrac-
tions, the relationships between them, and possible operations on them. In
the spatial database community a variety of such approaches have been sug-
gested (see [22, 23, 45] and references therein). Based on these we define the
different types of spatial operations that are needed to reason about spatial
characteristics of events to include: intersections of spatial types, topological
relationships (containment, intersection, adjacency, and enclosure), operators
defining numeric spatial attributes like distance, area, arithmetic operators on
spatial types (addition, subtraction) that could be useful in aggregation rela-
tionships, operators returning atomic spatial data types (e.g., intersection of
lines returning points, union of regions defining regions), operators defining
directional relationships like above, below, north of, and operators defining
numeric relationships like distance ¡ 5. Researchers in spatial databases have
identified various topological relations that may possibly exist. A simplifica-
tion of these results was suggested in [23] which proposed the following five
basic topological relationships derived from intersection of boundaries and in-

From Information-Centric to Experiential Environments 339

teriors: touch (defined over line-line, point-line, point-region, line-region, and
region-region), in, cross, overlap, and disjoint.

4 Putting it all Together: Experiential Environments for
Real World Problems

In this section we consider two application domains where issues related to
data heterogeneity, the importance of exploration, and the role of user–data
interactions in information assimilation play a significant role. These applica-
tion domains are: multimedia personal information management, and business
activity monitoring. We also discuss the design of two systems based on the
principles of experiential computing for these domains.

4.1 Application 1: Multimedia Personal Information Management

With advances in processing, storage, and sensor technologies over the last few
decades, increasingly digital media of different types is being used to capture
and store information. In the specific context of personal information, this
trend has significantly accelerated in the recent past with the introduction
of affordable digital cameras, portable audio recorders, and cellular phones
capable of supporting, capturing, and storing text such as e-mails or instant
messages, images, videos, and sound clips. These devices are setting a trend
with people capturing increasing amounts of multimedia information to chron-
icle their day-to-day activities [4]. The emerging area of personal information
management seeks to study challenges associated with management, presen-
tation, and assimilation of such information.

4.2 Specificities of Personal Information Management in Media
Rich Environments

The very nature of personal information management, especially in media
rich environments, introduces specificities that need to be accounted for in a
solution methodology. In this context, some key tendencies and requirements
that can be gleaned from studies and prior research in the area include:

• Support for context : Personal information management systems have to
serve the twin functions of finding and reminding. Rich contextual cues,
such as time, space, thumbnails, or previews have been shown to help in
search and presentation of personal information [3, 14, 52]. Additionally,
user state and context can also be used as powerful aids, as discussed
earlier in this chapter. Further, presentation of personal information is
typically done not just in terms of isolated media, but by making it part
of a specific personal context. Recent systems have attempted to provide
support for this notion through the use of concepts such as landmarks
(birthdays, deadlines, news events, holidays) [14] and storylines [16].

340 R. Singh and R. Jain

• Co-location of related information: The necessity of co-locating related
information in a system, regardless of their format, can significantly re-
duce the cognitive load on users [14] and help them in assimilating the
information by providing a holistic picture [28].

• Query versus exploration: Short (in terms of word length) and simple (in
terms of Boolean operators involved) queries have typically been the norm
in personal information management systems [14]. It has also been noted,
that users of such systems tend to favor navigation and browsing over the
use of powerful (but complex) search capabilities [6]. In [28], a review of
media-rich applications including personal information, sports, and situa-
tion monitoring supports the importance of exploration over pure syntactic
querying in forming insights based on the data.

• Flexible information organization: Specific media may simultaneously be
part of different conceptual organizations defined by a user on the informa-
tion space [17, 41, 40, 18]. Models, like directories or tables, that enforce
rigid data categorization may constrain the way people like to structure
and explore information. Such problems can be ameliorated by supporting
flexible information organization.

• Interactive interactions: Given the multimodal nature of the available in-
formation and the observed user tendencies to eschew complex queries,
highly interactive and iterative query strategies are essential for support-
ing fruitful user interactions with such systems. Recent efforts have moved
in this direction. For example, in [14] and [48] interactive systems for
managing personal information is proposed. In [52] the authors propose
query-retrieval of digital images using spatial information and interactive
queries. In all these cases, the systems emphasize interactive queries, direct
presentation of results, and use of contextual cues such as time, partici-
pants [14, 48] and location [48, 52]. Evaluations of such systems indicate
their efficacy both in terms of quantitative metrics as well as in terms of
user satisfaction [14, 48].

4.3 An Experiential Approach to Managing Personal Information:
The eVITAe Project

An analysis of the aforementioned problem specificities demonstrates a close
relationship between the challenges that pervade personal multimedia infor-
mation management and the emphasis areas of the experiential computing
paradigm. For instance, issues such as context-support and co-location of re-
lated information are intimately tied to characteristics of experiential systems
such as media independent information modeling and presentation and/or de-
scription of spatio-temporal relationships in the data. Similarly, the preference
of users for interactive queries and flexible information organization observed
in personal information management settings eminently fit the emphasis on
interactivity that is central in experiential environments. The goal of the eVI-
TAe (electronic-vitae) project [48] is to research the synergy amongst these

From Information-Centric to Experiential Environments 341

issues and develop experiential systems for management of personal multime-
dia data. The prototype consists of three primary components namely event
entry, event storage, and event query and explorationenvironment each of
which are described below.

4.4 Event Entry

The role of event entry is to acquire all necessary information to create the
event model. For example, such information may include time, location, par-
ticipants, or any other domain specific event attribute. As has been pointed
out [52], the primary ways of acquiring such information include (1) man-
ual entry, (2) from data or data capture devices such as image headers and
GPS enabled cameras [42], (3) from a digital calendar, (4) from surrounding
information, and (5) by media analysis and association. Currently, eVITAe
supports the first two approaches. To do so, batch processing scripts have
been written to assimilate the media into the database. These scripts acquire
the metadata about the media files and obtain the information such as au-
thors (file owner), file name, creation time and a link to the actual media into
the database. The reader may note that techniques such as clustering [36] and
Bayesian networks [35] can also be applied to this problem.

4.5 Event Storage

The implementation of the event model in eVITAe can be described through
the entity-relationship diagram shown in Fig. 4. The key element in this dia-
gram is the entity Event which, as its name suggests, corresponds to the key
notion of the event-based conceptual model. It should be noted that the notion
of an event here compresses the three-layered event model into a single layer.
The Event name is a surrogate for a unique identifier that is generated for
each event when it is created. An event is further described by a set of entities
that are shown on the left side of Fig. 4. In the following, we briefly describe
each of these entities in terms of the role they play in the event model:

Spatial characterization: The entity Space is used to describe the spatial
characteristics associated with events and is stored as latitude and longitude.
The location information can be used in visualization and querying using map-
based interfaces (see following section for details). Since, directly working with
latitude–longitude information is cumbersome to most users, a look-up mech-
anism is created to map the latitude-longitude data to names of established
places, such as cities along with their associated information like zip code,
state and country. This helps users to interact with location-based informa-
tion naturally and obviates the complexity associated with direct usage of
latitude/longitude information

Representation of media: The entity Media is used to denote the media
data which supports a given event. The media data may be referred to by a

342 R. Singh and R. Jain

Event

eID

Event Name

Space

Time

Transcluded Media

Event Topic has

has

occurs
at

occurs
at

n

m

n

m

name

URI

Sub-topic

n 1

name

hasLocation 1n
latitude

longitude

occurs
at

occurs
at

Start Time

End Time

time

date
time

date

1 1 1

1

1
1

1

1
Event

eID

Event Name

Space

Time

Transcluded Media

Event Topic has

has

occurs
at

occurs
at

n

m

n

m

name

URI

Sub-topic

n 1

name

hasLocation 1n
latitude

longitude

occurs
at

occurs
at

Start Time

End Time

time

date
time

date

1 1 1

1

1
1

1

1

Fig. 4. ER-diagram describing the event-model used for personal multimedia mod-
eling

URL, a foreign key, or an index into a media-specific database (e.g., an image
database). Further, additional information such as the media type may also be
part of the description of this entity. It may be noted, that the model allows
multiple media to support a given event as well as allowing a specific media
to support different events.

Representation of participants: In the context of personal media, social
information, such as presence of an individual, can play an important role in
information organization. This is emphasized by studies such as [32], where it
was found that users associate their personal photographs with information
on events, location, subject (defined as a combination of who, what, when, and
where), and time. The entity Participants is used to depict such information.
It allows, for instance, retrieval of all events (and associated media) where a
specific person was present.

Temporal characterization: The entity Time is used to model the temporal
context of an event. Each event, in the ER-diagram is associated with a start-
time and an end-time. In the case of point events, the start-time equals the
end-time. It should be noted, that the physical implementation as described
by the ER-model implicitly stores the valid time associated with events. This
is because of the fact that in the contemporary setting many devices used for
capturing personal information such as digital cameras (both for still photog-

From Information-Centric to Experiential Environments 343

raphy and video capture), time-aware audio recorders, and electronic com-
munications such as e-mails and instant messages allow direct and immediate
information capture as an event occurs. However, if the domain semantics
require keeping track of the transaction time, for instance, to have data avail-
able only for a specific time period after it has been published, the model can
be extended in a manner similar to that used for valid time.

4.6 Event Presentation and Interaction Environment

In eVITAe, an integrated multimodal interaction environment is used as a
unified presentation–browsing–querying interface. Two views of this environ-
ment are presented in Fig. 5 and depict its main components. The system em-
ploys direct manipulation techniques [26] to facilitate a natural user–system
interaction. In this paradigm, users can directly perform different kinds of op-
erations on items (events) of interest. Furthermore, combining the query and
presentation space alleviates the cognitive load from the user’s part unlike
traditional query environments. Time and space are the primary attributes
of the event definition, and hence are depicted as the primary exploration
dimensions. Auxiliary panels are used to show the details of the events, and
their attributes. Options for zooming, filtering, extraction, viewing relations,
and details-on-demand are provided to help users interact with the informa-
tion space. In the following, we discuss in greater details, the key aspects of
the presentation and exploration environment:

Fig. 5. Two views of the event presentation and exploration environment in
eV ITAe: The screenshot on the left shows the overview of the information. The
one on the right shows details of the event on spatial and temporal zoom-in. In both
the views the top left pane is the eventCanvas where a chronologically ordered view
of events is presented. The top right pane is used for visualization and interactions
with the spatial aspects of the data. The bottom left pane is called the mediaDetail-
Canvas. Here, details of the specific media instances supporting an event are shown.
Finally, the lower right pane, called the attributeCanvas, shows the nonmedia data,
such as participant names or event descriptions, associated with a selected event

344 R. Singh and R. Jain

Event representation: In the eventCanvas pane, events are represented
through a recursive graphical representation called an event-plane. It consists
of a rectangle which spans the duration of the event. The media, supporting
an event, are represented by icons on the event-plane. Within an event-plane,
the icons representing the media are chronologically ordered in terms of their
capture times. The recursive nature of the event-plane is used to capture
aggregate relationships where an event may comprise of other events. Such
relationships, when they exist, are depicted using nested event planes. The
primary purpose of such a representation is to provide users with a high-level
view of the information that is independent of media specificities. When an
event is selected, details about information associated with it such as the
supporting media or alphanumeric attributes are automatically brought up
in the mediaDetailCanvas and the attributeCanvas respectively. When a user
needs to explore a specific event in detail, the media supporting an event is
displayed in the mediaDetailCanvas by clicking on the event-plane icon of
the corresponding event. When an event is thus selected, any available non-
media attributes or alphanumeric meta-data related to it are simultaneously
displayed in the attributeCanvas. Users have the option to see the actual
media by clicking on a media icon in the eventCanvas. Selection of a specific
media instance via clicking spawns a window which triggers the appropriate
application for that particular kind of media.

Interactions with the temporal aspects of information: Events are de-
fined over space and time. The eVITAe system not only captures this no-
tion through event modeling, but also provides intuitive ways to visualize the
spatio-temporal dimensions of the data. With respect to time, in the event-
Canvas (see Fig. 5), a temporal distribution of events is presented with the
events being ordered chronologically from left to right. A key operation sup-
ported in the eventCanvas is temporal zooming. Through it, users can zoom
into a particular time interval to find more details about that time period (Fig.
5, right screenshot) or zooming out to see the overall distribution of events on
the temporal axis. Support for local zooming (zooming within a specific inter-
val) is also provided to allow focusing on a specific period for details, without
the display getting cluttered by details over the entire timeline. Further, the
semantic fisheye-view technique [29] is used to highlight the objects of current
focus in the timeline while the user moves the slider across the timeline and
zooms into a particular time interval. User can also select multiple intervals
in the timeline, thereby creating multiple foci of the fish eye view.

Interactions with spatial information: Spatial information is displayed in
the top-right panel of the eVITAe interface (see Fig. 5) and shows the overall
distribution of events over space. The spatial display supports option to zoom
down to a particular location by dragging a rectangle which contains that
location (Fig. 5, right screenshot), and options to zoom out by clicking on the
zoom out icon to get an overall picture of the information space. Furthermore,
panning of the entire space is also supported. The spatial canvas in eVITAe has

From Information-Centric to Experiential Environments 345

been implemented using an open source JavaBeans package called OpenMap
[5]. A Mercator projection [39], in which meridians and parallels of latitude
appear as lines crossing at right angles and areas farther from the equator
appear larger, is used to display the various maps.

Interactions with alphanumeric information: The presentation of alphanu-
meric information such as names of participants in an event or event descrip-
tions is done using the attributeCanvas. Queries on events with respect to
alphanumeric information can also be issued here. For example, to find all
events having a specific participant a user would select the attribute “partic-
ipants” in the attributeCanvas and type the name of the desired participant.
The database is then queried for this information and the query results are
displayed by highlighting the pertinent events in the eventCanvas.

Dynamic and reflective user interface: In a system having multiple simulta-
neous views of the data, such as eVITAe it is important to be able to establish
relationships between different views of the dataset, such that any activity in
one view is reflected in all the others. Such a capacity is essential for maintain-
ing context as users interact with the information in different manners within
each view. In eVITAe all the views of the data are tightly coupled through
the database. For example, selecting an event in the timeline view leads to
that event getting highlighted in the spatial view. Simultaneously, the details
of that event are displayed in the mediaDetailCanvas and different attributes
of the events are brought-up in the attributeCanvas. This in conjunction with
support for rapid, incremental, and multimodal interactions enables users to
explore and “experience” the information from different perspectives.

4.7 Application 2: Business Activity Monitoring Application

Applications such as business activity monitoring (BAM) and homeland se-
curity must draw from a large network of disparate data sources, including
databases, sensors, and systems in which data is entered manually. The goal
of BAM is to allow a unified interface so that a manager can use it to monitor
the status of activities at different locations and to analyze the causes of past
events. In all such applications, real time data analysis must be combined
with real time data assimilation from all sources to present a unified model of
the situation in an intuitive form. Techniques and tools developed for tradi-
tional database applications, such as payroll databases, are not adequate for
this problem because a typical user is interested in exploratory formulations,
such as understanding what could be the problem situations and why did they
occur. In this context we note that data mining techniques are suitable when
a hypothesis has been formed, but tools must first help in generating that
hypothesis.

A cornerstone of our approach to this problem has been to create an en-
vironment that provides a holistic picture of all available information. By

346 R. Singh and R. Jain

looking at the holistic picture, hypothesis can be formulated and then stud-
ied. Towards this we have developed an approach for implementing BAM
systems that uses event-based domain model and the metadata to construct
a new index that is independent of the data types and data sources. Specific
event models have been developed for sales, inventory, and marketing domains.
These models draw information from different databases, often from across the
world, and unify this data around the domain events for each specific case. The
reader may note that data in this problem does not display significant physical
heterogeneity. However, the information assimilation challenges remain acute
owing to the complexity and logical heterogeneity of the information.

All the events are stored in a database that is called eventbase. Similar
to the problem of personal information management, the links to all origi-
nal data or data sources are very important. These links are used to present
appropriate media in the context of corresponding events. A strong interac-
tive environment has been developed for users to interact with this system
and gain insights through observations and analysis. The advantages of the
approach include: (a) pre-processing important information related to events
and objects based on domain knowledge, (b) presenting information using do-
main based visualization, and (c) providing a unified access to all information
related to an event in terms of valid time. As an interactive environment for
the system, an interface called the EventViewer has been developed which
offers multidimensional navigational and exploration capabilities. An applica-
tion screen of the EventViewer for the BAM application is shown in Fig. 6.

For an event three basic characteristics are its name and class, the loca-
tion, and the time. As shown in the top left part of the screen in Fig. 6, a
user can navigate through the class ontology hierarchy. Navigation through
the location and time dimensions is either through zooming or by moving
along different directions using simple natural controls. These traversals are
very similar to those in video games. One can select parts of a map ranging
from part of a room to the map of the world. Similarly, on the time line, one
could be in the range of microseconds to centuries, or even larger scales when
required. Once a user selects specific event classes, a region on the map, and a
time interval, the system responds by presenting all events (and their selected
attributes), satisfying these constraints. This information is presented by us-
ing the following three representations: (1) as a list in the space provided for
event lists, (2) as symbols displayed on the location map, and (3) as symbols
displayed at appropriate time points on the time line. These three represen-
tations are tightly linked. For instance, if an item in the list is selected, it
gets simultaneously highlighted in the location and time displays. Such an
approach to information search is a quintessential example of the WYSIWYG
search philosophy.

A major goal of the BAM environment, as mentioned earlier, is to provide
an intuitive feel of what events may have occurred and how they are related
to other events and information. By presenting events on a map as well as
on a time line, the context of the events is maintained and displayed to a

From Information-Centric to Experiential Environments 347

Fig. 6. Screenshot of an EventViewer for demand activity monitoring

user. A user can then refine the search criteria and as the criteria are refined,
the results change appropriately. This instantaneous feedback allows users
to experiment with the data set and develop insights and form hypotheses.
When a user is interested in knowing more about a specific event, he or she
can explore that event by double clicking on its representation in any of the
three display areas. The system then provides all the data sources (like audio,
video, or text) related to the selected event.

5 Conclusions

Traditional interface to database systems have been designed under the as-
sumption that their role is to provide precise information as a response to
precise queries. This model implicitly assumes that exact queries can be is-
sued to obtain all relevant information. Therefore, such interfaces are not
required to be interactive. Homogeneity in data, relatively small data vol-
umes, and strongly structured application domains ensure the success of such
information centric approaches. However, the volume and nature of the data
being stored in databases today is significantly different than what was com-
mon a decade or more ago. Moreover, databases are being used for different

348 R. Singh and R. Jain

roles now; the evolution in technology has put databases in the heart of sys-
tems where people seek not just data but information and insights. Dealing
efficaciously with this new scenario requires query environments to become
more exploratory and interactive.

Towards this, in this chapter, we have presented the idea of experiential
environments for facilitating user–data interactions. In this paradigm, infor-
mation is presented in a manner that seeks to take advantage of the sentient
nature of human beings along with their cognitive and sensory abilities to
experience and assimilate information. As examples, two experiential systems
for supporting user interactions in different application contexts are presented.
With the ever increasing availability of heterogeneous, media-rich data and
requirements for supporting information assimilation across them, we believe,
that the ideas of experiential environments will find active use in both research
and development.

References

1. J. Allen. Maintaining Knowledge About Temporal Intervals. Comm. ACM, Vol.
26, No. 11, 1983.

2. R. Belew. Finding Out About: A Cognitive Perspective on Search Technology
and the WWW. Cambridge University Press, Cambridge, U.K., 2000.

3. D. Barreau. Context as a Factor in Personal Information Management Systems.
J. Am. Soc. For Information Science, Vol. 46, No. 5:327-339, 1995.

4. “Log your Life Via Your Phone”, March 10, 2004,
http://news.bbc.co.uk/2/hi/technology/

5. BBN Technologies. OpenMap - Open Systems Mapping Technology, 1999
6. D. Barreau and B. Nardi. Finding and Reminding: File Organization from the

Desktop, SIGCHI Bulletin 27, No. 3:39-43, 1995.
7. T. Blum, D. Keislar, J. Wheaton, and E. Wold. Audio Databases with Content-

based Retrieval. Proc. IJCAI Workshop on Intelligent Multimedia Information
Retrieval, 1995.

8. M. Carey et al. Towards Heterogeneous Multimedia Information Systems: The
Garlic Approach. Fifth Int’l Workshop on Research Issues in Data Engineering
– Distributed Object Management, 1995.

9. C. Carson, M. Thomas, S. Belongie, J. Hallerstein, and J. Malik. Blobworld:
A System for Region-Based Image Indexing and Retrieval, Proc. Int. Conf. on
Visual Information, 1999.

10. K. Chakrabarti, K. Porkaew, and S. Mehrotra. Efficient Query Refinement in
Multimedia Databases. ICDE, 2000.

11. L. Chen, M. Tamer Özsu, and V. Oria. Modeling Video Data for Content Based
Queries: Extending the DISIMA Image Data Model. MMM-2003: 169-189, 2003.

12. N. Dimitrova et al. Applications of Video-Content Analysis and Retrieval. IEEE
MultiMedia 9(3): 42-55, 2002.

13. J. D. N. Dionisio and A. Cardenas. A Unified Data Model for Representing
Multimedia, Timeline, and Simulation Data”, IEEE Trans. Knowledge and Data
Engineering, Vol. 10, No. 5, 1998.

From Information-Centric to Experiential Environments 349

14. S. Dumais, E. Cutrell, J. Cadiz, G. Jancke, R. Sarin, and D. Robbins. Stuff I’ve
Seen: A System for Personal Information Retrieval and Re-Use, ACM Conf. on
Research and Development in Information Retrieval, 2003.

15. R. Elmasri and S. Navathe. Fundamentals of Database Systems, Addison-Wesley,
2004.

16. M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani,
J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by Image and
Video Content: The QBIC System, IEEE Computer, 1995.

17. E. Freeman and S. Fertig. Lifestreams: Organizing your electronic life. In AAAI
Fall Symposium: AI Applications in Knowledge Navigation and Retrieval, Cam-
bridge, MA, 1995.

18. J. Gemmel, G. Bell, R. Lueder, S. Drucker, and C. Wong. MyLifeBits: fulfilling
the Memex vision. ACM Multimedia, pp. 235-238, 2002.

19. S. Gibbs, C. Breiteneder, and D. Tsichritzis. Data Modeling of Time-Based
Media, Proc. SIGMOD, pp. 91-102, 1994.

20. W. I. Grosky, P. Stanchev. An Image Data Model. VISUAL 2000: pp. 14-25,
2000.

21. A. Gupta, T. Weymouth, and R. Jain. Semantic Queries with Pictures: The
VIMSYS Model, Proc. 17 thInt’l Conf. on Very Large Databases, 1991.

22. R. H. Guting and M. Schneider. Realms: A Foundation for Spatial Data Types in
Database Systems, Proc. 3 rd Int’l Symp. on Large Spatial Databases, pp. 14-35,
1993.

23. R. H. Guting. An Introduction to Spatial Database Systems, VLDB Journal,
Vol.3, No. 4, 1994.

24. L. M. Haas, R. J. Miller, B. Niswonger, M. T. Roth, P. M. Schwarz, E. L. Wim-
mers. Transforming Heterogeneous Data with Database Middleware: Beyond
Integration, IEEE Data Engineering Bulletin, 1997.

25. A. Y. Halevy. Answering Queries Using Views: A Survey, VLDB Journal, Vol.
10, No. 4, pp. 270-294, 2001.

26. E. L. Hutchins, J. D. Hollan, D. A. Norman. Direct Manipulation Interfaces,
User Centered System Design. Lawrence Erlbaum Associates, 1986.

27. R. Hull. Managing Semantic Hetrogeneity in Databases: A Theoretical Perspec-
tive, ACM Conf. on Principles of Database Systems, pp 51- 61, 1997.

28. R. Jain. Experiential Computing, Comm ACM, Vol. 46, No. 7, 2003.
29. P. Janecek and P. Pu. A Framework for Designing Fisheye Views to Support

Multiple Semantic Contexts. International Conference on Advanced Visual In-
terfaces (AVI ’02), ACM Press, 2002.

30. P. C. Kanellakis and D. Q. Goldin. Constraint Programming and Database
Query Languages, Proc. 2nd Conf. on Theoretical Aspects of Computer Science,
1994.

31. M. Lenzerini. Data Integration: A Theoretical Perspective, Proc. SIGMOD, pp.
233-246, 2002.

32. H. Libermann and H. Liu. Adaptive Linking Between Text and Photos Using
Common Sense Reasoning, In Adaptive Hypermedia and Adaptive Web-Based
Systems, deBra P, Brusilovsky P, and Conejo R (eds.), Springer-verlag, Berlin,
pp. 2-11, 2002.

350 R. Singh and R. Jain

33. J. Li and M. Ozsu. STARS: A Spatial Attributes Retrieval System for Images
and Video, Int’l. Conf. on Multimedia Modeling, pp. 69-84, 1997.

34. T. Little and A. Ghafoor. Interval-Based Conceptual Models for Time-
Dependent Multimedia Data. IEEE Trans. Knowledge and Data Engineering,
Vol. 5, No. 4, pp. 551-563, 1993.

35. J. Luo, E. Savakis, S. Etz, and A. Singhal. On the Application of Bayes Network
to Semantic Understanding of Consumer Photographs, ICIP, 2000

36. A. Loui and A. Savakis. utomated Event Clustering and Quality Screening of
Consumer Pictures for Digital Albuming. IEEE Trans. Multimedia, Vol. 5, No.
3, 2000

37. B. S. Manjunath and W. Y. Ma. Texture Features for Browsing and Retrieval
of Image Data. IEEE Trans. Pattern Analysis and Machine Intelligence, Vol 18,
No 8, pp 837-842, 1996

38. H. Garcia-Molina, J. D. Ullman, J. Widom Database Systems. The Complete
Book, Prentice Hall, 2002

39. http://science.nasa.gov/Realtime/rocket sci/orbmech/mercator.html
40. T. Nelson. Xanalogical Structure, Needed Now More Than Ever: Parallel Doc-

uments, Deep Links to Context, Deep Versioning, and Deep Re-Use”, ACM
Computing Surveys, Vol. 31, 1999

41. J. Rekimoto. Time-machine computing: a time-centric approach for the infor-
mation environment”, Proceedings of the 12th annual ACM symposium on User
interface software and technology, pp. 45 – 54, 1999.

42. http://www.dcviews.com/press/Ricoh RDC-i700G.htm
43. S. Santini and A. Gupta. Principles of Schema Design for Multimedia Databases.

IEEE Trans. On Multimedia, Vol. 4, No. 2, 2002.
44. S. Santini, A. Gupta, and R. Jain. Emergent Semantics Through Interaction In

Image Databases, IEEE Trans. Knowledge and Data Engineering, Vol. 13, No.
3, pp. 337-351, 2001.

45. S. Shekhar and S. Chawla. Spatial Databases: A Tour, Prentice Hall, 2003.
46. H-Y. Shum, M. Liao, S-F. Chang. Advances in Multimedia Information Process-

ing - PCM 2001, Proc. nd IEEE Pacific Rim Conf. on Multimedia, 2001.
47. R. Singh, Z. Li, P. Kim, D. Pack, and R. Jain. Event-Based Modeling and Pro-

cessing of Digital Media, Proc. 1st ACM SIGMOD Workshop on Computer Vi-
sion Meets Databases (CVDB), 2004.

48. R. Singh, R. L. Knickmeyer, P. Gupta, and R. Jain. Designing Experiential
Environments for Management of Personal Multimedia, ACM Multimedia, 2004.

49. H. Sridharan, H. Sundaram, and T. Rikakis. Computational Models for Experi-
ences in the Arts and Multimedia, ETP, 2003.

50. D. Stan, I. K. Sethi. eID: a system for exploration of image databases. Inf.
Process. Manage. 39(3): 335-361, 2003.

51. V. S. Subrahmanian. Principles of Multimedia Database Systems, Morgan Kauff-
man, 1998.

52. K. Toyama, R. Logan, A. Roseway, and P. Anandan. Geographic Location Tags
on Digital Images, ACM Multimedia, pp. 156-166, 2003.

53. D. C. Tsichritzis and F. H. Lochovsky. Data Models, Prentics-Hall, New Jersey,
1982.

From Information-Centric to Experiential Environments 351

54. G. Widerhold, S. Jajodia, and W. Litwin. Dealing with Granularity of Time in
Temporal Databases CAiSE91, pp. 124-140, 1991.

55. E. Wold, T. Blum, D. Keislar, and J. Wheaton. Content-based Classification,
Search and Retrieval of Audio IEEE Multimedia, Vol 3, No. 3, pp 27-36, 1996.

56. M. J. Wynblatt. Control Layer Primitives for the Layered Multimedia Data
Model, ACM Multimedia, 1995.

Modeling and Simulation of Large Biological,
Information and Socio-Technical Systems:

An Interaction Based Approach

Chris Barrett, Stephen Eubank, and Madhav Marathe

Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.

Summary. We describe an interaction based approach for computer modeling and
simulation of large integrated biological, information, social and technical (BIST)
systems. Examples of such systems are urban regional transportation systems, the
national electrical power markets and grids, gene regulatory networks, the World-
Wide Internet, infectious diseases, vaccine design and deployment, theater war, etc.
These systems are composed of large numbers of interacting human, physical, infor-
mational and technological components. These components adapt and learn, exhibit
perception, interpretation, reasoning, deception, cooperation and non-cooperation,
and have economic motives as well as the usual physical properties of interaction.

The theoretical foundation of our approach consists of two parts: (i) mathe-
matics of complex interdependent dynamic networks, and (ii) mathematical and
computational theory of a class of finite discrete dynamical systems called Sequen-
tial Dynamical Systems (SDSs). We then consider engineering principles based on
such a theory. As with the theoretical foundation, they consist of two basic parts: (i)
Efficient data manipulation, including synthesis, integration, storage and regenera-
tion and (ii) high performance computing oriented system design, development and
implementation. The engineering methods allow us to specify, design, and analyze
simulations of extremely large systems and implement them on massively parallel
architectures. As an illustration of our approach, an interaction based computer
modeling and simulation framework to study very large interdependent societal in-
frastructures is described.

1 Introduction

This chapter considers an interaction based approach for modeling and sim-
ulation of large scale integrated biological, information, social and technical
(henceforth referred to as BIST) systems. BIST systems consist of a large
number of interacting physical, biological, technological, informational and
human/societal components whose global system properties are a result of in-
teractions among representations of local system elements. Examples of such
systems are urban regional transportation systems, national electrical power

354 C. Barrett, S. Eubank, and M. Marathe

markets and grids, the Internet, peer to peer networks, ad hoc communica-
tion and computing systems, gene regulatory networks, public health, etc.
The complicated interdependencies and interactions are inherent within and
among constituent BIST systems. This is exemplified by the recent cascading
failure of the electric grid in the northeastern United States. Failure of the
grid led to cascading effects that slowed down Internet traffic, closed down fi-
nancial institutions and disrupted the transportation and telecommunication
systems.

In the past, mathematical models based on differential equations have of-
ten been used to model complex physical and social systems. Although such
models are valuable in terms of providing simple first order explanations,
they are not particularly useful in providing a generative computer model or
a causal explanation of the associated dynamic phenomena. For instance, epi-
demiologists have traditionally used coupled differential rate equation based
models on completely mixed populations to understand the spread of diseases.
These simple models provide a good prediction for a number of important
epidemiological parameters such as number of sick, infected and recovered
individuals in a population. Nevertheless, such epidemiological models have
a number of well known shortcomings. They include: an ad hoc value of the
reproduction number, the inability to predict anything about the early phase
of disease spread, and an inability to account for spatial and demographic di-
versity in urban populations. Even more important, the models do not provide
any causal explanation nor do they lead to a generative computational model.
As a result, questions such as identifying potential individuals that can be
vaccinated to contain the epidemic are very hard to analyze; see [22, 33, 46]
for additional discussion.

Here, we describe an interaction based approach for modeling and simu-
lation of BIST systems. The approach uses an endogenous representation of
individual agents together with explicit interaction between these agents to
generate and represent the causal ecologies in such systems. The approach
was developed over the last 12 years by our group and provides a common
framework for three seemingly diverse areas: (i) representation and analysis
of large scale distributed BIST systems, (ii) next generation computing ar-
chitectures, and (iii) associated distributed information and data integration
architectures.

The interaction-based approach is based on a mathematical and computa-
tional discrete dynamical systems theory called Sequential Dynamical System
(SDS). SDSs provide a formal basis for describing complex simulations by
composing simpler ones. They are a new class of discrete, finite dynamical
systems and emphasize questions of what is being computed by systems of
interacting elements, as opposed to the traditional approach of how hard it is
to compute a given procedure or class. Nevertheless, a traditional Turing ma-
chine based approach is used for characterizing the computational complexity
of the interacting elements.

Modeling Large Biological and Socio-Technical Systems 355

We complement the theoretical discussion by describing Simfrastruc-
ture: a practical microscopic interaction-based modeling framework to study
very large interdependent societal infrastructures formed by the interaction
between the built urban infrastructure and spatial movement patterns of indi-
viduals carrying out their day-to-day activities. Simfrastructure has been used
to model extremely large infrastructures consisting of millions of interacting
agents consisting of more than 10 million individual elements. For example,
the transportation module within Simfrastructure can represent every individ-
ual in the Chicago region at a temporal resolution of 1 second, and a spatial
resolution of approximately 7 meters. This region spans approximately 250
square miles and has more than 400 counties. There are more than 9 million
individuals taking roughly 25 million trips each day. The time varying social
contact network consists of more than 25 million edges and vertices. The size,
scope and multiple time scales of system representation naturally motivates
a high performance computing implementation and requires new engineering
design principles. Individual modules of this system routinely run on clusters
comprised of 128 nodes; several of the individual simulations are also being
executed on 1000+ node systems.

1.1 Relationship to Interactive Computing

There are at least two reasons why the topic of computer modeling and sim-
ulation of large BIST systems is pertinent to interactive computation. First,
as discussed above, interaction based computer models are natural and the
only way to represent and comprehend the complex dynamics of many BIST
systems. In the past, computer simulation of physical phenomenon has been a
key driver in the development of current high performance computing systems.
Our view is that interaction based modeling and simulation of BIST systems
will serve as a key driver for the development of next generation interactive
computing platforms. Second, and perhaps more pertinent to this book, we
believe that an interaction based modeling of BIST systems will yield new
mathematical and computational techniques that advance the state of the art
of interactive computation. Recently, computer scientists have proposed au-
tomata theoretic models, programming languages, and calculi that attempt
to treat interaction, as an atomic element of computation. Several chapters in
the book address these topics in detail. BIST systems naturally display many
attributes of interactive computing such as providing a service rather than
solving a specific algorithmic task, inclusion of environment within the com-
putational representation, etc. Thus a deeper understanding of these inherent
properties of BIST systems will provide new ideas for developing a interactive
computing

To further appreciate this, consider for example interdependent societal
infrastructure systems spanning large urban areas. They are the center of
economic, commercial and social activities. The design of these urban areas,
their rapid population growth, and sharing of the limited resources by their

356 C. Barrett, S. Eubank, and M. Marathe

inhabitants has led to increased social interactions [47, 8]. Large scale informa-
tion delivery, and access systems developed by today’s computing companies
such as Google, Yahoo, Akamai, etc. are examples of emerging socio-technical
information infrastructure systems. Such regional and global scale infrastruc-
ture systems are spatially distributed, managed by different federal, state, and
commercial entities and operate at multiple time scales. Despite this hetero-
geneity, based on certain basic economic and legal principles, these interde-
pendent systems usually work seamlessly to provide uninterrupted services to
the millions of individuals residing in the urban region. Under any reasonable
definition, these are complex systems whose global behavior is a result of com-
plicated interactions between constituent elements. For example, the spatial
distribution of individuals in an urban region, their movement patterns, and
their phone-calling patterns, all have a direct bearing on the structure and
the design of wire-line and wireless telecommunication networks. A system-
atic understanding of such systems must therefore be able to represent the
complex interdependencies between individual constituent elements and their
dynamics. The focus is on understanding consequences of certain decisions
or representing the interactions between individuals and the infrastructures
rather than solving specific algorithmic question. The constituent BIST sys-
tems (e.g., transportation and urban populations) are tightly coupled and
co-evolve: they are naturally viewed as large population ecologies. Compu-
tational models developed to represent these systems will necessarily have
to clarify the role of interaction between constituent elements and the en-
vironment. This includes questions of what is being computed, the meaning
and role of environment and acceptance of nondeterminism as an elementary
phenomenon.

1.2 Organization

The remainder of the chapter is organized as follows. Section 2 contains ba-
sic definitions and preliminary results. In Sect. 3, we discuss the theoretical
foundations of interaction based simulation and modeling of BIST systems.
Section 4 contains a discussion of the engineering principles necessary for de-
sign and implementation of large BIST system simulations. In Sect. 5 a prac-
tical operational system based on the theoretical and engineering foundations
described in Sect. 3.1 – 4 is discussed. Finally, Sect. 6 contains concluding
remarks and directions for future work.

2 Terminology and Preliminary Results

Informally, computer simulation is the art and science of using computers to
calculate interactions and transactions among many separate algorithmic rep-
resentations, each of which might be associated with identifiable “things” in
the real world (at least in a world outside the simulation program). Because

Modeling Large Biological and Socio-Technical Systems 357

of the widespread use of computer simulations, it is difficult to give a pre-
cise definition of a computer simulation that is applicable to all the various
settings where it is used. Nevertheless, it is clear that simulation has two es-
sential aspects: dynamics generation and mimicry of the dynamics of another
system by the dynamics of the simulation program. Thus we view simulations
as comprised of the following: (i) a collection of entities with state values and
local rules for state transitions, (ii) an interaction graph capturing the local
dependency of an entity on its neighboring entities, and (iii) an update se-
quence or schedule such that the causality in the system is represented by the
composition of local mappings.

A Sequential Dynamical System (SDS) S over a given domain D of
state values is a triple (G,F , π), whose components are as follows:

1. G(V,E) is a finite undirected graph without multiedges or self loops. G is
referred to as the underlying graph of S. We use n to denote |V | and
m to denote |E|. The nodes of G are numbered using the integers 1, 2,
. . ., n.

2. For each node i of G, F specifies a local transition function, denoted by
fi. This function maps D

δi+1 into D, where δi is the degree of node i.
Letting N(i) denote the set consisting of node i itself and its neighbors,
each input of fi corresponds to a member of N(i).

3. Finally, π is a permutation of {1, 2, . . . , n} specifying the order in which
nodes update their states using their local transition functions. Alterna-
tively, π can be envisioned as a total order on the set of nodes.

A configuration C of S can be interchangeably regarded as an n-vector
(c1, c2, . . . , cn), where each ci ∈ D, 1 ≤ i ≤ n, or as a function C : V → D.

Computationally, each step of an SDS (i.e., the transition from one con-
figuration to another), involves n substeps, where the nodes are processed in
the sequential order specified by permutation π. The “processing” of a node
consists of computing the value of the node’s local transition function and
changing its state to the computed value. The following pseudocode shows
the computations involved in one transition.

for i = 1 to n do
(i) Node π(i) evaluates fπ(i). This computation uses the current values of

the state of node π(i) and those of the neighbors of node π(i). Let x denote
the value computed.

(ii) Node π(i) sets its state sπ(i) to x.
end-for

We use FS to denote the global transition function associated with S.
This function can be viewed either as a function that maps D

n into D
n or

as a function that maps D
V into D

V . FS represents the transitions between
configurations, and can therefore be considered as defining the dynamic be-

358 C. Barrett, S. Eubank, and M. Marathe

havior of SDS S. A fixed point of an SDS S is a configuration C such that
FS(C) = C.

The phase space PS of an SDS S is a directed graph defined as follows:
There is a node in PS for each configuration of S. There is a directed edge
from a node representing configuration C to that representing configuration
C′ if FS(C) = C′.

It is possible to obtain restricted versions of SDSs by appropriately restrict-
ing the domain D and/or the local transition functions. We use the notation
“(x, y)-SDS” to denote an SDS where “x” specifies the restriction on the do-
main and “y” specifies the restriction on the local transition functions. Thus
for example, (Bool, Sym)-SDS are SDS in which domain of state values is
Boolean and each local transition function is symmetric. (Bool, Thresh)-
SDS are SDSs in which the domain of state values is Boolean and each local
transition function is a simple-threshold function. And finally, (Bool, Nor)-
SDS are SDSs in which domain of state values is Boolean and each local
transition function is the NOR function. A Synchronous Dynamical Sys-
tem (SyDS), is a special kind of SDS, without node permutations. In a SyDS,
during each time step, all the nodes synchronously compute and update their
state values. Thus, SyDSs are similar to classical CA with the difference that
the connectivity between cells is specified by an arbitrary graph. The restric-
tions on domain and local transition functions for SDSs are applicable to
SyDSs as well.

Example 1. Consider a (Bool, Nor)-SDS shown in Fig. 1 (left). Let π =
(a, b, c). Each node a, b and c execute the local function NOR(x, y, z). Phase
space associated with the dynamical system when vertices are updated in the
order a,b and c is shown in Fig. 1 (right). Each tuple in the ellipse denotes
the states of the nodes a, b and c in that order. Notice that the phase space
does not have a fixed point. It turns out that SDS with NOR local functions
can never have fixed points.

a b

c
111 101 011

000

100 010

001 110

Fig. 1. Figure illustrating SDS and its phase space described in Example 1

SDSs naturally capture the three essential elements of a computer simu-
lation. The use of simple functions to represent each agent/entity is just an
equivalent alternate representation of each individual as automata. The fact
that each function depends locally on the state values of neighboring agents
is intended to capture the intuition that individual objects comprising a real

Modeling Large Biological and Socio-Technical Systems 359

system usually have only local knowledge about the system. Finally, a permu-
tation is an abstraction of the need to explicitly encode causal dependency.

The basic SDS model can easily be generalized in a number of ways
including: (i) partial orders or schedules specified using formal languages,
(ii) allowing stochastic local functions or interaction graphs, (iii) time vary-
ing SDS in which the topology or the local functions vary/evolve in time.
These generalizations are important while modeling realistic BIST systems;
see [7, 37, 54, 45, 52, 53] for additional details and examples.

Computational SDS (cSDS) arise naturally when each local function is
viewed procedurally. cSDS are useful for formal specification, and analysis
of infrastructure simulation systems and extend the algebraic theory of dy-
namical systems in two important ways. First, we pass from extremely gen-
eral structural and analytical properties of composed local maps to issues of
provable implementation of SDS in computing architectures and specification
of interacting local symbolic procedures. This is related to successive reduc-
tions of cSDS to procedural primitives, which leads to a notion of cSDS-based
distributed simulation compilers with provable simulated dynamics (e.g., for
massively parallel or grid computation). Second, the aggregate behavior of
iterated compositions of local maps that comprise an SDS can be understood
as a (specific) simulated algorithm together with its associated and inherent
computational complexity. We have called this the algorithmic semantics of an
SDS (equivalently, the algorithmic semantics of a dynamical system or a sim-
ulation). It is particularly important to view a composed dynamical system as
computing a specifiable algorithm with provable time and space performance.

2.1 SDSs as Elementary Models of Interactive Computation

The basic definition of SDS together with the above generalizations form an
elementary model of interactive computation. The introductory chapter in this
book identifies four distinguishing features of interactive computing, namely

• Computational Problem: A computational problem entails performing a
task or providing a service, rather than algorithmically producing an an-
swer to a question

• Observable Behavior: A computing component is now modeled not as a
functional transformation from input to output, but rather in terms of an
observable behavior consisting of interaction steps

• Environments: The world or environment of the computation is part of the
model, playing an active part in the computation by dynamically supplying
the computational system, or agent, with the inputs, and consuming the
output values from the system. The environment cannot be assumed to be
static, or even effectively computable; for example, it may include humans
or other elements of the real world

• Concurrency: Computation is concurrent; the computing agent computes
in parallel with its environment and with other agents that may be in it

360 C. Barrett, S. Eubank, and M. Marathe

SDS and its extensions adequately captures these four essential and dis-
tinguishing features and can be used to model practical BIST systems. The
following example illustrates this point.

Example 2. TRANSIMS is a large-scale Federal Highway Administration
(FHWA) funded transportation simulation project [9] that we co-developed
over the last 10 years. In this project, an SDS-based approach was used to
microsimulate every vehicle in an urban transportation network (see [82] for
an SDS specification). Each roadway is divided into discrete cells. Each cell is
7.5 meters long and one lane wide. Each cell contains either a vehicle (or a part
of a vehicle) or is empty. The microsimulation is carried out in discrete time
steps with each step simulating one second of real traffic. In each time step,
a vehicle on the network makes decisions such as accelerate, brake or change
lanes, in response to the occupancy of the neighboring cells. We can represent
the above model using the SDS framework. For ease of exposition, we assume
a single lane circular road that can be modeled as a one dimensional array of
cells. In this representation, each cell represents a 7.5 meter segment of the
road. The variable gap is used to measure the number of empty cells between
a car and the car ahead of it. In the following, let v denote the speed of the
vehicles in number of cells per unit time, vmax denote the maximum speed
and rand as a random number between 0 and 1. Finally, pnoise denotes the
probability with which a vehicle is slowed by 1 unit. Each iteration consists of
the following three sequential rules that are applied in parallel to all the cars:

1. Acceleration of free vehicles: If v < vmax, Then v = v + 1.
2. Braking due to cars in front: If v > gap, Then v = gap.
3. Stochastic Jitter: If (v > 0) AND (rand < pnoise), Then v = v − 1.

To illustrate how an SDS based model can be constructed, let us consider
a simple circular one lane road. One vehicle occupies one cell and has a given
velocity. Let us assume that a vehicle can travel at one of three velocities: 0, 1
and 2. There are m vehicles and their initial positions are chosen at random.
They are labeled 1 through m by the order in which they initially appear on
the road. There is a schedule π that determines the update ordering. A vehicle
at cell i with speed v is updated as shown in Table 1. This defines the local
function at a node in the time evolving graph. Thus a vehicle at cell i with
speed 1 that has two free cells ahead moves one cell ahead and gets the new
speed of 2. At each time step t we can derive the associated dependency graph
G(t). The graph G(t) has vertices 1, 2, . . . ,m corresponding to the vehicles.
Two vehicles k and l are connected by an edge if the distance between them
at time t is less than or equal to vmax = 2. If the distance is larger they are
independent by construction. (A vehicle only depends on what is ahead on the
road.) Thus, for the configuration in Fig. 2, we derive the dependency graph
shown in Fig. 2.

Modeling Large Biological and Socio-Technical Systems 361

Table 1. The update rule for a single vehicle

(Cell,Speed) i + 1 taken
i+1 free,
i + 2
taken

i + 1,
i + 2 free

(i, 0) (i, 0) (i, 1) (i, 2)
(i, 1) (i, 0) (i + 1, 1) (i + 1, 2)
(i, 2) (i, 0) (i + 1, 1) (i + 2, 2)

1

2

3

4

5

6

7

8 1

������������� 2

4 3

Fig. 2. A circular one-lane road divided into cells. A dot indicates that the given cell
is occupied by a vehicle. The dependency graph G(t = 0) associated to configuration
to the left is shown to the right

Discussion

• The computational problem at hand is to represent traffic dynamics in a
city. There is no explicit algorithmic description of this problem. Traffic is
an emergent or simulated property. As discussed in [70, 76], traffic can be
viewed as a chaotic system and thus even its simple properties are unlikely
to be predictable.

• The description of the driver is not merely contained in the local rules, but
is obtained via composing the time varying explicit interactions with other
drivers. This notion of disaggregated normative agent is discussed further
in Sect. 4.1. Moreover, this interaction is dynamic and the neighborhood
changes all the time. In other words, the environment is not static. The
driver interacts continually with the environment and co-evolves with it.

• The computation is inherently concurrent. The update order chosen is
important. For instance, in the case of the single-lane system, updating
the states from front to back acts like a perfect predictor and thus never
yields clusters of vehicles. On the other hand, updating from back to front
yields more realistic traffic dynamics [68, 70, 76].

The complete TRANSIMS system is described in Sect. 5 and models a
number of other interesting features, including activity based traffic modeling,
game theoretic behavior of individual travelers, co-evolution and effects of
large scale transformational changes such as building new highways. The above
example describes a simplified version of one of the TRANSIMS modules

362 C. Barrett, S. Eubank, and M. Marathe

and is intended to convey the richness inherent in such systems. Nevertheless,
the example drives the main point: SDSs and its extensions can serve as
elementary models of interactive computation.

3 Theoretical Foundations

We describe an elementary theory of interaction based simulations abstracted
as SDS. An elementary theory of simulation should yield theorems that are
applicable to a class of simulations rather than to only particular members of
this class. The first set of results outlined in Sect. 3.1 concern the structural
properties of the interaction graph. The results are independent of the update
order and the particular properties of the local functions. Section 3.2 outlines
results that depend only on the properties of the local functions; they are in-
dependent of the interaction graph and the update order. Finally, in Sect. 3.3,
we discuss results that pertain to all the three components of the definition.

3.1 Effect of BIST Network

Recently there has been a resurgence of research in complex networks, driven
by a number of empirical and theoretical studies showing that network struc-
ture plays a crucial role in understanding the overall behavior of complex
systems. See [23, 5, 2, 28, 33, 35, 34, 39, 71, 83] and the references therein
for recent results in this active area. Another recent direction of research has
been to determine random graph models that can generate such networks.
Unfortunately, many of these random graph models, such as the preferential
attachment model, are not suited for social network analysis.

Construction of BIST Networks Construction of BIST networks is chal-
lenging: in some cases data is easily available to construct the networks, while
in the majority of other cases, although such data exists, it is not freely avail-
able. In yet other cases, the network has to be constructed by integrating a
number of different databases. Finally, in case of social and ad hoc networks, it
is impossible at the current time to gather enough data to construct such net-
works. Thus simulation based tools are required for generating such networks.
We describe two networks here: the social contact network and the mobile ad
hoc network. One is a social network, the other is formed by social interactions
and the links are really a matter of convention, but nevertheless is best classi-
fied as a infrastructure network. Important examples of other BIST networks
that have to be constructed by integrating various information sources and
simulations include the route level IP network, the gene annotation networks
and protein–protein interaction networks.

Example 3. Consider a social network that captures the interaction between
individuals moving through an urban region [33, 7]. This information can be

Modeling Large Biological and Socio-Technical Systems 363

abstractly represented by a (vertex and edge) labeled bipartite graph GPL,
where P is the set of people and L is the set of locations. If a person p ∈ P visits
a location l ∈ L, there is an edge (p, �, label) ∈ E(GPL) between them, where
label is a record of the type of activity of the visit and its start and end points.
Each vertex (person or location) can also have labels. A person’s various labels
correspond to his/her demographic attributes such as age, income, etc. The
labels attached to locations specify the location’s attributes such as its x and
y coordinates, the type of activity performed, maximum capacity, etc. Note
that there can be multiple edges between a person and a location recording
different visits. Figure 3 shows an example of a bipartite graph. Part (a)
of Fig. 3 shows an example of a bipartite people-location graph GPL with
two types of vertex representing four people (P) denoted by filled circles and
four locations (L), denoted by squares. Figure 3 parts (b) and (c), show two
distinct projections of the basic network that can be defined and constructed
from this information. The graphs GP and GL induced by GPL. GP is the
temporal people–people–spatial-proximity graph. It connects two individuals
by edges if they were in spatial proximity during some time of the day. GL

is the building–building temporal graph. Two buildings are joined by an edge
in a time period if an individual left one of the buildings in that period and
arrived at the other building in the same time-period. Figure 3 part (d) shows
the static projections of GS

P and GS
L resulting from ignoring time labels.

Fig. 3. Figure depicting a social contact network described in Example 3. (a) shows
the bipartite graph GPL. (b) and (c) show two distinct temporal projections of GPL,
namely GP and GL and (d) shows the static projections GS

P and GS
L resulting from

ignoring time labels

364 C. Barrett, S. Eubank, and M. Marathe

We point out that simulations appear to be the only way to construct
such networks. Contrast this with the electrical grid: although it might be
hard to obtain the data, the data certainly exists with government agencies
and private companies.

Example 4. A synthetic vehicular ad hoc telecommunication network is ob-
tained by assigning one or more wireless devices to drivers, vehicles and other
individuals in an urban region. Each vertex in the ad hoc telecommunication
network corresponds to a transceiver and two nodes are joined by an edge if
and only if they are within each other’s radio range. Note that to construct
such a network, one needs the following: a detailed time varying location of
transceivers, information on the characteristics of the transceiver and time
varying activity related to the transceiver (on and off patterns). Again, as in
the case of social contact networks, it is hard to get data for such networks
and simulation based data integration and creation methods appear to be nec-
essary. We used the section of downtown Portland, Oregon, shown in Fig. 4
for illustration. More details on the structural properties of realistic vehicular
ad hoc networks can be found in [13, 14, 25].

(a) (b) (c)

Fig. 4. Versions of an ad hoc telecommunication network formed by assigning
transceivers to individuals in cars on a section of Portland road network discussed in
Example 4. (a) Network topology when all the transceivers were assigned the same
power. (b) and (c) show parts of the network when power control algorithms in [58]
were applied to reduce the overall interference

Important Notes:

• Notice how various components of network constructions played a role in
the above examples. In Example 3, the underlying population and the in-
frastructure remained invariant. We simply varied the interaction criteria.

Modeling Large Biological and Socio-Technical Systems 365

In Example 4, the synthetic individuals had to be endowed with additional
attributes such as a mobile wireless device. The interaction criteria is dif-
ferent and is defined with respect to the wireless device and is in this case
the radio range of the individual transceivers (transmitter and a receiver).

• The two networks have differing levels of fidelity in terms of temporal
evolution. In Example 3, if the intended application is disease propaga-
tion, then time scales could be relatively large, on the order of minutes to
hours. In contrast, the telecommunication ad hoc network formed needs
to be represented and computed at extremely small time scales (millisec-
onds), since loss in radio range implies loss in data packets. Notice that as
society becomes ever more digital, social networks can more appropriately
be defined not only over individuals but also over digital devices capable
of handling specific tasks.

• While we have not elaborated it here, individual transceivers can choose
to send messages to other specific transceivers (e.g., text messages on a
phone): this yields yet another social network with communication devices
as nodes and an edge between two devices when they send a message
to each other. Such a network rides on the top of the rapidly evolving
communication network that is described here.

Measurement and Analysis of BIST networks Once a complex network
is constructed, we study the following interrelated questions: (i) discovering
new measures that provide information about the network’s structure and dy-
namics, and (ii) fast and provable algorithms for computing network measures
over very large social and infrastructure networks. Some important observa-
tions based on results in [14, 33, 34, 35] include: (i) Social and infrastructure
networks are not necessarily scale free or small world networks [33, 34, 35],
(ii) structural measures for real infrastructure and social networks are often
different from similar measures for classical random networks, and (iii) social
networks have high local clustering. In contrast, many physical networks such
as power and transport networks have very low clustering coefficient.

We illustrate the range of static analysis by describing important struc-
tural results pertaining to social contact networks such as the ones described
in Example 3. See [33, 34, 35] for a more comprehensive discussion on this
subject. In the bipartite graphGPL for the city of Portland, there are 1615 860
(1.6 million) individuals, 181 230 (181K) locations, and 6060 679 (6.1 million)
edges. Figure 5(a) and (b) shows the degree distributions of the locations and
people in the bipartite graph, GPL for the Portland data. Note that a large
part of the degree sequence of locations follows a power-law distribution, i.e.,
nk ∝ k−β , where nk denotes the number of locations of degree k; for the
Portland data, β ≈ 2.8. The degree distribution of people is roughly Pois-
son. The degree sequence of people in the people-people graph GP is shown
in Fig. 5(c) and looks quite different than the degree sequence of GPL. The
graph GP for Portland is not fully connected, but has a giant component with

366 C. Barrett, S. Eubank, and M. Marathe

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Location degrees

F
ra

ct
io

n
of

 lo
ca

tio
ns

Degree distribution
of locations in
Portland data

(log−log)

(a)

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

People degrees

F
ra

ct
io

n
of

 p
eo

pl
e

Degree distribution
of people in Portland data

(b)

10
0

10
1

10
2

10
3

10
4

10
5

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

People−people degrees

F
ra

ct
io

ns
 o

f p
eo

pl
e

Degree distributions of
people−people graphs

of Portland data

(c)

Fig. 5. (a) and (b) Degree distributions of locations and people in the bipartite
graph GPL for Portland data. The location degrees range from 1 to 7091, people
degrees range from 1 to 15. (c) Degree distribution of people–people graph projection
obtained from the original bipartite graph

1615 813 people. The clustering coefficient p of GP : it is about 0.57 which is
substantially higher than clustering coefficients for infrastructure networks.

Next, we describe two structural measures that provide further evidence
into how well connected today’s urban social networks are. First, consider
graph expansion. We consider the two standard notions of expansion in the
graph GP . The edge expansion of a subset S ⊆ P is defined as the ratio

|{e = (u, v) : (u, v) is an edge and u ∈ S, v �∈ S}|
|S| .

The vertex expansion of a subset S ⊆ P is defined as the ratio |{u /∈ S :
(u, v) is an edge and v ∈ S}|/|S|. The edge (vertex, respectively) expansion
of GP is the minimum, taken over all S ⊂ P, |S| ≤ |P |/2, of the edge (vertex,
respectively) expansion of S. The vertex and edge expansions are important
graph-theoretic properties that capture fault-tolerance, speed of data dissem-
ination in the network, etc. Roughly, the higher the expansion, the quicker
the spread of any phenomena (disease, gossip, data, etc.) along the links of
the network. Random sampling based estimates of vertex and edge expan-
sion are shown in Fig. 6. The Y -axis plots the smallest expansion value found
among the 500 000 independent samples; the X-axis plots the set size S as a
percentage of the total number of vertices in the graph (the sampling prob-
ability). The plots labeled “Vertex expansion-2” and “Edge expansion-2” in
Fig. 6 show the expansion in the graph GP , while the plots marked “Vertex
expansion-1” and “Edge expansion-1” show the same quantity on a sparser
people-people graph—the graph is made sparser by only retaining edges be-
tween individuals who came in contact for at least one hour. The graphs make
two points: (i) as expected expansion becomes smaller as the contact graph
gets sparser, and (ii) even for sparse contact networks the expansion values
are quite high.

Modeling Large Biological and Socio-Technical Systems 367

0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

25

30

Sampling Probability

E
xp

an
si

on
 F

ac
to

r

Vertex expansion−1
Edge expansion−1
Vertex expansion−2
Edge expansion−2

(a)

050100150200250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

People−people degrees (decreasing order)

S
iz

e
of

 th
e

la
rg

es
t c

om
po

ne
nt

Ratio of the size of
the largest component
to the size of the whole
graph, after removing
people of a given degree.

(b)

(c)

Fig. 6. (a) Expansion of the people–people graph: the plots marked “Vertex
expansion-2” and “Edge expansion-2” show the vertex and edge expansion for the
graph GP , while “Vertex expansion-1” and “Edge expansion-1” show the correspond-
ing quantities in the graph obtained by retaining only those edges that involve an
interaction of at least 1 hour. This leads to a much sparser graph and correspond-
ingly lower values of vertex and edge expansions. (b) Plots showing the relative ease
with which we can break infrastructure networks by removing nodes of high connec-
tivity. (c) In contrast to (b), figure (c) shows that urban social networks are very
hard to shatter

Another important structural measure (informally called shattering) is to
determine the ability to disconnect a social or an infrastructure network by re-
moving high connectivity nodes. Figure 6(b) and (c) show these plots for three
infrastructure networks and urban social networks respectively. Notice the re-
markable difference between the plots: they show that while infrastructure
networks are prone to targeted failures, social networks are very robust. Tar-
geted failures correspond to removal of high degree nodes. For social networks,
this corresponds to removing individuals by quarantining or vaccinating them
in case of epidemics, with large number of social contacts. This connectivity
property of the social network turns out to be the Achilles heel : while strong
connectivity is important for the day-to-day functioning of the social system,
it is a weakness in controlling the spread of infectious diseases. In other words,
The high expansion and inability to shatter social networks implies that conta-

368 C. Barrett, S. Eubank, and M. Marathe

gious diseases would spread very fast, and making early detection imperative
to control disease.

3.2 Effect of Local Functions

In this section, we give examples of results that depend solely on the prop-
erties of the local functions. We give three examples and restrict ourselves
to local functions with Boolean domains; see [19, 15, 21, 51]. Given an SDS
S over a domain D, two configurations I, B, and a positive integer t, the
t-Reachability problem is to decide whether S starting in configuration I
will reach configuration B in t or fewer time steps. We assume that t is spec-
ified in binary. (If t is specified in unary, it is easy to solve this problem in
polynomial time since we can execute S for t steps and check whether con-
figuration B is reached at some step.) Given an SDS S over a domain D and
two configurations I, B, the Reachability problem is to decide whether S
starting in configuration I ever reaches the configuration B. (Note that, for
t ≥ |D|n, t-Reachability is equivalent to Reachability.) Given an SDS
S over a domain D and a configuration I, the Fixed Point Reachability
problem is to decide whether S starting in configuration I reaches a fixed
point.

1. The Reachability and t-Reachability problems are solvable in poly-
nomial time for (Bool, Nor)-SDSs for which the number of independent
sets in the underlying graph is polynomial. For any (Bool, Nor)-SDS,
every transient in the phase space is of length 1 and the phase space does
not have fixed points.

2. Given an n-node (FinRing, Linear)-SDS S over a finite domain D, the
Fixed Point Reachability problem for S can be solved using a number
of algebraic operations that is polynomial in n and |D|. When the domain
D is Boolean and the operators of the unitary semi-ring are OR (+) and
AND (*), each linear local transition function is either XOR (exclusive
or) or XNOR (the complement of exclusive or). Thus, the Fixed Point
Reachability problem for such SDSs can be solved efficiently.

3. Let S = (G,F , π) be a (Bool, Thresh)-SDS whose underlying graph
G has n nodes and m edges. From any initial configuration I, S
reaches a fixed point after at most +(m+ n+ 1)/2, steps. Thus, t-
Reachability, Reachability and Fixed Point Reachability prob-
lems for (Bool, Thresh)-SDSs can be solved in polynomial time.

3.3 Composite Analysis of SDS

Finally, we consider examples of composite analysis of SDS. Following [17],
we say that a system is predictable if basic phase space properties such as
reachability and fixed point reachability can be determined in time which is
polynomial in the size of the system specification. It can be shown that very

Modeling Large Biological and Socio-Technical Systems 369

simple SDSs are computationally universal for the appropriate space/time
complexity class (see [15, 21]). For example there exist constants d2, p2 and
n2 such that the t-Reachability, Reachability and Fixed Point Reach-
ability problems for (Bool, Sym)-SDSs are PSPACE-hard, even when all
of the following restrictions hold: (a) The maximum node degree in the under-
lying graph is bounded by d2. (b) The pathwidth (and hence the treewidth)
of the underlying graph is bounded by p2. (c) The number of distinct local
transition functions used is bounded by n2.

Due to the particular proof technique used, these results naturally extend
to yield general computational universality. For instance, we show that the
reachability problem for very simple SDS (e.g., SDS in which the domain of
state values is Boolean and each node computes the same symmetric Boolean
function) is PSPACE-hard: this implies that the systems are not easily pre-
dictable. In fact, the results imply that no prediction method is likely to be
more efficient than running the simulation itself. By allowing an exponential
memory at each node or allowing exponentially many nodes, one can obtain
EXPSPACE-hardness results. An important implication of this (stated in-
formally) is the following: the optimal computational strategies for determining
the structural properties of such complex dynamical systems are interaction
based simulations. Moreover the systems for which the hardness results hold
are so simple (essentially, local transition functions can be simple threshold or
inverted thresholds) that any realistic socio-technical system is likely to have
such systems embedded in them. See [17, 66, 40, 85] for additional discussion
on this topic.

As another illustration of the general complexity theoretic results that
can be obtained as regards to SDSs, we consider the predecessor existence
problem. Given an SDS S and a configuration C, the Predecessor exis-
tence (or Pre) problem (a.k.a pre-image existence problem) is to determine
whether there is a configuration C′ such that S has a transition from C′ to C.
Apart from the decision version, we also consider the problems of counting the
number of predecessors (the counting version, denoted by #-Predecessor
existence), deciding if there is a unique predecessor (the unique version,
denoted by Unique-Predecessor existence) and if there are two pre-
decessors of the given configuration (the ambiguous version, denoted by
Ambiguous-Predecessor existence). Using the concept of simultaneous
local reductions, it is possible to obtain results that simultaneously character-
ize the complexity of the Predecessor existence, #-Predecessor exis-
tence, Unique-Predecessor existence and Ambiguous-Predecessor
existence problems for SDS and SyDS. The results are summarized in Fig. 7
and are proved in [20]. These are local transformations that simultaneously
yield the hardness for decision, counting, unique and ambiguous versions of the
problem. Such a reduction allows us to tightly relate the computational com-
plexity of these problems; see [30, 49, 50] for more discussion on simultaneous
local reductions. The easiness results are obtained using generic algorithms
that exploit the underlying structure of the interaction graph and the seman-

370 C. Barrett, S. Eubank, and M. Marathe

The Pre problem is NP-complete for the following restricted classes of SDSs.
In most cases, the #-Predecessor existence problem is #P-complete, the
Ambiguous-Predecessor existence problem is NP-complete and Unique-
Predecessor existence problem is DP-complete (using randomized reduc-
tions).

1. Identical and/or restricted class of functions:
a) (Bool, Thresh)-SDSs where each node computes the same k-simple-

threshold function for any k ≥ 2,
b) (Bool, Tally)-SDSs in which each node computes the same k-tally

function for any k ≥ 1,
2. Restricted graphs:

a) SDSs over the Boolean domain where at most one local transition func-
tion is not symmetric and the underlying graph is a star,

b) SDSs over the Boolean domain and the underlying graph is a grid,
c) (Bool, Sym)-SDSs whose underlying graphs are planar.

The Pre problem is in P for the following classes of SDSs.

1. for (Field, Linear)-SDSs, (Bool, And)-SDSs and (Bool, Or)-SDSs with
no restrictions on the underlying graph,

2. for (Bool, Sym)-SDSs when underlying graphs have bounded treewidth,
3. for SDSs when underlying graph is simultaneously bounded degree and

and bounded treewidth with no restriction on the local transition functions
(other than that the functions are over finite domain).

Fig. 7. Example of complexity theoretic results that can be proven for special classes
of SDS. Note the interplay between the graph structure and function complexity.
Although the results are shown only for Pre problem and its variants, it is possible
to obtain similar results for other problems such as Garden of Eden states, etc.
These results also imply analogous results for Discrete Hopfield networks, concurrent
transition systems and other related models

tics of the local transition functions. The algorithms are generic in the sense
that the same basic algorithm can be used to compute solution to the decision,
counting, ambiguous and unique versions of the problem by merely supplying
the appropriate semantics for the semi-ring operations that are carried out;
see [80].

3.4 Formal Specifications and Local Simulation Compliers

Discrete dynamical systems are a natural mathematical language for formally
specifying large scale interacting systems. Recently SDS and abstract state
machines (ASM)1 have been used for formally specifying the several modules
of the telecommunication system [24, 59]. Ideally, we would like to express
the BIST systems using higher level SDSs, i.e., SDSs with more expressive
1 See http://www.eecs.umich.edu/gasm/.

Modeling Large Biological and Socio-Technical Systems 371

local functions and interaction networks. In contrast, simpler SDSs, i.e., SDSs
with less expressive local functions and regular interaction networks are likely
to be more suitable for finding efficient mappings of the SDSs on HPC ar-
chitectures. This is because the language (model) that is most convenient to
describe the underlying system might not necessarily be the best model for
actual simulation of the system on a HPC architecture. Thus it is conceivable
that such simpler systems obtained via translation could be mapped on HPC
architectures and the resulting maps could be analyzed for performance bot-
tlenecks. Simpler systems can potentially also be used to verify the correctness
of the ensuing protocols. To achieve this, such translations should be efficient
and preserve the basic properties across the original and the translated sys-
tem. The constructions given as part of the simulation results in [19, 21] can
be viewed as local simulation compilers that transform one type of SDS to
a simpler kind of SDS in such a way that (i) the translation is local and ef-
ficient and (ii) relevant features of the phase space of the original SDS are
captured appropriately in the phase space of the simpler SDS. In recent years
(see [40, 85, 42, 63] and the references therein), several authors have suggested
building cellular automata based computers for simulating physics. We believe
that SDS based computers are better suited for simulating BIST systems. In
[62], Margolus proposes a DRAM based architecture for large scale spatial
lattice computations, also see DeHon [32]. Simulation compilers as discussed
above will form the basis for implementing Simfrastructure like simulations
on massively parallel architectures such as FPGAs. See [82] for a recent study.

3.5 Implications for Other Computational Models

The complexity theoretic results for SDS can be used to yield lower (and
upper) bounds on the complexity of reachability problems for other compu-
tational models of discrete dynamical systems. These include:

1. Classical cellular automata (CA), (see for example, [85]) systolic arrays
proposed by Kung et al. [56] and graph automata [72], which are a widely
studied class of dynamical systems in physics and complex systems and
have been used in massively parallel computing architectures.

2. Concurrent transition systems (CTS) have been widely studied as formal
models of concurrent processes. They have been used to specify commu-
nication protocols and concurrent programs in the context of distributed
computing.

3. Discrete recurrent Hopfield networks [36, 73, 73] which are used in machine
learning and image processing.

The results can be used to characterizations of the complexity of state
executability problems for CTSs, discrete Hopfield networks and cellular au-
tomata in terms of (i) the power of individual automata, (ii) the size of the
alphabet for encoding messages, (iii) the interconnection topology and (iv)
the method of communication (e.g., channels, action symbols).

372 C. Barrett, S. Eubank, and M. Marathe

4 Engineering BIST Systems

An important factor in building simulations of BIST systems is the size and
scope of the systems that need to be represented. For example, infrastruc-
ture simulations should be able to represent over 106 entities and cover large
geographical areas, the size of medium sized metropolis. A telecommunica-
tion simulation system representing a medium sized city should be able to
represent 109 transceivers and 1012 packets per hour. As a result, building
such systems requires new engineering principles for a high resolution HPC
oriented representation. Classical methods for representing agents and their
interactions will not scale beyond a certain point. Another interesting problem
involves methods related to spatio-temporal data collection, integration and
validation. Building such simulations involves, on the one hand, integrating
large numbers of databases, streaming datasets and results from earlier simu-
lation runs in a consistent manner and on the other hand, developing efficient
methods for storing and analyzing data that is produced by such simulations.
We discuss two interrelated topics below.

4.1 Concept of Agency: A Disaggregated Interactive, Normative
Representation

Another issue to consider while implementing large simulations is that of
agent encapsulation. In the past, most work on agent-based simulations has
been implemented using object oriented computing languages and as a result
people have a found natural one-to-one mapping of agents onto objects. This
simplifies the task of debugging and implementing the agent based simulation
architecture. Unfortunately, this approach does not scale while implementing
large BIST systems. The notion of agency is much more abstract than usu-
ally studied in the literature and is based on the notion of composition and
interaction. By composition, we mean that the functionality associated with
an agent is obtained by composing (both structurally and functionally) its
various incarnations or avatars. By interaction, we mean that a specific func-
tionality of an agent depends on the behavior of other agents interacting with
it. For instance, in the traffic simulation (TRANSIMS), an agent is some-
times a driver and sometimes a parent and sometimes an office worker. When
assuming the role of a driver, the agent’s speed is not only dependent on his
own rules but the speed of other drivers around him. The SDS based view
again provides a natural mathematical framework to represent this notion of
agency.

PARameterized Approximate Local and Efficient aLgorithms (PAR-
ALEL) provide a way to address the scaling issue. As discussed above, in
simulating large systems with tens of thousands (or more) of interacting el-
ements, it is computationally infeasible to explicitly represent each entity in
detail using, perhaps, naive one agent-one encapsulated software object rep-
resentational ideas. A common method of simulating such systems is to use

Modeling Large Biological and Socio-Technical Systems 373

parameterized representations of entities. The goal is to capture different be-
haviors of the system using different sets of parameters. The concept corre-
sponds to having a normative representation of each abstract agent. A param-
eterized representation allows efficient use of computational resources. Indeed,
even in systems with only tens of thousands of entities, the set of potential
interactions among the entities is so large that parameterized representations
are desirable, if not absolutely necessary to simulate the interactions in an
efficient manner. The basic ideas behind agent abstraction are found in the
concept of PARALEL algorithms:

• PARameterized, in that a single basic algorithm with a correct set of
input parameters is capable of representing a class of algorithms,

• Approximate, in that their behavior closely approximates an exact algo-
rithm achieving a given task,

• Local, in that the information required by such algorithms is local as
opposed to global, and

• Efficient, in that they are very fast and can be executed efficiently on both
sequential and distributed shared memory multiprocessor architectures a-
L-gorithms.

The concept of local algorithms is akin to the recently independently intro-
duced concept of decentralized algorithms [55] and also to the classical concept
of distributed algorithms. The approximate behavior is also pertinent at two
levels. At the basic level an approximate algorithm closely models the behavior
of each physical entity. At a global level, an approximate solution implies that
the composed local algorithms representing each agent along with the update
mechanism approximate the global system dynamics. The global level of ap-
proximation is more important, although the local level cannot be completely
ignored.

Example 5. Normative drivers in traffic simulations. Consider the rules
for a driver update given in Example 2. In spite of their simplicity, these
rules produce fairly realistic traffic flow characteristics and can in the limit,
approach the fluid dynamics models studied in traffic flow theory [68, 70, 76].
The traffic pattern evolution as a function of the density ρ = m/n (m is
the number of cars in a given a period of time on a road segment of length
n measured in number of cells) exhibits a threshold value for congestion.
Figure 8 shows illustration of traffic flow characteristics produced by the
above set of rules for a one-lane road with periodic boundary conditions. See
[69] for additional discussion.

4.2 Efficient Storage and Regeneration

The simulations of BIST systems described here produce extremely large
quantities of data. For example, simulating an ad hoc packet switched net-
work with a million moving transceivers for even 15 minutes produces time

374 C. Barrett, S. Eubank, and M. Marathe

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

ve
lo

ci
ty

 [k
m

/h
]

density [veh/km/lane]

TRANSIMS Mar 1998

(a)

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90 100

flo
w

 [v
eh

/h
ou

r/
la

ne
]

density [veh/km/lane]

1-lane freeway

TRANSIMS Mar 1998

(b)

Fig. 8. Figures representing various traffic flow characteristics

varying network requiring gigabytes of memory and packet level data requir-
ing terabytes of memory. It is therefore impossible to exhaustively store the
data generated while running these simulations. This motivates the need for
computationally efficient data storage and methods with the following require-
ments: (i) efficiency in terms of space and time complexity and in many cases
capability to run in an online setting, and (ii) the stored data should have
enough information to allow recreation of certain dynamic features observed
while running the simulations. We can equivalently view this as a semantic
compression step.

The next step is efficient (re)-generation of data (including networks). Gen-
eration of random graphs and random data sets allow us to test scalability as
well as the semantic properties of simulations. Re-generated data is necessary
to recreate data that could not be stored while running the larger simulations.
Re-generation methods can be viewed as reduced simulations; they allow one
to generate certain dynamics of interest without resorting to expensive runs
of the large simulation. For example, in [12] a system is described to store
and regenerate statistically equivalent packet streams arriving at their desti-
nation succinctly using signal theoretic and statistical methods. The size of
the stored model is much smaller than the original data. The regeneration
step uses the Markov Chain Monte Carlo method. The regenerated packet
sequences are statistically indistinguishable from the original packet sequence
when compared using basic quality of service measures such as throughput,
jitter, skips, repeats, etc. The methods appear to yield compression ratios of
over 100 000 while being able to recover many of the measures within 1% error.
Similar methods can be devised to store and regenerate large BIST networks.
The compression methods store structural properties of the network. The re-
generation methods then use stochastic methods to re-generate the graphs.
The random graphs so generated are “similar” to the original networks and

Modeling Large Biological and Socio-Technical Systems 375

can be constructed in a fraction of the time required to construct original
networks.

5 A Practical Interaction Based System: Modeling
Interdependent Urban Infrastructures

As an example of the theoretical framework described in the preceding sec-
tions, we will describe Simfrastructure: a high-performance service oriented
agent based modeling and simulation system for representing and analyzing
interdependent infrastructures. See [4, 26, 27, 29, 44, 57, 61, 31, 75, 86] and
additional references in the following sections for other examples of similar ef-
forts. Simfrastructure can represent and analyze interdependent urban infras-
tructures including transportation, telecommunication, public health, energy,
financial (commodity markets)2. In conjunction with a representation of the
urban population dynamics and the details of the built infrastructure, such
modeling systems can be viewed as functioning virtual cities. A unique feature
of tools such as Simfrastructure is their ability to represent entire urban pop-
ulations at the level of individuals, including their activities, movements and
locations. The ability to generate an urban population, move each person on a
second-by-second basis, and monitor the individual’s interaction with others
and the physical infrastructures enables the understanding of infrastructure
operations and interdependencies at an extreme but practical level of detail.

A connected collection of such urban infrastructure simulations allow anal-
ysis of urban infrastructure interdependencies through integrated functional
data flow architectures. In brief, this functionality derives from population-
mobility data generated by the simulation and modeling framework for the
transportation sector. The simulation produces a synthetic population with
demographics assigned to every individual. We track the second-by-second
activities and locations of each individual by tying population information to
detailed maps of urban infrastructures. This information drives each of the in-
frastructure simulations and is shared among the various infrastructure sector
modules through a common interface. This also allows us to provide feedback
between modules regarding infrastructure changes that arise in one sector
during the course of a simulation and are likely to affect the behavior of other
infrastructures. With the ability to simulate multiple infrastructures and their
interdependencies in large urban regions, these systems provide planners and
decision makers with an unprecedented modeling and analysis capability. Fig-
ure 9 shows a schematic view of the interdependent infrastructure simulation
architecture.

2 See http://ndssl.vbi.vt.edu/ for more details.

376 C. Barrett, S. Eubank, and M. Marathe

Urban

Dynamics
Population

Telecommunication

Economics

Transport Public Health

Market &Electricity

Fig. 9. A schematic diagram of Simfrastructure: an interdependent urban infras-
tructure simulation and modeling framework

5.1 A Service Oriented Architecture of Simfrastructure

We have recently completed a design and initial prototype implementation
of Simfrastructure using web services based globally scalable architecture.
The new design of the system specifically aims to scale Simfrastructure to
represent entire countries and over time entire global populations. The only
way to achieve such unprecedented scalability is to use web services architec-
ture combined with Grid Computing infrastructure. We have recently demon-
strated the design by constructing extremely detailed proto-populations of
individuals residing in states along the US Eastern seaboard consisting of ap-
proximately 100 million individuals. This architecture takes care of ensuring
that the simulations have the data that they need to operate, allow direct
discovery of available services, and facilitate the integration of new services.
The system design allows simulation modules to be run on any available com-
putation resource in a way that is transparent to the user. The use of existing
web services standards, allows any architecture or programming language to
be supported.

The newly developed architecture makes it easy for organizations to add
their own simulations and analysis tools into the system. One novel aspect
of the architecture is the ability for different organizations to host the same
simulation applied to different geographic areas. These instances will be able
to communicate through web services to collaborate on a larger problem. For
instance, a transportation system simulation could be run at each Metropoli-
tan Planning Organization (MPO) covering the local urban region. The sim-
ulations running at each MPO could then exchange the traffic exiting each
local area and entering an adjacent area. This exchange could be expanded
to include bus, rail, and air traffic to aid in epidemiological modeling at the
national level. Note that the system formed in this way is not predetermined,
but is self-organized based on the currently available services.

The architecture also allows the implementation of a particular service to
be easily updated or replaced without affecting current users of the service.
Multiple providers of a service can coexist, each with a different trade-off (e.g.,

Modeling Large Biological and Socio-Technical Systems 377

resolution vs. execution time). The request for a service will be decoupled
from the execution of the service so that a user simply makes a request that
a service be performed. Attached to the request are conditions that must
be met such as monetary cost, completion time, security requirement, etc.
These requests need not be computational, but may be for services provide
by other individuals or organizations. Software brokers examine these requests
and match them to available resources.

Currently, Simfrastructure has working models for the following infrastruc-
tures: (i) Synthetic populations and urban environments, (ii) transportation,
(iii) commodity markets, (iv) integrated telecommunication, (v) public health,
and (vi) electrical power. Below we describe each of these modules briefly. We
will end the section with illustrative use cases.

5.2 Synthetic Protopopulations and Urban Environment
Representation

A detailed population mobility and the associated built urban infrastructure
is the central piece of such simulations. It provides a common interface for the
flow of information between all the infrastructure sector simulations. All in-
formation describing the synthetic population and elements of the built urban
environment resides in this module. In addition, changes in the urban infras-
tructure that arise during the course of a simulation and constrain activities
and locations of the population pass between the modules through this mod-
ule, where sector-specific information is transformed into a common format.
The module makes information available to the other infrastructure simula-
tions in the form of a consistent data structure, called proto-populations: they
are synthetic populations whose resolution, fidelity and quality can be varied
depending on the nature of the application.

A protopopulation is a collection of synthetic people, each associated with
demographic variables drawn from any of the demographics available and ex-
tracted from the census [16, 77, 78]. Protopopulations can represent a person,
a vehicle, or an infrastructure element such as a hospital or a switch. Here, for
illustration, we will concentrate on creation of synthetic urban populations.
Figure 10 shows a schematic diagram. Joint demographic distributions can
be reconstructed from marginal distributions available in typical census data
using an iterative proportional fitting (IPF) technique. Each synthetic individ-
ual is placed in a household with other synthetic people and each household is
placed geographically in such a way that a census of the synthetic population
is statistically indistinguishable from the original census, if aggregated to the
block group level. Synthetic populations are thus statistically indistinguish-
able from the census data. Since they are synthetic, the privacy of individuals
within the population is protected. The synthetic individuals carry with them
a complete range of demographic attributes collected from the census data, in-
cluding variables such as income level and age. Next, a set of activity templates
for households is created, based on several thousand responses to an activity

378 C. Barrett, S. Eubank, and M. Marathe

Fig. 10. Schematic diagram showing how various databases are integrated to create
a synthetic population

or time-use survey. These activity templates include the types of activities
each household member performs and the time of day they are performed.

Each synthetic household is then matched with one of the survey house-
holds, using a decision tree based on demographics such as the number of
workers in the household, number of children of various ages, etc. Next, the
synthetic household is assigned the activity template of its matching survey
household. For each household and each activity performed by this household,
a preliminary assignment of a location is made based on observed land-use
patterns, tax data, etc. This assignment must be calibrated against observed
travel-time distributions. However, the travel-times corresponding to any par-
ticular assignment of activities to locations cannot be determined analyti-
cally. Indeed, the urban transportation system is a canonical example of com-
plex system wherein global behavior arises from simple local interactions. Us-
ing techniques from combinatorial optimization, machine learning and agent
based modeling we then refine the population, their activity locations and
their itineraries [9].

The time varying, spatially placed, synthetic population constructed in
the above manner can be enhanced for other uses. For instance, we used data
fusion techniques to assign these individuals: telecommunication devices (cell
phones, pagers, etc.), time varying demand for electricity, water and other
such commodities. Note that such data is impossible to collect and can only
be created using methods described here.

This produces synthetic individuals that just like real individuals can now
call other individuals, consume various resources during the day and carry out
other activities like eating, socializing, shopping, etc. An important point to
note here is that such data is impossible to collect by mere measurements or
surveys: it is the output of the agent based models such as the ones developed
in [9].

Modeling Large Biological and Socio-Technical Systems 379

5.3 Transportation Sector

Large scale microscopic simulation of transportation systems has become pos-
sible over the last few years. See [31, 75, 9] for examples of efforts in this regard.
A prototypical question that can be studied with such simulations is the eco-
nomic and social impact of building a new freeway in a large metropolitan
area. Systems such as TRANSIMS conceptually decompose the transporta-
tion planning task into three time scales.

First, a large time scale associated with land use and demographic distribu-
tion as a characterization of travelers. In this phase, demographic information
is used to create activities for travelers. Activity information typically consists
of requests that travelers be at a certain location at a specified time. They
include information on travel modes available to the traveler. A synthetic pop-
ulation is endowed with demographics matching the joint distributions given
in census data. Observations are made on the daily activity patterns of several
thousand households (from survey data). These patterns are used as templates
and associated with synthetic households with similar demographics. The lo-
cations at which activities are carried out are estimated while taking into
account observed land use patterns, travel times, and dollar costs of trans-
portation. Second, an intermediate time scale consists of planning routes and
trip-chains to satisfy the activity requests. This module finds minimum cost
paths through the transportation infrastructure consistent with constraints on
mode choice. An example constraint might be: “walk to a transit stop, take
transit to work using no more than two transfers and no more than one bus”
[9]. Finally, a very short time scale is associated with the actual execution of
trip plans in the network. This is done by a simulation that moves cellular au-
tomata corresponding to the travelers through a very detailed representation
of the urban transportation network [68] . Examples 2 and 5 have already
discussed some of these aspects. The simulation resolves traffic down to 7.5
meters and times down to 1 second. It provides an updated estimate of link
costs, including the effects of congestion, to the router and location estimation
algorithms, which produce new plans. This feedback process continues itera-
tively until convergence to a steady state in which no one can find a better
path in the context of everyone else’s decisions. The resulting traffic patterns
are matched to observed traffic.

A substantial effort has been spent on calibration and validation of the
output produced by TRANSIMS; see [9, 68] for details. First, the design
of the system is based on SDS. Second, various microscopic and macroscopic
quantities produced by TRANSIMS have been validated in the city of Port-
land; including (i) traffic invariants such as flow density patterns and jam
wave propagation, (ii) macroscopic quantities, such as activities and popula-
tion densities in the entire city, number of people occupying various locations
in a time varying fashion, time varying traffic density split by trip purpose
and various modal choices over highways and other major roads, turn counts,
number of trips going between zones in a city, etc.

380 C. Barrett, S. Eubank, and M. Marathe

ANALYST
TOOLBOX

Household and
Commercial
Activity

Disaggregation

Intermodal
Route

Planner

Transportation
Microsimulation

Environmental
Simulation

Land Use And
Demographic

Representation

Transportation
System

Representation

Transportation
Infrastructure
And Policy Change

Land Use And
Demographic
Forecast

Fig. 11. Data flow in the TRANSIMS simulation system, proceeding from left
to right. Input data comes from the US census and metropolitan planning organi-
zations. We generate a synthetic population whose demographics match the census;
give each household an appropriate set of activities; plan routes through the net-
work; and estimate the resulting travel times. The dotted lines represent feedback
pathways, along which data flows from right to left, in the system

An Interaction Based Viewpoint. The TRANSIMS system has been
designed using an interaction-based approach to capture the causes of ob-
served traffic patterns. For each individual, his endogenous attributes are de-
rived from the census data and his endogenous goals are derived from the
activity patterns. His endogenous procedures or behavior consist of methods
for finding specific locations to perform his desired activities, specific algo-
rithms for finding routes to go from one location to another and specific rules
used for driving. When such an endogenous individual interacts with the in-
frastructure and other individuals, we get traffic. The particular locations
that an individual chooses, or the routes he takes are not determined solely
by his endogenous attributes; they are a result of his goals, methods and his
interaction with other individuals and the infrastructure. Similarly, the causal
explanation of traffic or the question of who is at a given location at a given
time, is given not only by the description of the individuals and the infras-
tructure, but also by the interaction amongst them. Thus consequences of
large transformational changes such as a cascading power failure or infectious
diseases can be understood in terms of the net effect of the interactions.

This is very different than traditional statistical models that fit parameters
to given observations. Such systems that rely on observation and direct mea-
surement of traffic cannot extrapolate into hypothetical scenarios precisely
because they have no representation of the multitude of forces and interac-
tions that lie behind each observation. As a simple example, the TRANSIMS
methodology tells us how many people would be likely to use a new freeway
if it were constructed. In doing so it captures what by now is well known as
induced/latent demand. An observationally based system cannot extrapolate
well beyond the circumstances in which it has been observed. Similarly, this

Modeling Large Biological and Socio-Technical Systems 381

approach will allow us to simulate the effects of changes in behavior or use of
infrastructure on the overall social dynamics.

5.4 Telecommunication Sector

The telecommunication modeling environment is an extension of the AdHop-
Net [13, 24], designed to model extremely large, complex telecommunication
networks made up of cellular networks, public switched telephone networks
(PSTNs), Internet (IP) networks, and ad hoc mesh networks. It is an end-to-
end simulation system, meaning that all aspects of the communication system
are represented. Although simulations have been used for over four decades
for representing and analyzing telecommunication systems, the use of high
performance computing oriented simulations of very large telecommunication
systems is a relatively new subject area; see [4, 29] for examples.

The system has been specifically designed to be interoperable with other
infrastructure simulations and is useful for representing the complete sys-
tem comprising the information and communication networks. It is also de-
signed for technological scaling—as we move towards ubiquitous computing,
telecommunication and computing networks with billions of heterogeneous
transceivers. Such an integrated system can be used to evaluate federal poli-
cies on the use and operation of telecommunication infrastructures, especially
in regards to potential effects of the policies on national security. It can also be
used to discover and respond to new vulnerabilities that could occur while de-
ploying ad hoc and integrated networks, i.e., networks of mobile radio devices
that present a constantly evolving telecommunication network.

 Device

 Mobility

and Activity

 Module

Topological

 Graph

 Module

 Packet

Simulator

 Module

 Post-

Processing

 Module

Devices,

Positions,

Sessions

Devices,

Positions,

Sessions,

 Graphs

 Packet

Sequences

 ++

 UPmoST

 Entity

Generator

 UPmoST

 Device

 Entities

Fig. 12. Overall design of the telecommunication modeling module

The modeling environment decomposes the telecommunication system into
four basic time scales. The first module places devices and individuals through-
out the urban region. It then generates the positions of transceivers at various
times of the coarse simulation clock. This module also allows transceivers to
become idle for some period of time and to rejoin the network at a later time.
The module also provides for new transceivers to join the network and exist-
ing transceivers to leave the network permanently. Wireline devices are placed
permanently at various locations based on the publicly available information.

In the second step, each device (e.g., phone, computers, etc) is assigned
data sessions: the sessions are consistent with the kind of devices, their lo-

382 C. Barrett, S. Eubank, and M. Marathe

cations and their users. The sessions generated are statistically identical to
the sessions generated in an urban region of interest. The next step consists
of constructing a (time-varying) telecommunication network. Due to the var-
ious technologies used, these networks are dynamic and their topology varies
significantly depending on the kind of technology used. This corresponds to
intermediate time scale. Finally, at the finest time scale, voice or data is
moved over the dynamic network; this aspect uses packet/voice data simu-
lation methods based on flow techniques or discrete dynamical systems. The
data is then stored succinctly using signal theoretic methods; Markov chain
methods are then used to regenerate statistically equivalent packet streams.
An auxiliary module is concerned with construction, analysis and regeneration
of integrated telecommunication networks. The module synthesizes publicly
available data sets in conjunction with population mobility information to
construct the complete set of networks used in a telecommunication system:
wireline, wireless, ad hoc and the packet switched IP networks.

5.5 Public Health

The public health module (called EpiSims) of the integrated system sim-
ulates the spread of disease in urban areas. It details the demographic and
geographic distributions of disease and provides decision makers with informa-
tion about (1) the consequences of a biological attack or natural outbreak, (2)
the resulting demand for health services, and (3) the feasibility and effective-
ness of response options. See [22, 33, 34] for further details. Simdemics, an
extension of EpiSims, is designed to model general reaction diffusion process
such as vector borne diseases and simulation of social norms and fads.

Both EpiSims and Simdemics work by creating a social-network represent-
ing details of contacts between individuals based on their activity patterns
which are provided by TRANSIMS. The system provides estimates of how
disease will spread through a population depending on how it is introduced,
how vulnerable people are, what responses are applied, and when responses
are implemented.

The module simulates the movement of each individual from location to
location in a large urban area as he or she goes about daily activities. The
individuals are synthetic; they do not represent specific people, but a census
taken on the entire synthetic population would be statistically indistinguish-
able from the actual census. On the other hand, the locations visited by in-
dividuals are real street addresses and reflect actual land-use patterns in the
city.

The modeling environment associates a state of health with each individ-
ual being simulated. An individual’s demographics determine his/her response
to exposure and infection. For example, anyone over the age of 32 is assumed
to have been vaccinated for smallpox. Exposure occurs in either of two ways:
through contact with an infectious person or by visiting a contaminated lo-
cation. The simulation user can introduce contamination at a location as an

Modeling Large Biological and Socio-Technical Systems 383

exogenous event in the simulation. Whether a person is infectious depends on
when that person was exposed and their individual response to infection. By
varying a few parameters, users can model many different diseases.

A simulated person’s state of health may affect his or her actions. They
may seek treatment at a nearby hospital or clinic, or they may stay home
instead of pursuing certain activities. In addition, the user may specify
actions that affect simulated people, such as mass or targeted vaccina-
tion/treatment/prophylaxis and isolation. Targeted responses are automated
within the simulations: people are chosen at a user-specified rate from a list
of symptomatic people; their contacts are found by following their schedule;
and the contacts are then treated and/or isolated.

activities

population

partition

schedule

initial healthdisease
snapshot

events

summary

(from TRANSIMS)

simulation

Fig. 13. Data flow in the epidemiology simulation system. Input data comes from
two sources: the user’s disease model and information about the social network.
Stand-alone tools operate on the disease model and the population’s demographics
to produce the initial state of health for everyone in the simulation. Another tool
converts a list of activities and locations organized by person into a schedule of
events (primarily arrivals and departures) organized by location. The final prepara-
tion step estimates an optimal partition of resources among computational nodes.
The simulation itself executes events in strict time order and propagates disease in
accordance with the user’s disease model

5.6 Commodity Markets

Sigma is an agent-based, microscopic, computational modeling framework to
study commodity markets. Systems such as Sigma offer several advantages to
an economist interested in studying commodity markets, including (i) exact
knowledge of what is exogenous and what is endogenous in the experiment,
(ii) complete control on the amount of information accessible to the players,
(iii) clear delineation of what information is public and private as well as what
assumptions are reasonable to include. The economist can not only study the
system in equilibrium, but can also study the transient dynamics that lead to
equilibrium conditions.

Sigma uses an interaction based computing approach to study the micro-
level behavior of the market and its players. The computational framework

384 C. Barrett, S. Eubank, and M. Marathe

provides user, the ability to control individuals’ preferences, behavior, mar-
ket elements, trading mechanisms, etc. This facilitates the study of different
economic structures, strategies, policies and institutions in isolation. It can
currently simulate a restructured electricity market. Three kinds of markets
are modeled; centralized, decentralized, and a real-time (spot) market. The
models employ economic theory-based methods and capture the dynamics of
supply and demand in a market driven economy. New approaches that facili-
tate a wide range of experiments with a high degree of realism, include:

1. flexible methods of aggregating individual consumers and producers into
hierarchies in order to represent buyers and suppliers in residential, com-
mercial, and wholesale markets;

2. heterogeneous demand profiles with elastic and inelastic components using
time, location,activity, and demographic data for all individual consumers
in a synthetic population;

3. user-selectable economic clearing mechanisms to accommodate an array
of market types, including Vickrey auction, double auction, and marginal
price clearing.

The system simulates the activities (bidding, contracts, prices, etc.) of
individual market players. The market model is driven by dynamic demand
profiles that reflect the changing needs of individuals in an urban population.
The model can be coupled to physical flow models for commodities that re-
quire physical clearing (such as electricity). The tool uses population dynam-
ics and activity location data from a population dynamics simulation such
as TRANSIMS. This information ties the market simulations to the urban
infrastructure. Markets, among other things, are sensitive indicators of infras-
tructure disruptions and can be used to gauge public mood and awareness
in crisis situations. The overall design of Sigma is depicted schematically in
Fig. 14. The framework, due to scaling requirements, has a parametric repre-
sentation for buyers as well as sellers. This allows one to represent a number of
realistic, individualistic, behavioral features that are typically assumed away
in classical economic literature due to mathematical intractability. These in-
clude dropping classical Cournot oligopolists’ assumptions, perfect rationality,
information symmetry between consumers and generators, etc.

Sigma is a detailed simulation based analysis tool for simulating large
commodity markets such as electricity markets. Markets are among other
things, sensitive indicators of infrastructure disruptions and can be used to
gauge public mood and awareness in crisis situations. It can be used to analyze
effects of different regulatory changes, the impact of changes in consumer
behavior on the clearing price, impact of price caps on demand and supply,
market efficiency, generators’ bidding strategies, etc. Another important use
for such tools is their ability to analyze the effect of different market clearing
rules on clearing prices.

Modeling Large Biological and Socio-Technical Systems 385

Buyers
Spatial

Locations

Buyers

Spatial
Locations

Locations

Buyers

Spatial
Locations

Spatial
Locations

Supplier

Supplier

Supplier

Spatial
Locations

Spatial

Physical
Flow Model

Decentralized

Consumer

Producer

Producer

Producer

Producer

Consumer

Producer

Producer Centralized
Market

Consumer

Consumer

Consumer

Consumer

Spot
Market

Market

Fig. 14. Schematic diagram of the commodity market simulation system

The system simulates the activities (bidding, contracts, prices, etc.) of
individual market players. The market model is driven by dynamic demand
profiles that reflect the changing needs of individuals in an urban popula-
tion. The model can be coupled to physical flow models for commodities that
require physical clearing. The tool uses population dynamics and activity lo-
cation data from a population dynamics simulation such as TRANSIMS. This
information ties the market simulations to the urban infrastructure. The over-
all design of such a tool is depicted schematically in Fig. 14. It consists of three
main components that form a coupled system:

1. the electrical power grid, with associated elements including generators,
substations, transmission grids and their related electrical characteristics;

2. a market consisting of market entities, including buyers, sellers, the power
exchange (where electricity trades are carried out at various time/size
scales), the independent system operator (ISO) and the market clearing
rules and strategies;

3. an activity based individual power demand creator that yields spatio-
temporal distribution of the power consumed.

Such simulations, due to scaling requirements, have a parametric repre-
sentation for buyers as well as sellers. They allow for a number of realistic
behavioral features that are typically assumed away in classical economic lit-
erature due to mathematical intractability. These include dropping classical
Cournot oligopolist’s assumptions, perfect rationality, symmetric information
between consumers and generators, etc.

5.7 An Illustrative Use Case

The following use case built around EpiSims and Simfrastructure demon-
strates how such modeling tools can be used for situational awareness and
consequence analysis in the event of epidemics. In this scenario, during a heat

386 C. Barrett, S. Eubank, and M. Marathe

wave in a city, terrorists shut down portions of the public transit system and
a hospital emergency room during the morning rush hour. At the same time,
they spread a harmless but noticeable aerosol at two commuter rail stations.
These events, occurring nearly simultaneously, foster a chaotic, if not panic-
stricken, mood in the general public.

EpiSims in conjunction with Simfrastructure can be used for situation as-
sessment and consequence analysis. This is done by estimating the demand by
demographics at emergency rooms and clinics under a variety of hypotheses
to distinguish effects of the heat wave from those of a putative bio-attack.
To accomplish this, several kinds of information is integrated: (i) population
demographics and household structure, (ii) population mobility and transit
timetables, (iii) hospital locations and capacities, (iv) natural history of vari-
ous infectious diseases, (v) historical heat wave casualties, and (vi) (potential)
surveillance data. We then estimate the demographics (age, gender, and home
location) of people likely to have been in the two stations when they were “at-
tacked”. These are the people who would show up first for treatment if indeed
a bio-attack had occurred. They also would serve as the subpopulation to
seed with disease in a simulation. Biases in their demographics compared to
a random sample of the population will induce persistent biases in the set
of people infected at any time that cannot be captured by models assuming
homogeneous mixing. We estimate demand at hospitals, assuming that peo-
ple would arrive at a hospital near their home location. We further estimate
whether each hospital had sufficient capacity to meet the demand. Histori-
cally, the most likely casualties of a heat wave are elderly people living alone
with few activities outside the home. This information, combined with de-
mographic and household structure data, allows us to estimate demand for
health services created by the heat wave by demographic and location. For
situation assessment, we note the obvious differences between these two de-
mand patterns. In an actual event, comparison with admissions surveillance
data would allow quick disambiguation between the two.

We estimate the likely spread of disease for several different pathogens by
demographic and location. Furthermore, we can implement several suggested
mitigating responses, such as closing schools and/or workplaces, or quarantin-
ing households with symptomatic people. Knowledge of the household struc-
ture permits an exceptionally realistic representation of the consequences of
these actions. For example, if schools are closed, a care-giver will also need
to stay home in many households. Or if households are quarantined when
a member becomes symptomatic, we can estimate the immediate economic
impact using the household incomes for exactly those households affected.
Similarly, the economic impact of casualties with known demographics leads
to a cost–benefit analysis for proposed interventions. In a similar study that
we recently undertook, we found enormous differences in cost for interven-
tions with similar numbers of casualties. Information on casualties can be fed
back into the representation of the urban environment to evaluate effects on
interdependent infrastructure.

Modeling Large Biological and Socio-Technical Systems 387

The use case demonstrates the need for an interaction based modeling and
simulation approach: such an approach captures physical interdependencies
between infrastructures as well as implicit human-mediated interdependen-
cies existing between infrastructures. For example, the demand for cooling on
a hot summer day can strain the energy distribution system, forcing it to op-
erate in a less robust regime. Furthermore, the consequences of decisions made
to mitigate accidents depend on the demand being serviced at the moment.
Thus a decision to brown-out New York’s financial district while maintaining
service to residential areas has completely different effects at midnight on a
Saturday than at 2 pm on a Wednesday. Practical decision support environ-
ments based on modeling environments such as Simfrastructure can evaluate
such situation-dependent consequences.

6 Concluding Remarks

We described an interaction based approach to modeling and simulations of
large scale socio-technical, biological and information systems. The theoreti-
cal foundations of this approach were based on sequential dynamical systems
(SDS) and theory of large scale complex networks. Engineering principles are
derived from such a theory. These engineering principles allow us to design
simulations for extremely large systems and implement them on massively par-
allel architectures. As an illustration, we described Simfrastructure: a practical
interaction based modeling tool to study large interdependent urban infras-
tructures. Large scale high performance computing oriented simulations for
these systems are already operational; the simulations and the underlying sys-
tems would greatly benefit from further advances in interactive computing.

We are also currently exploring two broad research areas to further develop
the interaction based design and analysis of extremely large heterogeneous
systems: (i) discrete microscopic modeling and simulation of biological systems
[52, 45, 54] and (ii) robust nanoscale design and computation.

Acknowledgements: We sincerely thank our colleagues, collaborators and
the team members of the projects discussed here. Simfrastructure is being
jointly developed with Karla Atkins, Keith Bisset, Richard Beckman, V. Anil
Kumar, Achla Marathe, Henning Mortveit and Paula Stretz at Virginia Tech.
The mathematical and computational theory of SDS was developed jointly
with Harry B. Hunt III, S. Ravi, Daniel Rosenkrantz and Richard Stearns
at University at Albany, Henning Mortveit at Virginia Tech and Christian
Reidys at Los Alamos. The network theory is being jointly developed with
Anil Vullikanti, Aravind Srinivasan, Srinivasan Parthasarathy and Nan Wang
at University of Maryland and Ravi Sundaram (Northeastern) and Mayur
Thakur (University of Missouri, Rolla).

388 C. Barrett, S. Eubank, and M. Marathe

References

1. R. Axtell, J. Epstein. Growing Artificial Societies: Social Science From the
Bottom Up. MIT Press / Brookings Institution, 1996.

2. R. Albert, A. Barabási. Statistical mechanics of complex networks, Rev. Mod.
Phys. 74, 2002, pp. 47-97.

3. K. Atkins, C. Barrett, C. Homan, A. Marathe, M. Marathe, S. Thite. Marketec-
ture: A Simulation-Based Framework for Studying Experimental Deregulated
Power Markets, Proc. 6th IAEE European Conf. Modeling in Energy Economics
and Policy, Zurich, 2004.

4. L. Bajaj, M. Takai, R. Ahuja, R. Bagrodia. Simulation of Large Scale Commu-
nication Systems. Proc. MILCOM’99, 1999.

5. A. Barabási, R. Albert. Emergence of scaling in random networks. Science,
286, 1999.

6. C. Barrett, S. Eubank, M. Marathe, H. Mortveit, C. Reidys. Science and En-
gineering of Large Scale Socio-Technical Simulations, Proc. 1st Int’l Conf. on
Grand Challenges in Simulations, held as a part of Western Simulation Con-
ference, San Antonio Texas, 2002.

7. C. Barrett, S. Eubank, V. Anil Kumar, M. Marathe. Understanding Large Scale
Social and Infrastructure Networks: A Simulation Based Approach, SIAM News
37(4), 2004. Appears as part of Math Awareness Month on The Mathematics
of Networks.

8. M. Batty. Hierarchy in Cities and City Systems, CASA Working paper series 85-
11-4, 2005. To appear in Hierarchy in natural and Social Sciences, D. Pumain,
Ed., Kluwer Academic Publishers.

9. C. Barrett, R. Beckman, K. Berkbigler, K. Bisset, B. Bush, K. Campbell, S. Eu-
bank, K. Henson, J. Hurford, D. Kubicek, M. Marathe, P. Romero, J. Smith, L.
Smith, P. Speckman, P. Stretz, G. Thayer, E. Eeckhout, W. Williams. TRAN-
SIMS: Transportation Analysis Simulation System. Tech. Report LA-UR-00-
1725, Los Alamos National Laboratory Unclassified Report, 2001.

10. C. Barrett, C. Reidys. Elements of a Theory of simulation I: Sequential CA
over random graphs Appl. Math. and Comput. 98:241–259, 1999.

11. C. Barrett, H. Mortveit, C. Reidys. Elements of a Theory of simulation II:
Sequential dynamical systems. Appl. Math. and Comput. 107(2-3), pp. 121–
136, 2000.

12. G. Istrate, A. Hansson, S. Thulasidasan, M. Marathe, C. Barrett. RESTORED:
A Methodology for Semantic Compression of TCP Traces. Tech. Report, Los
Alamos National Laboratory, submitted.

13. C. Barrett, M. Marathe, H. Mortveit, S. Ravi, C. Reidys, J. Smith. AdHopNet:
Advances in Simulation-based Design and Analysis of Ad-Hoc Networks Tech.
Report LA-UR 00-1567, Los Alamos National Laboratory, 2000.

14. C. Barrett, M. Marathe, J. Smith, S. Ravi. A mobility and traffic generation
framework for modeling and simulating ad hoc communication networks. ACM
Symp. on Applied Computing (SAC), 2002, pp. 122-126.

15. C. Barrett, H. Hunt III, M. Marathe, S. Ravi, D. Rosenkrantz, R. Stearns.
Analysis Problems for Sequential Dynamical Systems and Communicating
State Machines. Proc. Int’l Symp. on Math. Foundations of Computer Science
(MFCS’01), Czech Republic, pp. 159–172, 2001.

16. R. Beckman, K. Baggerly, M. McKay. Creating synthetic base-line populations,
Transportation Research Part A – Policy and Practice 30, pp. 415–429, 1996.

Modeling Large Biological and Socio-Technical Systems 389

17. S. Buss, C. Papadimitriou, J. Tsitsiklis. On the Predictability of Coupled
Automata: An Allegory About Chaos. Complex Systems 1(5), pp. 525–539,
1991.

18. D. Brand, P. Zafiropulo. On Communicating Finite State Machines. J. ACM
30(2), pp. 323–342, 1983.

19. C. Barrett, H. Hunt III, M. Marathe, S. Ravi, D. Rosenkrantz, R. Stearns, P.
Tosic. Gardens of Eden and fixed points in sequential dynamical systems. Proc.
Int’l Conf. on Discrete Models - Combinatorics, Computation and Geometry
(DM-CCG), Paris, pp. 95–110, 2001.

20. C. Barrett, H. Hunt III, M. Marathe, S. Ravi, D. Rosenkrantz, R. Stearns,
M. Thakur. Complexity of Predecessor Existence Problems for Finite Discrete
Dynamical Systems. Tech. Report, Virginia Tech, 2004. Preliminary Version
appeared in Discrete Models of Complex Systems (DMCS) 2002.

21. C. Barrett, H. Hunt III, M. Marathe, S. Ravi, D. Rosenkrantz, R. Stearns.
Reachability Problems for Sequential Dynamical Systems with Threshold Func-
tions. Theoretical Computer Science, 1-3, pp. 41-64, 2003.

22. C. Barrett, J. Smith, S. Eubank, Modern Epidemiology Modeling, in Scientific
American, 2005.

23. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, J. Wiener. Graph structure in the web. Computer Networks, 33,
2000.

24. C. Barrett, M. Marathe, H. Mortveit, C. Reidys. SDS Based Specification of
Large IP Networks Tech. Report, Los Alamos National Laboratory, 2001.

25. C. Barrett, M. Drozda, D. Engelhart, V. Anil Kumar, M. Marathe, M. Morin, S.
Ravi, J. Smith. Structural Analysis of Ad Hoc Networks: Implications for Pro-
tocol Performance, Proc. IEEE Int’l Conf. on Wireless and Mobile Computing,
Communications and Networking, 2005.

26. K. Carley, D. Fridsma, E. Casman, N. Altman, J. Chang, J. Kaminski, D. Nave,
A. Yahja. BioWar: Scalable Multi-Agent Social and Epidemiological Simulation
of Bioterrorism Events. Prof. NAACSOS Conf., Pittsburgh, PA, 2003.

27. R. Breiger, K. Carley, Eds., NRC workshop on Social Network Modeling and
Analysis, pp. 133-145, National Research Council, 2003.

28. F. Chung, L. Lu. Connected components in a random graph with given degree
sequences. Annals of Combinatorics, 6:125–145, 2002.

29. J. Cowie, D. Nicol, A. Ogielski. Modeling 100 000 Nodes and Beyond: Self-
Validating Design. DARPA/NIST Workshop on Validation of Large Scale Net-
work Simulation Models, 1999.

30. N. Creignou, S. Khanna, M. Sudan. Complexity Classifications of Boolean
Constraint Satisfaction Problems. SIAM Monographs on Discrete Mathematics
and Applications, 2001.

31. DYNAMIT. Massachusetts Institute of Technology, Cambridge, Massachusetts.
http://mit.edu/its/dynamit.html, 1999.

32. A. DeHon. Very Large Scale Spatial Computing Proc. Third Int’l Conf. on
Unconventional Models of Computation (UMC’02), 15-19, pp. 27–37, 2002.

33. S. Eubank, H. Guclu, V. Anil Kumar, M. Marathe, A. Srinivasan, Z. Toroczkai,
N. Wang. Modeling Disease Outbreaks in Realistic Urban Social Networks,
Nature, 429, pp. 180-184, 2004.

34. S. Eubank, V. Anil Kumar, M. Marathe, A. Srinivasan, N. Wang. Structural
and Algorithmic Aspects of Large Social Networks, Proc. 15th ACM-SIAM
Symp. on Discrete Algorithms (SODA), pp. 711-720, 2004.

390 C. Barrett, S. Eubank, and M. Marathe

35. S. Eubank, V. Anil Kumar, M. Marathe, A. Srinivasan, N. Wang. Structure of
Social Contact Networks and their Impact on Epidemics. to appear in AMS-
DIMACS Special Volume on Epidemiology, 2005.

36. P. Floreen, P. Orponen. Complexity Issues in Discrete Hopfield Networks Comp.
and Learning Complexity of Neural Networks: Advanced Topics, Edited by I.
Parberry, 1994.

37. J. Epstein. Generative Social Science: Studies in Agent-Based Computational
Modeling, Princeton University Press, Forthcoming, 2005.

38. I. Foster and G. Kesselman, Eds. The Grid: Blueprint for a New Computing
Infrastructure, 2000.

39. C. Faloutsos, P. Faloutsos, M. Faloutsos. On Power-Law Relationships of the
Internet Topology, Proc. ACM SIGCOMM, 1999.

40. M. Garzon. Models of Massive Parallelism: Models of Cellular Automata
and Neural Networks, EATCS Monographs on Theoretical Computer Science,
Springer Verlag, 1995.

41. D. Goldin, S. Smolka, P. Attie, E. Sonderegger. Turing Machines, Transition
Systems, and Interaction Information and Computation, 194(2), pp. 101-128,
2004.

42. H. Gutowitz, Ed. Cellular Automata: Theory and Experiment North Holland,
1989.

43. D. Harel, O. Kupferman, M. Vardi. On the complexity of verifying concurrent
transition systems. Proc. 8th Int. Conf. Concurrency Theory (CONCUR’97),
Warsaw, Poland, July 1997, Vol. 1243 LNCS, pp. 258–272, 1997.

44. Y. Haimes, B. Horowitz. Modeling Interdependent Infrastructures for Sustain-
able Counterterrorism. Journal of Infrastructure Systems, pp. 33-41, 2004.

45. L. Hartwell, J. Hopfield, S. Leibler, A. Murray. From Molecular to Modular
Cell Biology, Nature, Vol. 402, pp. C47-C51, 1999.

46. H. Hethcote. The Mathematics of Infectious Diseases SIAM Review, 42(4):599–
653, 2000.

47. B. Hillel. Cities as Movement Economies. Urban Design Int’l 1, pp. 49-60, 1996.
48. J. Hopfield. Neural Networks and Physical Systems with Emergent Collective

Computational Abilities. Proc. of National Academy of Sciences of the USA,
No. 81, pp. 3088-3092, 1982.

49. H. Hunt III, R. Stearns, M. Marathe. Relational Representability, Local Reduc-
tions and the Complexity of Generalized Satisfiability Problem. Tech. Report
No. LA-UR-00-6108, Los Alamos National Laboratory, 2000.

50. H. Hunt III, R. Stearns, M. Marathe. Strongly Local Reductions and the Com-
plexity/Efficient Approximability of Algebra and Optimization on Abstract Al-
gebraic Structures, Proc. Int’l Conf. on Symbolic and Algebraic Computations
(ISAAC), pp. 183-191, 2001.

51. H. Hunt III, D. Rosenkrantz, C. Barrett, M. Marathe, S. Ravi. Complexity of
Analysis and Verification Problems for Communicating Automata and Discrete
Dynamical Systems. Tech. Report No. LA-UR-01-1687, Los Alamos National
Laboratory, 2001.

52. T. Ideker, T. Galitski, L. Hood. A New Approach to Decoding Life, Ann.
Review of Genomics and Human Genetics, Vol. 2, pp. 343-372, 2001.

53. G. Istrate, M. Marathe, S. Ravi. Adversarial models in evolutionary game
dynamics. Proc. 12th ACM-SIAM Symp. on Discrete Algorithms (SODA’2001),
Washington, DC, pp. 719–720, 2001.

Modeling Large Biological and Socio-Technical Systems 391

54. H. Kitano. Computational Systems Biology, Nature 420, pp. 206-210, 2002.
55. J. Kleinberg. Navigation in a Small World. Nature 406, 2000.
56. H. Kung. Why Systolic Architectures. IEEE Computers, 15(1), pp. 37-42,

1982.
57. R. Little. Controlling Cascading Failure: Understanding the Vulnerabilities of

Interconnected Infrastructures. J. Urban Technology, 9(1), 109-123, 2002.
58. R. Liu, E. Lloyd, M. Marathe, R. Ramanathan, S. Ravi. Algorithmic Aspects

of Topology Control Problems For Ad-hoc Networks, ACM/Baltzer J. Mobile
Networks and Applications (MONET), 10, pp. 19-34, 2005.

59. M. Liu, M. Subramaniam. An Approach for Formal Specification and Verifi-
cation of Large Scale Simulation Systems Using Abstract State Machines, Los
Alamos National Laboratory Tech. Report, 2005.

60. R. Laubenbacher, B. Pareigis. Decomposition and simulation of sequential
dynamical systems, Advances in Applied Math, 30, pp. 655-678, 2003.

61. E. Lee, A. Wallace, J. Mitchell, D. Mendon, J. Chow. Managing disruptions to
critical interdependent infrastructures in the context of the 2001 WorldTrade
Center attack, in Beyond September 11: An account of post-disaster research M.
F. Myers, Ed. Boulder, CO: Natural Hazards Research and Applications Infor-
mation Center, University of Colorado, Program on Environment and Behavior,
Special Publication 39, pp. 165-198, 2003.

62. N. Margolus. An Embedded DRAM Architecture for Large-Scale Spatial-
Lattice Computations Proc. 27th Annual Int’l Symp. on Computer Architecture
(ISCA), pp. 149-158, 2000.

63. N. Margolus, T. Toffoli. Cellulae Automata Machines: A New Environment for
Modeling, Cambridge: MIT press, 1987.

64. R. Milner. Communicating and Mobile systems: the π-calculus Cambridge
University Press, 1999.

65. R. Milner. Elements of Interaction, Comm. ACM 36:1, pp. 78-89, 1993.
66. C. Moore. Unpredictability and Undecidability in Dynamical Systems. Physical

Review Letters 64(20), pp 2354-2357, 1990.
67. H. Mortveit, C. Reidys. Discrete, Sequential Dynamical Systems. Discrete

Mathematics 226:281–295, 2001.
68. K. Nagel, M. Schrekenberg. A Cellular Automata Model for Freeway Traffic.

J. de Physique I, France, 2:2221, 1995.
69. K. Nagel, P. Stretz, M. Pieck, S. Leckey, R. Donnelly, and C. Barrett. TRAN-

SIMS Traffic Flow Characteristics. Transportation Research Board Annual
Meeting, 1998.

70. K. Nagel, M. Paczuski. Emergent traffic jams. Physical Review E, 51:2909-2918,
1995.

71. M. Newman, The structure and function of complex networks. SIAM Review
45, 167–256, 2003.

72. C. Nicthiu, E. Remila. Simulations of graph automaton. Proc. Mathemati-
cal Foundations of Computer Science (MFCS’98) Satellite workshop on graph
automata, Th Worsch and R. Wolmar Eds, Universität Karlsruhe, pp. 69-78,
1998.

73. P. Orponen. Computational Complexity of Neural Networks: A Survey, Nordic
J. of Computing 1(1), pp. 94-110, 1994.

74. A. Rabinovich. Complexity of Equivalence Problems for Concurrent Systems
of Finite Agents. Information and Computation 127(2), pp. 164–185, 1997.

392 C. Barrett, S. Eubank, and M. Marathe

75. B. Raney, N. Cetin, A. Völlmy, A. Vrtic, K. Axhausen, K. Nagel, An Agent-
Based Microsimulation Model of Swiss Travel: First Results, Networks and
Spatial Economics 3, pp. 23–41, 2003.

76. M. Schreckenberg, A. Schadschneider, K. Nagel, N. Ito. Discrete stochastic
models for traffic flow. Physical Review E 51:29-39, 1995.

77. P. Speckman, K. Vaughn, E. Pas. Generating Household Activity-Travel Pat-
terns (HATPs) for Synthetic Populations. Transportation Research Board An-
nual Meeting, 1997.

78. P. Speckman, K. Vaughn, E. Pas. A Continuous Spatial Interaction Model: Ap-
plication to Home-Work Travel in Portland, Oregon. Transportation Research
Board Annual Meeting, 1997.

79. Y. Sheffi. Urban Transportation Networks: Equilibrium Analysis with Mathe-
matical Programming methods. Prentice Hall, 1985.

80. R. Stearns, H. Hunt III. An algebraic model for combinatorial problems. SIAM
J. Computing 25, No. 2, 448-476, 1996.

81. S. Shukla, H. Hunt III, D. Rosenkrantz, and R. Stearns. On the Complexity
of Relational Problems for Finite State Processes. Proc. Int’l Colloquium on
Automata Programming and Languages (ICALP), pp. 466-477, 1996.

82. J. Tripp, A. Hansson, M. Gokhale, H. Mortveit. Partitioning Hardware and
Software for Reconfigurable Supercomputing Applications: A Case Study, Proc.
Supercomputing (SC’05), 2005.

83. D. Watts, S. Strogatz. Collective dynamics of ‘small-world’ networks, Nature,
vol. 393, pp. 440-442, 1998.

84. P. Wegner. Interactive Foundations of Computing, Theoretical Computer Sci-
ence 192, pp. 315-351, 1998.

85. S. Wolfram, Ed. Theory and applications of cellular automata, World Scientific,
1987.

86. http://dimacs.rutgers.edu/Workshops/Opening/abstracts.html

http://www.mel.nist.gov/div826/msid/sima/simconf/march04/phsi.pdf

http://www.iupui.edu/ ilight/symposium04/ILIGHTPPT/measrespon.pdf

http://www.mgmt.purdue.edu/centers/seas/Research/Research.htm.

Part IV

New Directions

The Multidisciplinary Patterns of Interaction
from Sciences to Computer Science

Andrea Omicini, Alessandro Ricci, and Mirko Viroli

Alma Mater Studiorum—Università di Bologna a Cesena, Italy

We have to study the interactions as well as the parts.
John H. Holland, “Emergence: From Chaos to Order” [23, page 14]

Summary. Interaction is a fundamental dimension for modelling and engineering
complex computational systems. More generally, interaction is a critical issue in the
understanding of complex systems of any sort: as such, it has emerged in several
well-established scientific areas other than computer science, like biology, physics,
social and organizational sciences.

In this chapter, we take a multidisciplinary view of interaction by drawing par-
allels between researches outside and within computer science. We point out some
of the basic patterns of interaction as they emerge from a number of heterogeneous
research fields, and show how they can be brought to computer science and provide
new insights on the issue of interaction in complex computational systems.

1 The Many Facets of Interaction

Interaction is a fundamental dimension for modelling and engineering com-
plex computational systems. In particular, in a world where software systems
are made of an ever-increasing amount of objects, components, processes, or
agents, and where the Internet, with billions of interacting clients and servers,
represents the most widespread application environment, it is quite apparent
that interaction is today the most relevant source of complexity for software
systems of any sort.

Obviously, complexity is not a peculiar feature of software systems: in-
stead, the notion of complex system crosses the strict boundaries between dif-
ferent scientific disciplines, ranging from physics to biology, from economics to
sociology and organization sciences. Rather than making complexity a hazy
and fuzzy concept, such a multidisciplinary interest has produced a flow of
innovative and stimulating research that has started debating and penetrating
the intricacies of complexity as a whole, trans-disciplinary concept. Starting

396 A. Omicini, A. Ricci, and M. Viroli

from the pioneering work of Simon [44] on complex artificial systems (whose
acceptation of complexity and complex system is the one implicitly adopted
here), this has led to the recognition that there exist some “laws of complex-
ity” that characterize any complex system, independently of its specific nature
[26]. No matter if we are modelling the behaviour of a human organization,
the life of an intricate ecosystem, or the dynamics of a huge market-place, we
can expect to find some repeated patterns, some shared schema, some com-
mon laws that makes all these systems look similar when observed at the right
level of abstraction.

Analogously, when we focus on artificial, computer-based systems, exploit-
ing a multidisciplinary approach in order to understand complex software sys-
tems comes to be almost mandatory, rather than useful or merely inspiring.
This holds, also and in particular, when trying to fully understand the role
of interaction within complex software systems. In this perspective, we ar-
gue that one should first look at the many scientific research fields dealing
with complex systems of any sort, and devise out the multifaceted aspects
of interaction they exhibit. Along this line, in this chapter we liberally draw
from the findings of some relevant fields dealing with complex systems, and
try to outline the many diverse patterns of interaction as they independently
emerge from such a wide range of different research fields. Then, we discuss
how results coming from such heterogeneous sources can be used to draw
some fundamental conclusions about the nature and role of interaction within
complex software systems. Whenever the sake of clarity demands it, we focus
on multiagent systems (MAS), as they encompass the widest range of sources
of complexity (intelligence, autonomy, mobility, decentralised control, etc.)
among the modern software paradigms.

First of all, Sect. 2 introduces a suggestive view on interaction as it comes
from the world of physics. There, the issue of interaction has slowly emerged
as a relevant one—from Newton’s reflections on mediators of forces, to the
N -body problem—to become a key one in the last century, when physicists
focused on the one hand on devising out the mediator particles for funda-
mental forces, on the other hand on defining the general theory encompassing
all known fundamental laws that govern interaction between basic particles.
Then, according to the view currently promoted by the most advanced re-
search, all physical processes could possibly be explained in terms of the in-
teractions among vibrating filaments of energy, called strings [19]. So, even
at the most fundamental level of human science—the world of fundamental
physics—it is interaction that works as both the source of complexity and the
potential source of solutions. Even though the above point may be argued (and
with some reasons) to be more speculative than scientifically well-founded, it
seems at least indicative of the fact that dealing with complex systems first
of all means understanding and modelling the patterns of interaction among
the basic system components.

The distinction between the “replicator” and “interactor” units of selec-
tion that has characterized a good deal of the last decades’ discussions in

The Multidisciplinary Patterns of Interaction 397

the field of evolutionary biology is also quite revelatory [25], as discussed in
Sect. 3. Roughly speaking, the scientific debate has led to a recognition that
causality of natural selection (and thus, evolution of biological systems) re-
sides in the entities that interact with their environment and make replication
differential (interactors), rather than in the individual entities that pass on
their structure in replication (replicators) [17]. Then, it is not merely that
complex systems demand that investigations focus on interaction. By taking
biological systems as meaningful examples of complex systems, we see that
their evolution over time cannot be understood except in terms of the interac-
tions of their individual components with the environment. This agrees with
the Brooks’ revolution in robotics [5], where interaction with the environment
is proposed as the main source for intelligent behaviour of artificial systems,
as well as with recent trends of computational research such as agent-oriented
software engineering [3], which promote the environment as a first-class entity
in the engineering of situated computational systems [34]. More generally, this
says that the interaction between components of whichever sort and their en-
vironment is a fundamental dimension for modelling and engineering complex
software systems.

Biological systems tell us something else about the nature of the interac-
tion with the environment. By taking into account the well-studied behaviour
of ant colonies [18], it is quite easy to see how some key features of complex
systems—such as emergent behaviours, some forms of global intelligence, and
system self-adaptation to changing environment conditions—can stem from
stigmergic coordination, that is, the result of interactions occurring among
individuals (ants) through the environment (through pheromones, in the case
of ants) [21, 24]. Such sorts of complex systems, in short, exhibit indepen-
dent and autonomous individual components, that interact with each other
mainly by modifying the surrounding environment, through mediators (e.g.,
the pheromones) that physically embody an information content, and whose
characteristics (e.g., the rate of decay) affect the nature of interaction among
components, as well as the global behaviour of the system and its evolution
over time.

Mediated interaction, the nature of the mediators, and their intrinsic influ-
ence over the global system behaviour, emerge as key issues for understanding
complex systems—and, quite possibly, for modelling and engineering compu-
tational systems. Given the social nature of biological systems like ant colonies
or hives, it does not come as a surprise that mediated interaction and the re-
lated issues are addressed in even more detail in the context of psychological
and organizational sciences. Accordingly, in Sect. 4 we show how activity
theory (AT) [29, 49] provides a promising framework for understanding the
nature of interaction in complex systems seen as organizations. Central to AT
is the notion of artifact, which serves as a mediator for any sort of interaction
in human activities. Artifacts can be either physical, such as pens, walls and
traffic lights, or cognitive, such as operating procedures, heuristics, scripts,
individual and collective experiences, and languages. As mediating tools, arti-

398 A. Omicini, A. Ricci, and M. Viroli

facts have both an enabling and a constraining function, in that they expand
the ability of the individuals to interact and affect the environment, but at the
same time, as the vehicles for interaction, they limit this ability according to
their own nature and structure.1 The findings of AT can be recast in terms of
computer science, by implicitly interpreting complex software systems as com-
plex organizations. In order to make the system work and dynamically adapt
to the changes of the world where it functions, mediating artifacts should
exhibit properties such as malleability, controllability, predictability and in-
spectability. These features would allow and in principle promote dynamic
adaptability of systems, intelligent self-organization, and support individual
intelligence [36].

In Sect. 5 we draw from recent anthropological studies on the history of
human societies to suggest how mediating artifacts should be reified within
complex software systems. There, it has been shown that when the size of a
human society grows over a certain number, direct interaction and sharing of
power among peers is not functional any longer, threatening the survival of the
society [11]. In response to such a growth in scale, that makes social systems
unmanageable and unsuccessful in the long term, social institutions are always
created (political and religious hierarchies, armies, administrative structures)
which typically take the form of social infrastructures, that embody social laws
and norms, and regulate the life of the societies. In term of computer-based
systems, this corresponds to the recent trend toward governing infrastructures
[35] which make it possible to govern the complexity of software systems by
harnessing their interactions. This is illustrated by the notions of coordination
service [48] and of e-institution [33] among others.

2 Interaction as a Fundamental Dimension of Systems

2.1 Interaction in Physics

Research in physics explores the nature and dynamics of the most complex
system we can experience and observe: our physical world. By adopting a
birds-eye view over the history of physics (that most physicists would probably
execrate, but that may fit our needs as computational scientists, here), it is
quite interesting to see how the issue of interaction developed here.

From Democritus to Mendeleev’s periodic table, the first two thousand
years of research on physics (in its most general form, thus including physical
chemistry and the related disciplines) has been dominated by the interest in
the nature and properties of fundamental “atomic” particles, the microscopic
bricks of matter from which the macroscopic structure and dynamics of the
whole Universe could be inferred. However, Newton’s mechanics revolution

1 As a simple example, a spear-thrower extends the reach of a hunter’s arm, but
also prevents him having both hands free.

The Multidisciplinary Patterns of Interaction 399

positioned the problem of interaction as a core concern, perhaps for the first
time. Each individual physical entity of a system does not simply behave
according to some intrinsic properties, but continuously interacts with other
individual entities in the system, so that the cumulative effects of all the
interactions determine the global system behaviour.

Despite the simplicity of Newton’s laws, the three-body problem (and its
N -body generalisation2) already suggested how much complexity can emerge
from interaction. However, it was Newton’s philosophical reasoning that led to
the first speculations about the nature of interaction between physical bodies,
and about the existence of mediators enacting forces working between distant
bodies as a form of implicit “communication”. This inspired vision resulted
in the attempt to encompass the whole spectrum of the fundamental forces of
Nature within a single general framework, along the two directions of quanto-
mechanics (at the microlevel) and Einstein’s general relativity theory (at the
macrolevel). Along this line, physicists strongly focused on the interaction
issue: on the one hand, they tried to devise out and observe specific mediator
particles for every known fundamental force, on the other hand they aimed at
defining a unifying Theory of the Whole that could account for all the known
fundamental laws of interaction.

The conflict between quantum-mechanics and relativity views may be re-
solved by the theory of strings, which not by chance introduces a suggestive
view of interaction as a first-class issue in the world of fundamental physics
[20]. According to string theorists, the whole universe is made of elementary
particles, called strings, which are filaments of energy that have a spatial ex-
tension (they are not zero-sized particles) and vibrate. Their shape, and the
various ways in which they can vibrate determine their observable properties,
and produce (and explain) the huge variety of particles that fundamental
physics has discovered or conjectured in the last centuries—in particular, me-
diators like gluons and gravitons. Also, the fact that strings are dimensional
particles makes their mutual interaction an event that is nonatomic in space
and time. The modalities of interaction among vibrating strings seem so com-
plex that the conceptual and practical tools available to physicists today often
fail to satisfactorily model the resulting physical processes.

What concerns us here, is one of the fundamental assumptions of string
theory: that is, that all physical processes can be explained in terms of inter-
actions among vibrating strings [19]. As a result, it is no longer possible to
explain phenomena in the physical world in terms of the individual behaviour
and properties of individual entities (e.g., their position and speed), which are
then put together according to quite simple interaction patterns/laws—as in
the case of classical Newtonian mechanics. Instead, the world of strings look
rather like a place where complexity is largely a result of articulated interac-

2 The well-known N-body problem can be formulated as follows: given N bodies,
their initial positions, masses, and velocities, finding their subsequent motions as
determined by classical, Newtonian mechanics.

400 A. Omicini, A. Ricci, and M. Viroli

tion patterns between the individual components. So, even at the most funda-
mental level of human science—the world of fundamental physics—interaction
(among strings, at the current state of knowledge) works as both a source of
complexity and a potential source of solutions.

2.2 Interaction in Computational Systems

The trend toward interaction in physics research has been parallelled in com-
putational sciences, in particular by the intuitions of Robin Milner [31] and by
the remarkable work by Peter Wegner [50, 51]. One of the starting points of
Wegner’s work was the incoherent situation of computer science as it emerged
at the end the 1980s: a world where algorithms and Turing machines domi-
nated the theoretical scene, while computers everywhere were operating under
a completely different computational paradigm, yet to be even recognized. In
short, Wegner argued that Turing machines actually expressed only the scale
of complexity of algorithms as executed by sequential machines with no in-
teraction whatsoever, apart from initial input and final output. At the same
time, practical experience with any computer featuring an even trivial oper-
ating system provided evidence of an interactive way to compute that was not
accounted for in any way by Turing’s model.

The resulting claim, with formal support recently added to the already
quite convincing evidence [16], was that computation should be conceived
as spreading over two orthogonal dimensions—algorithmic and interactive
computation—that give rise to different levels in the expressiveness of compu-
tational systems. While Turing machines were perfect models for algorithmic
computation, they could say nothing (or, at least, not so much) about in-
teractive computation, and new, more general models were required, such as
the persistent turing machine (PTM) [16]. After Milner first emphasized the
role of interaction in computational systems [31], Wegner made interaction
emerge as a first-class issue, which is at the core of both computer research
and technology.

The above parallel between the history of ideas in physics and computer
science might then be argued (and maybe with some reasons) to be more
speculative than scientifically well-founded. However, it seems to indicate that
the understanding of complex systems cannot come from the mere study of
the nature and inner dynamics of the basic system constituents, but requires
instead that the nontrivial patterns of their mutual interaction be devised out
and suitably modelled.

3 Interaction and Environment

3.1 Interactors in Evolutionary Biology

Evolutionary biology is a particularly interesting field for us here, given the
fact that it deals with the long-term behaviour of complex living systems.

The Multidisciplinary Patterns of Interaction 401

Evolutionary biology aims at understanding and explaining the way in which
first-class components of biological systems (such as cells, organisms, species)
change over time—where the notion of time spans from the small scale of
individual living organisms up to the geological scale. After nearly one century
and a half, one of the reference works in the field is still the monumental Origin
of Species by Charles Darwin [8], a milestone of human knowledge indeed.
According to the basic Darwinian theory, the process of natural selection
is grounded on three basic facts (overproduction of offspring, variation, and
heritability) plus one core mechanism, that is, differential reproductive success
within evolving local environments. Besides the obvious general relevance of
such a matter, what is really of interest here is the subject of the intense and
passionate discussion that has kept going on during the last decades among
evolutionary biologists. The matter of discussion, labelled as the replicator
approach vs. interactor approach issue, focused on how “differential selection”
actually occurs, and what is the unit of (differential) selection.

In general, a replicator can be described as an “entity that passes on its
structure directly in replication”, and an interactor as an “entity that directly
interacts as a cohesive whole with its environment in such a way that repli-
cation is differential” [25, page 318]. The so-called “replicator approach” sees
all evolution as proceeding through genes as units of reproduction, with the
interacting entities (the organisms) merely built up as a result. Along this line,
the founders of modern gene selectionism, such as Dawkins [9] and Williams
[53], advocated the prominence of replicators in the selection process: the real
unit of selection is represented by the genes, struggling for their eternal life,
indefinitely reproducing themselves through higher-level organisms working
as mere passive recipients, vehicles for gene existence. By contrast, the “in-
teractor approach” obviously acknowledges the role of replication in selection
(already assumed by Darwin long before the gene replication mechanism was
known), but advocates the prominence of interactors as units of reproduction.
Along this line, selection is obviously defined in terms of both notions (repli-
cator and interactor) as the result of the differential proliferation/extinction
of interactors in terms of the differential perpetuation of replicators.

However, according to Stephen Gould, causality in selection resides in
interaction with the environment, and not in replication [17, page 615].3 In
particular, the key point in Gould’s theory is that genes (the replicators) do
not interact directly with the environment—so, they are not exposed directly
to change. Rather, genes indirectly operate via the organisms (the interactors)
that live, behave, interact and die—and typically reproduce, thus perpetuating
replicators as a secondary effect. In doing so, interactors build up the process
of differential selection that determines the evolution of biological systems
over time: interaction with the environment can then be viewed as the main
force that drives biological evolution.

3 See also [17, page 623]: “units of selection must, above all, be interactors”.

402 A. Omicini, A. Ricci, and M. Viroli

3.2 The Role of the Environment in Computational Systems

At a first glance, what happened in the evolutionary biology field resembles
some of the research developments that occurred in computational sciences in
the last decades, and in particular in the MAS field. At the very beginning
(after Darwin, but before Mendel’s gene theory was commonly understood
and accepted) the very notion of replicator was an empty box: heritability of
features was accepted, but no scientific explanation of how this could happen
was available. As a result, when the gene replication mechanism was finally
understood and modelled, and used as a basis for the whole Darwinian theory,
excitement put all the emphasis upon such a mechanism—so, for instance, ex-
plaining everything in terms of genes and their duplication was quite natural.
Only subsequently, after Hull and Gould, organisms—rather than genes—were
finally recognized as the units of selection, and interaction with the environ-
ment was understood as a primal issue in natural selection.

More or less in the same way, the power of the notion of agency made
research on MASs focus for a long time on the individual agent issues—and in
particular on principles of the agent inner architecture and functioning. Even
the revolutionary work of Brooks on robotic agents [5], with its notion of
situated intelligence pointing out the inextricable relation between intelligent
behaviour and the environment, was not immediately appreciated. Only in the
last few years, interaction with the environment has finally been recognized
as an essential issue for understanding agent and MAS evolution over time.
It is not by chance that only in 2004 was the first workshop on “Environ-
ments for MultiAgent Systems” held, at the 3rd world-wide MAS conference
[52]. The recognition of the role of the environment in the MAS field recently
came from subfields such as agent-oriented software engineering (AOSE) [3].
There, AOSE methodologies promoted the environment as a first-class entity
in the engineering of situated computational systems, putting the interaction
of agents with their environment at the core of the engineering process [34].
Under this perspective, agents are the interactors of MASs, and it is their
observable behaviour while interacting with the environment—their situated
interaction, along Brooks’ line—rather than their inner structure, that deter-
mines the evolution of the system as a whole.

3.3 Interaction through the Environment

When trying to understand how interaction with the environment affects the
properties and behaviour of complex systems, social biological systems can be
used as a powerful source of inspiration. In the context of animal societies, like
ant or termite colonies, stigmergy is a well-known form of indirect interaction
occurring through the environment—and exploiting the physical properties
of the environment. There, individuals (such as ants or termites) interact by
exploiting shared environmental structures and mechanisms to store and sense
some sorts of signs (such as pheromones in the case of ant-based systems),

The Multidisciplinary Patterns of Interaction 403

as well as processes transforming them (such as evaporation/aggregation of
pheromones) which also depend on the nature of the environment [18].

Complex social systems of this kind, in short, exhibit independent and
autonomous individual components, which interact with each other in sev-
eral nontrivial ways, but mainly by locally modifying the surrounding envi-
ronment. The modification is through mediators (e.g., the pheromones) that
physically embody an information content, and whose characteristics (e.g.,
the rate of decay) affect the nature of interaction among components, and,
in the end, the global behaviour of the system and its evolution over time.
The many desirable features of such systems—like emergent behaviours, some
forms of global intelligence, and system self-adaptation to changing environ-
ment conditions—that can stem from stigmergic coordination, has inspired a
number of stigmergy-based approaches to the coordination of computational
systems [21, 24]. Other models, like the ones based on computational fields
[30], or generalizing stigmergy [41], add some more to the notion of situated
interaction, which is going to be clearly developed in the next section through
the specific notion of mediated interaction.

4 Mediated Interaction

4.1 Mediated Interaction in Human Organizations

Activity theory [29, 49, 13] and distributed cognition [27] are two approaches
to the study of human social activities that have deeply focused on the role
of interaction within complex human organizations. The first result clearly
emerging from these social/psychological theories is that every individual as
well as social activity in complex societies is mediated [46, 2].

This is particularly clear in the context of activity theory (AT), where me-
diation is among the basic principles that constitute the core of the AT frame-
work: human activity is always mediated by a number of tools or artifacts,
both external and internal. The mechanism underlying artifact mediation is
the formation of functional organs, i.e., the combination of natural human
abilities with the capacities of external components—artifacts—to perform a
new function of to perform an existing one more efficiently.

Then, any activity can be characterized by a subject, an object and by
one or more mediating artifacts: (i) a subject is an agent or group engaged in
an activity; (ii) an object is held by the subject and motivates the activity,
giving it a specific direction (the objective of the activity); (iii) the media-
tion artifacts are the tools that enable and mediate subject actions toward
the object of the activity. The mediating artifacts can be either physical or
abstract/cognitive; from cognitive examples such as symbols, rules, operating
procedures, heuristics, individual/collective experiences, languages, to phys-
ical entities, such as maps, blackboards, synchronizers, semaphores, and so

404 A. Omicini, A. Ricci, and M. Viroli

on. The definition is clearly oriented to bring to the foreground not only in-
dividuals (subjects) and their cognitive aspects, but also the context where
they play, and the continuous dynamic processes that link subjects and the
context.

According to AT, mediating tools have both an enabling and a constraining
function. On the one hand, they expand the possibilities of individuals to
manipulate and transform different objects. On the other hand, the object is
perceived and manipulated not “as such” but within the limitations set by the
tool. Mediating artifacts shape the way human beings interact with reality.
According to the principle of internalisation/externalisation, shaping external
activities ultimately results in shaping internal ones. Artifacts embody a set
of social practices, and their design reflects a history of particular use: they
usually reflect the experiences of other people who have tried to solve similar
problems at an earlier time and invented/modified the tool to make it more
efficient.

Mediating artifacts are created and transformed during the development
of the activity itself and then they carry with them a particular culture, the
historical remnants of that development. So, the use of tools is a means for
the accumulation and transmission of social knowledge. They influence not
only the external behaviour, but also the mental functioning of individuals
using them.

Latest research in AT—applied in particular in the context of CSCW
(Computer Supported Cooperative Work)—focuses on the characterization
of activities and artifacts in the context of collective human work [2]. AT
describes cooperation as a collaborative activity with one objective but dis-
tributed between several actors, each performing one or more actions accord-
ing to the shared goal of the work. The relationships between the individual
work activities and the work activities of his/her fellow workers is subject to a
division of work, and is regulated by different rules and norms, more or less ex-
plicit. According to this research, a collaborative activity can be structured in
three hierarchical levels: co-ordinated, co-operative, and co-constructive [2, 12].
Mediating artifacts are used to encapsulate and automatise the routine flow of
interaction between the participants to the collaborative activities at the co-
ordination level. By contrast, they are designed and forged at the co-operation
level, where participants focus on a common objective of the activity, and then
on the means (the artifacts) for realizing it.

The notion of dynamic transformation between the three hierarchical levels
of collaborative activities is also central to AT [2]. Transformations are strictly
related to the stability of the means of work and of the object of work. Up-
ward transformations correspond to the activity of evaluating and re-thinking
either the means of work, or the object of the work itself. Instead, down-
ward transformations correspond to the resolution of conflicts and problems,
which is reified in the lower levels, possibly embodied in a newly-forged medi-
ating artifact. Correspondingly, reflection on the means of work—going from
co-ordination to co-operation—and routinization—going from co-operation to

The Multidisciplinary Patterns of Interaction 405

co-ordination—are the most important transformations. The former happens
when the coordinated flow of work, relying on stable means of work such
as scripts, rules, mediating artifacts in general, needs to be co-operatively
re-established according to the object of work; the reasons can be either co-
ordination breakdown, or a deliberate re-conceptualization of the way the
work is currently achieved. The latter works in the opposite directions, by
re-establishing co-ordinated work where the means of collaboration are stabi-
lized, and new/adapted mediating artifacts are provided to be exploited by
participants in the co-ordination stage.

4.2 Mediated Interaction in Computational Systems

Activity theory has recently found its applications within computational sci-
ences, in particular in CSCW [32] and agent-oriented software engineering
[40]. More generally, the conceptual framework of AT can find its use be-
yond the scope of human collaborative activities, wherever systems can be
conceived as made of independent entities, which autonomously act within a
structured context to achieve their own goals as well as collective objectives.
This is for instance the sort of context that is typical of distributed and con-
current systems, in particular those modelled or built according to the agent
paradigm.

AT is a source of a number of interesting ideas for computational systems.
As far as interaction is concerned, we can synthesize at least three major
points:

Beyond direct interaction — First of all, interaction is always mediated. Di-
rect interaction is only an interpretation, which only works when the
medium of the interaction can be abstracted away without any loss in
the understanding of the state and dynamics of the interaction. Environ-
ment plays a key role here, since it generally works as the natural locus of
the mediation: the central issue becomes how to control and instrument
the environment where computational systems live and work, in order to
enable and coordinate the interaction among the computational entities
that are there immersed.

Mediating artifacts — Mediated interaction is encapsulated within first-class
entities, the mediating artifacts. Mediating artifacts play a twofold role:
constructive/enabling, and constraining/governing. On the one hand, they
are the means that enable interaction, and allow software engineers to de-
fine and shape the space of component interaction. On the other hand,
by determining admissible interactions, they constrain the components’
observable behaviour, and make it possible to govern the space of inter-
action.

• Mediating artifacts are then essential tools in the modelling and engi-
neering of complex computational systems, and are subject of theories

406 A. Omicini, A. Ricci, and M. Viroli

and practices that are typically different from the ones adopted for in-
teracting components. The central role of abstractions working as me-
diating artifacts is already evident in several approaches coming from
computer science, software engineering and artificial intelligence. The no-
tion of coordination medium within the area of coordination models and
languages [6, 15]—like Linda tuple spaces [14] or TuCSoN tuple centres
[38]—blackboards in distributed artificial intelligence [7], channels in the
core calculi for interaction [31] or component composition [1], connectors
in software architectures [43].

Analysis and synthesis of the interaction space — The notions of mediated
interaction and mediated artifact deeply impact on methodologies for
the construction of computational systems, at every stage of the engi-
neering process. The three levels for collaborative activities in AT—co-
construction, co-operation, co-ordination—can be seen as representing
distinct stages of an interaction-oriented engineering process, covering the
specification, design, validation, run-time verification and modification of
mediating artifacts.

• Dynamic transformation between the three levels is the crucial point for
both the analysis and the synthesis in the interaction-oriented engineering
process: on the one hand, mediating artifacts are the subject of dynamic
observation—observing their state and history makes it possible to analyse
and understand the dynamic behaviour of complex systems; on the other
hand, mediating artifacts are the basic bricks for computational systems—
they are designed and forged to shape and govern the space of component
interaction.

• Dynamics also means that systems can be changed at run-time, by suit-
ably observing, understanding and modifying mediating artifacts, so as
to intervene on the dynamics of system interaction. By featuring proper-
ties such as predictability, inspectability, controllability, malleability and
linkability [40], mediating artifacts promote engineering practices aimed
at promoting social intelligence, system adaptation and self-organization
of computational systems [37].

5 Institutions and Infrastructures

5.1 Institutions and Infrastructures in Human Societies

The most recent accounts of the research by cultural anthropologists tend
to recognize some repeated patterns in the formation and evolution of human
societies in the last ten thousands years—not only in the European and North-
American history, but around the globe. In particular, the many different
forms taken by human societies are often divided in half a dozen of categories,
that differs under many aspects: number of members, settlement pattern, basis
of relationships between members, and (in general) form of government [11].

The Multidisciplinary Patterns of Interaction 407

However, it can be easily seen that most of the above issues are so to say
“dependent” variables, where the main “independent variable” is the number
of people constituting a society. How people are settled, how they relate each
other, how they resolve conflicts, etc., are mostly dependent on the number
of members of the society.

Under certain favourable conditions (such as the abundance of food), suc-
cessful societies (that is, those forms of human organization that guarantee
more chances of survival to its members, and thus, to themselves) tend to
grow in size. When they grow over certain limits, the institutions that govern
them are forced to change—and societies change with them. For instance, in a
band (the tiniest form of society, with dozens of members at most) or a tribe
(hundreds of members), power is shared among peers, and conflict resolutions
between members is handled informally on a case by case basis: no formal
rules nor recognized institutions (apart from shared habit and oral tradition)
help in composing conflicts. By contrast, larger societal forms like chiefdoms
(with thousands of members) typically evolve by requiring some forms of cen-
tral government (with chiefs exerting their powers over other members) and
institutions (with bureaucrats ruling some aspects of social life, like exacting
tributes, or resolving conflicts between members). The largest known forms of
human organizations (states) typically develop military forces, police, written
rules (laws), and all the well-known (to us) social institutions that shape and
govern modern forms of human societies.

In the end, this is clearly a problem of scale: direct interaction and sharing
of power among (human) peers does not work at the large scale. By freely re-
interpreting the results from [11], this is due to several reasons:

Mutual recognition — Any form of cooperation (or even conflict avoidance)
between members of a society depends on their capability to recognize
each other as members of the same society, even if they do not know
each other directly. When mutual recognition can no longer be based on
direct knowledge, as in the case of large number of members, only formally
defined social institutions (common, county, nation, state, . . .) can ensure
mutual recognition by providing a social, shared notion of identity, not
based on kinship or friendship of any kind.

Monopoly of force — When the number of the society members is too high,
the number of possible conflicts grows so much that the use of force by
conflicting members to resolve conflicts becomes potentially disruptive for
the society as a whole. The development of centralised institutions monop-
olising force and preventing/solving potentially violent disputes through
both administrative and military infrastructures (judiciary, prisons, po-
lice, army) become inescapable when a society grows in size.

Delegation of Power — In small societies, decision making can be a globally
shared process where everybody is involved in the discussion and in the
final deliberation. In the case of large societies, this may obviously lead to
an unbearably inefficient process, and has typically produced many forms

408 A. Omicini, A. Ricci, and M. Viroli

of delegation of power to a small number of selected members (leaders,
majors, kings, presidents) or institutions (oligarchs, senates, parliaments),
that can ensure timely convergence of the decision process.

Redistribution of goods — While trading in small societies can be handled
on a peer-to-peer basis, the exchange of goods needs a more complex
organization in larger societies. Political and economical conventions, reg-
ulations, norms and laws are required, and call for suitable institutions to
enact them, and rule economic interaction among a vast number of society
members.

Distribution of space and resources — Resources available to a small society,
like living space, can be distributed on an ad hoc basis, and accessed al-
most freely. When population increases, and its density grows, distribution
of space (and access to shared resources like water and food) requires a
more structured societal organization, and the introduction of new notions
like private property, right to access, right to use and so on.

5.2 Institutions and Infrastructures in Computational Systems

So, what are we going to learn for software systems, from the long history
of successful complex systems like human societies? A number of interesting
results have the potential to be applied to computational systems in general.
For the sake of simplicity, however, in the following we will refer in particular
to MASs, as they present the deepest similarities with human societies among
the many classes of computational systems known today.

First of all, we recognize that large systems composed of many individ-
ual members cannot be based on peer-to-peer relations: interactions between
members have to be governed and ruled by suitable institutions. How much
is “large” for a software system we cannot derive from here: a human in a
human society is not the same as an agent in a MAS. What is not likely to
change, however, is that at some scale—whichever it is, thousands, millions or
billions of agents—the same sorts of problems are likely to arise in increasingly
complex MASs that already rose in human society growing in size over time,
and eventually make the development of social institutions almost manda-
tory.4 On the other hand, this also corresponds in MAS research to the recent
trend toward institutions meant to govern the complexity of software systems
by harnessing interaction among components—as illustrated by the nowadays
emerging notions of e-institution [33], and logic-based electronic institution
[47] among the many others.

Institutions for large agent societies have to provide solutions to prob-
lems such as the ones for large human societies pointed out above: mutual
4 The argument that agents have not the same limitations as humans is exact but,

at the same time, misleading: limitations (for instance, in memory) might be
different (for instance, in size), but they exist indeed. So, there will always exist
an appropriate scale of complexity where agents (and agent societies) encouter
the same sort of problems as humans (and human societies).

The Multidisciplinary Patterns of Interaction 409

recognition between members of a MAS, support for specialized agent roles,
resolution of conflicts between agents, concerning for instance access to shared
resources, enaction of global laws governing the behaviour of agents and pro-
moting cooperative attitude—or at least, efficient decision making in large
MASs.

As an aside it has also to be noted that institutions in human societies
(the army, the police, the parliament, the judiciary) are not individual human
beings—as obvious as it may seem. Institutions are made of humans, but none
of them is an individual human. Even more, this simple consideration is not
limited to collective institutions: even kingship, for instance, is an institution
that cannot be identified or confused with the individual, temporary king.
Correspondingly, institutions in MASs are (in principle) not agents: agents
may participate in them and make them work, but no agent is an institution.5

Instead, agent institutions are naturally embodied in agent infrastructures,
governing agent interactions within a MAS—as pointed out by the notion of
governing infrastructure in [35].6

In the same way as infrastructures in human societies provide services to
individuals and organizations (the communication, the health care, the se-
curity, the physical mobility infrastructures, among the many others), agent
infrastructures are meant to provide services to agents and agent societies.
Correspondingly, in the same way as traffic lights or street signs govern car
traffic (allowing the more or less peaceful coexistence of car drivers), runtime
abstractions provided by an agent infrastructure can be used by MASs to rule
agent access to shared resources, and to allow several potentially conflicting
agents to achieve their respective, unrelated goals in a coordinated way.7 By
further developing the conclusions of previous section, this is most properly
achieved through the use of mediating artifacts, provided by agent infrastruc-
tures as runtime abstractions, as in the case of workflow engines for MASs
[39], or of the general notion of coordination services [48].

The final point here is then clear: institutions, and the infrastructures that
enforce them, are required to rule and govern the interactions among mem-
bers of large, complex societies—without them, these societies are doomed to
instability, chaos and final failure. Accordingly, the modelling and engineer-

5 The fact that institutions can be interpreted (as in [4]) or even implemented (as
in [45]) as agents can be of some use, sometimes, but does not affect the general
principle that institutions are not agents.

6 In the same way as they are not agents, institutions are not even infrastructures:
rather, agent institutions are naturally implemented upon agent infrastructures.

7 While agentification of resources—that is, the view of resources as agents—is
usable and useful in particular cases, it is not the most suitable and effective
approach in general. In fact, as argued for instance in [42], agents use resources
(through virtual physical actions), while they speak to other agents (through
communicative actions): resources have interfaces, agents have not. In the end,
agentification is nothing but the obvious result of the bias toward communication
(against physical action) of current agent research.

410 A. Omicini, A. Ricci, and M. Viroli

ing of complex computational systems like MASs require the definition and
enaction of computational institutions, embodied in hardware/software infras-
tructures which provide suitable runtime abstractions to mediate and govern
the interaction between the individual components of a system.

6 Final Remarks and Conclusions

Many other possible sources of inspiration are not accounted for by this chap-
ter: the implications of the Heisenberg uncertainty principle [22], basically
stating that the interaction involved in the observation of phenomena intrinsi-
cally affects their behaviour; the part of modern biology concerning modelling
and simulation of biological processes, and known as systems biology, which
aims at system-level understanding of biological systems [28]; the notion of
emergence [23], some theories of economics, and surely many others, even from
the computer science field. But the goal here is not to be exhaustive.

Instead, our aim in this chapter is first of all to point out how the study
of interaction as a first class subject of research is at the core of a number of
diverse scientific areas dealing with complex systems; then, to show that the
patterns emerging from such a heterogeneous range of scientific disciplines can
be exploited as transdisciplinary bridges fruitfully connecting different areas,
and bring their results to computer science.

Along this line, we try to devise an as-simple-as-possible conceptual path:

1. Interaction as a first-class subject of study — Complex systems cannot
be described, understood or built by merely dealing with the nature and
behaviour of their individual components—in the same way as fundamen-
tal physics cannot be understood by merely focusing upon the nature of
individual particles. Instead, the study of interaction per se is a central
issue, which calls for special, interaction-oriented paradigms, models, tech-
nologies and methodologies aimed at modelling and engineering complex
systems.

2. Environment, or the situatedness of interaction — The individual com-
ponents of a system cannot be studied or understood separately from the
environment where they live and interact—in the same way as evolution
of human societies cannot be understood separately from the environment
where they live. Studying the environment of a system, its nature and dy-
namics, and its interaction with the system components, is a fundamental
precondition to the understanding of the essence and evolution over time
of complex systems of any sort.

3. Mediated interaction, and the artifacts — Interaction is always mediated,
and the nature of mediators affects interaction—in the same way as the
nature of pheromones determines the behaviour of ants and ant colonies.
The notions of mediator and mediating artifact are essential tools in the
analysis and synthesis of the space of interaction within complex systems.

The Multidisciplinary Patterns of Interaction 411

4. Institutions and infrastructures — Institutions are required to rule and
govern the interactions among participants of large, complex systems—in
the same way as they are required by contemporary human societies. In
order to enact institutions, infrastructures are needed which mediate and
govern the interaction between the individual participants of a complex
system, by encoding and enforcing institutional rules, norms and laws.

As the reader may easily note, the above interaction-related patterns do not
require for their general description any reference to the nature of the complex
system involved: be it either a physical, a biological, a social, or a computa-
tional system, all the above considerations straightforwardly apply. Drawing
from the wide range of disciplines dealing with the study of complex systems,
computational sciences can finally find new paths for overcoming complexity,
and possibly constructing the artificial systems of tomorrow.

References

1. F. Arbab. Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science, 14:329–366, 2004.

2. J. Bardram. Designing for the dynamics of cooperative work activities. In 1998
ACM Conference on Computer Supported Cooperative Work (CSCW’98), pages
89–98. ACM Press, 14–18Nov. 1998.

3. F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors. Methodologies and Soft-
ware Engineering for Agent Systems: The Agent-Oriented Software Engineering
Handbook. Kluwer Academic publishers, June 2004.

4. G. Boella and L. W. van der Torre. Attributing mental attitudes to normative
systems. In J. S. Rosenschein, M. J. Wooldridge, T. Sandholm, and M. Yokoo,
editors, 2nd International Joint Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2003), pages 942–943. ACM Press, 14-18July 2003.
Poster.

5. R. A. Brooks. Intelligence without representation. Artificial Intelligence, 47(1-
3):139–159, 1991.

6. P. Ciancarini. Coordination models and languages as software integrators. ACM
Computing Surveys, 28(2):300–302, June 1996.

7. D. D. Corkill. Blackboard systems. Journal of AI Expert, 9(6):40–47, 1991.
8. C. Darwin. The Origin of Species. Murray, London, 6th edition, 1872.
9. R. Dawkins. The Selfish Gene. Oxford University Press, Oxford, UK, 1976.

10. G. Di Marzo Serugendo, A. Karageorgos, O. F. Rana, and F. Zambonelli, editors.
Engineering Self-Organising Systems: Nature-Inspired Approaches to Software
Engineering, volume 2977 of LNAI. Springer, May 2004.

11. J. Diamond. Guns, Germs, and Steel: The Fates of Human Societies. W.W.
Norton & Company, March 1997.

12. Y. Engeström, K. Brown, L. C. Christopher, and J. Gregory. Coordination,
cooperation, and communication in the courts: Expansive transitions in legal
work. In M. Cole, Y. Engeström, and O. Vasquez, editors, Mind, Culture, and
Activity, chapter 28. Cambridge University Press, Oct. 1997.

412 A. Omicini, A. Ricci, and M. Viroli

13. Y. Engeström, R. Miettinen, and R.-L. Punamaki, editors. Perspectives on
Activity Theory. Cambridge University Press, 1999.

14. D. Gelernter. Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80–112, Jan. 1985.

15. D. Gelernter and N. Carriero. Coordination languages and their significance.
Communications of the ACM, 35(2):97–107, Feb. 1992.

16. D. Q. Goldin, S. A. Smolka, P. C. Attie, and E. L. Sonderegger. Turing machines,
transition systems and interaction. Information and Computation, 194(2):101–
128, Nov. 2004.

17. S. J. Gould. The Structure of Evolutionary Theory. The Belknap Press of
Harvard University Press, Mar. 2002.

18. P.-P. Grassé. La reconstruction du nid et les coordinations inter-individuelles
chez bellicositermes natalensis et cubitermes sp. la theorie de la stigmergie: essai
d’interpretation des termites constructeurs. Insectes Sociaux, 6:41–83, 1959.

19. B. R. Greene. The Elegant Universe. Superstrings, Hidden Dimensions, and the
Quest for the Ultimate Theory. Knopf Publishing Group, March 2000.

20. B. R. Greene. The Fabric of The Cosmos: Space, Time, and the Texture of
Reality. Alfred A. Knopf, New York, NY, USA, Feb. 2004.

21. Hadeli, P. Valckenaers, C. Zamfirescu, H. Van Brussel, B. Saint Germain,
T. Hoelvoet, and E. Steegmans. Self-organising in multi-agent coordination
and control using stigmergy. In Di Marzo Serugendo et al. [10], pages 105–123.

22. W. Heisenberg. Collected Works: Scientific Review Papers, Talks, and Books.
Springer, 1984.

23. J. H. Holland. Emergence: From Chaos to Order. Basic Books, New York, NY,
USA, 1999.

24. O. Holland and C. Melhuis. Stigmergy, self-organization, and sorting in collec-
tive robotics. Artificial Life, 5(2):173–202, 1999.

25. D. L. Hull. Individuality and selection. Annual Review of Ecology and System-
atics, 11:311–332, 1980.

26. S. A. Kauffman. Investigations. Oxford University Press, March 2001.
27. D. Kirsh. Distributed cognition, coordination and environment design. In Eu-

ropean Cognitive Science Society, pages 1–11, 1999.
28. H. Kitano. Foundations of Systems Biology. MIT Press, 2002.
29. A. N. Leontjev. Activity, Consciousness, and Personality. Prentice Hall, 1978.
30. M. Mamei and F. Zambonelli. Self-organization in multi-agents systems: A

middelware approach. In Di Marzo Serugendo et al. [10], pages 233–248.
31. R. Milner. Elements of interaction: Turing Award lecture. Communications of

the ACM, 36(1):78–89, Jan. 1993.
32. B. Nardi, editor. Context and Consciousness: Activity Theory and Human-

Computer Interaction. MIT Press, 1996.
33. P. Noriega and C. Sierra. Electronic institutions: Future trends and challenges.

In M. Klusch, S. Ossowski, and O. Shehory, editors, Cooperative Information
Agents VI, volume 2446 of LNAI. Springer, 2002.

34. A. Omicini. SODA: Societies and infrastructures in the analysis and design of
agent-based systems. In P. Ciancarini and M. J. Wooldridge, editors, Agent-
Oriented Software Engineering, volume 1957 of LNCS, pages 185–193. Springer,
2001.

The Multidisciplinary Patterns of Interaction 413

35. A. Omicini and S. Ossowski. Objective versus subjective coordination in the
engineering of agent systems. In M. Klusch, S. Bergamaschi, P. Edwards, and
P. Petta, editors, Intelligent Information Agents: An AgentLink Perspective,
volume 2586 of LNAI: State-of-the-Art Survey, pages 179–202. Springer, 2003.

36. A. Omicini and A. Ricci. Reasoning about organisation: Shaping the infrastruc-
ture. AI*IA Notizie, XVI(2):7–16, June 2003.

37. A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tummolini. Coor-
dination artifacts: Environment-based coordination for intelligent agents. In
N. R. Jennings, C. Sierra, L. Sonenberg, and M. Tambe, editors, 3rd interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AA-
MAS 2004), volume 1, pages 286–293, New York, NY, USA, 19–23July 2004.
ACM.

38. A. Omicini and F. Zambonelli. Coordination for Internet application develop-
ment. Autonomous Agents and Multi-Agent Systems, 2(3):251–269, Sept. 1999.

39. A. Ricci, A. Omicini, and E. Denti. Virtual enterprises and workflow manage-
ment as agent coordination issues. International Journal of Cooperative Infor-
mation Systems, 11(3/4):355–379, Sept./Dec. 2002.

40. A. Ricci, A. Omicini, and E. Denti. Activity Theory as a framework for MAS
coordination. In P. Petta, R. Tolksdorf, and F. Zambonelli, editors, Engineering
Societies in the Agents World III, volume 2577 of LNCS, pages 96–110. Springer-
Verlag, Apr. 2003.

41. A. Ricci, A. Omicini, M. Viroli, L. Gardelli, and E. Oliva. Cognitive stigmergy:
A framework based on agents and artifacts. In M.-P. Gleizes, G. A. Kaminka,
A. Nowé, S. Ossowski, K. Tuyls, and K. Verbeeck, editors, 3rd European Work-
shop on Multi-Agent Systems (EUMAS 2005), pages 332–343, Brussels, Belgium,
7–8 Dec. 2005. Koninklijke Vlaamse Academie van Belie voor Wetenschappen
en Kunsten.

42. A. Ricci, M. Viroli, and A. Omicini. Environment-based coordination through
coordination artifacts. In Weyns et al. [52], pages 190–214. 1st International
Workshop (E4MAS 2004), New York, NY, USA, July 2004, Revised Selected
Papers.

43. M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik.
Abstractions for software architecture and tools to support them. IEEE Trans-
action on Software Engineering, 21(4):314–335, 1995.

44. H. A. Simon. The Sciences of the Artificial. The MIT Press, 3rd edition, Oct.
1996.

45. L. Stein. Interaction, computation, and education. In this volume.
46. T. Susi and T. Ziemke. Social cognition, artefacts, and stigmergy: A comparative

analysis of theoretical frameworks for the understanding of artefact-mediated
collaborative activity. Cognitive Systems Research, 2(4):273–290, Dec. 2001.

47. W. W. Vasconcelos. Logic-based electronic institutions. In J. A. Leite,
A. Omicini, L. Sterling, and P. Torroni, editors, Declarative Agent Languages
and Technologies, volume 2990 of LNAI, pages 223–242. Springer, May 2004.
1st International Workshop (DALT 2003), Melbourne, Australia, 15July2003.
Revised Selected and Invited Papers.

414 A. Omicini, A. Ricci, and M. Viroli

48. M. Viroli and A. Omicini. Coordination as a service: Ontological and formal
foundation. Electronic Notes in Theoretical Computer Science, 68(3):457–482,
Mar. 2003. 1st International Workshop “Foundations of Coordination Lan-
guages and Software Architecture” (FOCLASA 2002), Brno, Czech Republic,
24Aug.2002. Proceedings.

49. L. S. Vygotskij. Mind and Society. Harvard University Press, 1978.
50. P. Wegner. Why interaction is more powerful than algorithms. Communications

of the ACM, 40(5):80–91, May 1997.
51. P. Wegner. Interactive foundations of computing. Theoretical Computer Science,

192(2):315–351, Feb. 1998.
52. D. Weyns, H. V. D. Parunak, and F. Michel, editors. Environments for Multi-

Agent Systems, volume 3374 of LNAI. Springer, Feb. 2005. 1st International
Workshop (E4MAS 2004), New York, NY, USA, July 2004, Revised Selected
Papers.

53. G. C. Williams. Adaptation and Natural Selection. Oxford University Press,
Oxford, UK, 1966.

Coordination

Peter J. Denning1 and Thomas W. Malone2

1 Naval Postgraduate School, Monterey, CA, USA
2 MIT, Cambridge, MA, USA

1 Introduction

Interactive computation seems like one of the oldest and most familiar aspects
of computing. It was introduced in the first time-sharing systems in the late
1950s. In what way is interactive computation, as suggested by this book’s
title, a new paradigm?

Since those early days, the theory of computation has dwelt on machines
and algorithms for mathematical functions. We might call these “function
machines”. The theory provided us with a deep and rich understanding of
algorithmic complexity and the limitations of various classes of function ma-
chines. It gave us the Church–Turing thesis, which postulates that any effective
procedure can be realized as a function machine. Its treatment of interaction
has been limited to concurrent systems of interacting function machines. Real
systems, however, are far more than networks of function machines; they are
symbiotic communities of machines and humans. Humans contribute many
things that function machines cannot do, such as recognizing context, mak-
ing new distinctions, and creating new abstractions. Human–machine systems
routinely carry out sophisticated computational tasks that the old theory says
are not computable. As computational theorists grapple with this anomaly,
they are extending the theory in refreshing directions and are introducing
entirely new ways to think about computation and its limits. This is the rev-
olution the editors are celebrating in this book.

Our purpose in this chapter is to present two complementary views of
coordination in real human–machine systems. Coordination is the heart of
interaction. Coordination is one of the six fundamental areas of computing
principles. It is concerned with managing the interactions among multiple
activities so that they achieve a single, collective result. Those who design,
build, and evaluate interactive systems have employed coordination principles
for many years. Coordination plays a similarly fundamental role in manage-
ment science. Coordination principles will undoubtedly play a central role in
the new theoretical paradigms.

416 P.J. Denning and T.W. Malone

2 The Great Principles Framework

Let us begin by situating coordination within a conceptual framework for the
computing field, Fig. 1 (Denning 2003). The ultimate purpose of computing
is to support information operations in a wide variety of application domains.
Over the past 60 years, the computing field has developed about 30 core tech-
nologies that constitute the platforms on which applications are built. The
core technologies rely on fundamental principles of two kinds: mechanics and

Fig. 1. The Great Principles framework consists of principles and practices along
separate dimensions, supporting core technologies of computing, which in turn sup-
port applications. The principles are of two kinds: mechanics—how computations
and computers work—and design—how to build them to work well. These principles
pervade core technologies that in turn support many application areas. Practices,
the embodied skills of computing professionals, apply at all levels

Coordination 417

design. The mechanical principles are fundamental laws and recurrences, the
cause-and-effect relationships of computers and algorithms; the design princi-
ples are time-tested guides for solving computational problems and organiz-
ing computing systems. The core practices are the areas of competence that
computing professionals must have in order to build core technologies and
applications on a solid base of principles. The space of applications is defined
by principles and practices on separate dimensions. The principles express the
what of computing, the practices the how.

This picture reveals computing to be a much broader field than program-
ming. Although programming is a critical core practice, it is not the defining
practice of the field. You cannot understand the field without understanding
programming and programmers, but you cannot see the whole of the field if
you think that applications are constructed simply by acts of programming.

The fundamental mechanical principles of computing can be viewed from
five perspectives:

• Computation: What can be computed and how; limits of computing.
• Communication: Sending messages from one point to another.
• Coordination: Multiple entities cooperating toward a common result.
• Recollection: Storing and retrieving information.
• Automation: Performing cognitive tasks by computer.

These categories are not disjoint. For example, a network protocol can be
studied under Communication in its role as a method of transmitting data,
and under Coordination as a method of synchronizing sender and receiver.
We often refer to the categories as the five windows because they are like
five portals into the same room. Each window sees the contents of the room
in a distinctive way. Some elements of the room are visible through multiple
windows. The windows do not partition the room into five disjoint subsets.

These five windows completely cover the field. Imagine the block diagram
of a typical computer. It consists of a CPU (central processing unit), a memory
subsystem, and an I/O subsystem. The CPU corresponds to the Computation
function; the memory to the Recollection function; and the I/O to the Com-
munication function. Now observe that computers never stand alone; they are
always interconnected in some way to other computers or to humans. This
network of computers and humans corresponds to the Coordination function.
Finally, the purpose of a network of computers is to work on tasks we delegate
to it; the business of deciding what can be delegated, and how, corresponds to
the Automation function. Thus the principal functions of computing systems
coincide with the five windows.

3 Coordination

Coordination is concerned with multiple agents acting together (interacting)
to accomplish a common goal. The agents can be computational processes or

418 P.J. Denning and T.W. Malone

humans. Coordination implies some sort of feedback so that the agents can
tell whether their actions are effective and can correct when necessary.

In this chapter, we describe two complementary approaches to understand-
ing the fundamental principles of coordination. The first focuses on three basic
kinds of dependencies among activities—flow, sharing, and fit—and the differ-
ent coordination processes that can manage these dependencies. The other ap-
proach focuses on a single basic coordination molecule—the action loop—from
which all coordination patterns can be built. Like the windows of computing
mechanics, these two windows of coordination have distinctive views. The de-
pendency view focuses on the flow of resources; the action loop view focuses
on the flow of commitments. The two views work together synergistically.

4 Dependency Patterns and Coordination Processes

Coordination can be defined as the management of dependencies among activ-
ities (Malone and Crowston, 1994). An activity is a set of tasks performed by
a human or computational process. A dependency relation between activities
A and B exists when the completion of one activity (say B) depends in some
way on the other activity (A). For example: (1) Activities A and B are events
and A must precede B. (2) B needs information from A before acting. (3) A
and B both need to use the same processor. (4) A and B produce parts that
are combined into a single assembly. (5) B is software that customizes itself
to the profile of activity A. (6) A’s input to B must be in formats recognized
by B.

It is useful to view such dependencies as arising from resources that are
related to both activities. For example, activity A might produce a resource
that activity B needs; both activities compete for the same resource; or both
activities update the same resource.

More precisely, Fig. 2 shows the three topological possibilities for directed
graphs involving two activities and one resource. We label these three basic
dependency patterns: flow, sharing, and fit (see Crowston, 1991; Zlotkin, 1995;
Malone, et al., 1999):

• Flow dependencies arise whenever one activity produces a resource that is
used by another activity. This common dependency is the focus of most
existing process mapping techniques, such as flow charts.

• Sharing dependencies occur whenever multiple activities all use the same
(usually limited) resource. This kind of dependency arises when two activ-
ities need to be done by the same person, when they need to use the same
computer processor, or when they both use money from the same account.
It also arises when activities draw from a common resource even when
access is not limited, for example, travel agents working from a common
flight schedule. Although this kind of dependency is often not depicted in

Coordination 419

Fig. 2. The three fundamental dependency patterns can be depicted as directed
graphs. In a flow dependency, one activity (A) produces a resource (R) used by
another activity (B). In a sharing dependency, multiple activities all use the same
resource. In a fit dependency, multiple activities jointly produce a single resource.
All three dependencies are focal points for coordination

process maps, allocating shared, limited resources is clearly a critical as-
pect of many management activities and of the design of many computer
systems.

• Fit dependencies arise when multiple activities collectively produce, con-
tribute to, or update a single resource. This kind of dependency arises
when several engineers are designing different modules of a software sys-
tem, when an assembly line is fitting parts into a car, or when different
travel agents are booking seats on the same flight. Although not always
depicted on process maps, this kind of dependency is a critical aspect of
many assembly and shared update operations.

The dependency patterns shown in Fig. 2 are certainly not the only ones
possible, but as far as we can tell all other dependencies can be analyzed as
specializations or combinations of these three. The flow dependency appears
to be the most elementary of all because flows are involved in managing all
the other types of dependencies.

Dependencies are managed with coordination processes or protocols that
supplement the activities. A coordination protocol manages the resource in-
volved in the dependency. For example, a coordination protocol for a flow de-
pendency may move a resource from one activity to another. A coordination

420 P.J. Denning and T.W. Malone

protocol for a sharing dependency may assign the limited resource among the
contenders according to some policy. A coordination protocol for a fit depen-
dency may assemble the components from the various activities contributing
to the resource.

A key benefit of analyzing dependencies in this way is the discovery that
each kind of dependency has a characteristic “family” of coordination pro-
cesses for managing it (see Table 1). And these coordination processes are the
same in many different kinds of systems: computer networks, human organi-
zations, economic markets, and so forth.

Table 1. Examples of coordination processes for managing dependencies (adapted
from Malone et al, 1999)

Dependency Examples of coordination processes
Flow

Prerequisite
(“right time”)

 Make to order vs. make to inventory (pull vs. push)
 Pre-defined schedule or ad hoc hierarchical control

Accessibility
(“right place”)

 Ship by various transportation modes
 Assemble at point of use

Usability
(“right thing”)

 Conform to standards
 Negotiate individual requirements
 Participatory design

Sharing FIFO queueing
 Preemptive priority queueing
 Budget allocation
 Managerial decision
 Market-like bidding

Fit Predefined standards (“plan”)
 Case by case negotiation (“emerge”)
 Slotted synchronization
 Mutual exclusion locks
 Resolve conflicts by common manager or peer negotiation

The flow dependency, which accounts for the majority of coordination
mechanisms, has three subdependencies: (1) The prerequisite dependency con-
cerns the timing of the flow—how it is initiated (e.g., push or pull) or how
often it is initiated (e.g., on a schedule or on demand). (2) The accessibility
dependency concerns how the resource is made available to the activity that
uses it (e.g., A ships it to B, or A makes it at B’s location). (3) The usabil-
ity dependency concerns making sure the resource is usable by B (e.g., the
resource might meet some widely shared standard or A and B might nego-

Coordination 421

tiate the specifications individually each time). These three subdependencies
correspond to the three elements of the common business phrase, “right thing
in the right place at the right time”; in fact, they offer a rigorous working
definition of this intuitive but often-imprecise business term.

Sharing dependencies are managed by a variety of coordination mecha-
nisms that offer different ways to allocate a limited resource among contenders.
These include FIFO queueing, priority queueing, budgets, managerial deci-
sion, multiple-reading, and market-like bidding. In a job shop, for instance,
three workers could use a simple “first come first serve” mechanism to share
a machine. Or, they could budget the machine time among themselves with
assigned time slots. Or, they could use a priority scheme in which jobs of
higher priority preempt other jobs at the machine. Or, the machine’s owner
could sell time to the highest bidder. A computer operating system has a very
similar family of alternatives for scheduling the use of a computer processor,
memory, and other resources. (See Coffman and Denning, 1973; Dellarocas,
1996, 1997.)

Fit dependencies are managed by a variety of coordination mechanisms
that offer different ways to combining the contributions from the source ac-
tivities. These include slotted access (each contributor has a specific location
for its contribution), mutually-excluded (locked) access, or update access. An
automobile assembly line illustrates slotted access: each station installs a part
at a unique position, allowing many parts to be installed concurrently with-
out conflict. An airline database illustrates mutually excluded update access:
records must be locked by one updater at a time. The database illustrates a
further coordination issue: some activities update it (a fit dependency) and
others read it (a sharing dependency on the database lock); the reads and
writes must be coordinated to avoid conflicts or errors in reading inconsistent
data.

The use of the term “dependency” here differs somewhat from other com-
puter science uses of the term. For example, in operating systems, databases,
and networks we are concerned about the ordering of certain events, mutually
exclusive use of shared data, buffer overflow, and deadlocks. Solutions to these
problems often involve more than one of the flow-sharing-fit dependencies. For
example, a mutual exclusion lock is both a sharing dependency (value of the
lock) and flow dependency (obtaining the lock if it is free). Updating a record
in a database or an item in a buffer is both a fit dependency (contributing to
a common resource) and a flow dependency (obtaining the lock). A deadlock
can be viewed as a failed combination of fit, sharing, and flow dependencies.
The protocols for managing these dependencies are often dominated by their
flow dependency components, which involve exchanges of signals or messages.

Computing systems also manage dependencies besides those built on ex-
change of signals or messages. For example, a procedure that checks its inputs
for proper type and range is checking a usability subdependency of flow. A
type-checking compiler manages flow dependencies (inheritance from higher
types) and fit dependencies (a collection of types contributing to the whole

422 P.J. Denning and T.W. Malone

program). Similarly, a linking loader implements flow and fit dependencies
among modules. A CPU scheduler manages the sharing dependency of a pro-
cessor among tasks. A seat-assignment program in an airline flights database
manages fit dependencies among travel agents. A web page that customizes
its display for a particular browser implements a flow dependency from the
browser to the page.

These examples show that the coordination mechanisms we see in com-
puting systems and networks are the managers of dependencies; but they are
not the actual dependencies. The language of dependencies is like a higher
level language and the mechanisms are like a lower level language. A designer
expresses the dependencies and then implements coordination mechanisms to
manage them.

Thus, a single dependency can be an abstraction for a very complex coor-
dination process to manage it, and there may be many possible coordination
processes for the same dependency. For example, the relation between a web
server at one node of the Internet sending a page to a web browser at another
node might be represented as a single flow dependency from the server to
the browser. But this high-level flow dependency is an abstraction of many
possible coordination processes that might involve dozens of low-level packets
flowing in both directions.

The dependency-based approach can be used to analyze, design, and in-
vent coordination processes for computer systems as well as for organizations.
For example, it has been used to classify over 5000 business processes and ac-
tivities; see the MIT website <ccs.mit.edu/ph> and Malone, Crowston, and
Herman (2003). It helped invent a new way to hire people in a large finan-
cial services organization (Klein, et al., 2003). It has helped to integrate the
software components in computer systems (Dellarocas, 1996, 1997).

5 Action Loops

The action loop directly describes a universal pattern of interaction between
two entities as they coordinate to accomplish a task. It was first described by
Winograd and Flores as “conversation for action” (1986) and matured into the
Action Workflow technology (see <www.actiontech.com>). The action loop
is linguistic: it is a conversational pattern followed by two parties. The loop
consists of four segments, each representing a time interval closed by a speech
act. (See Fig. 3.) Request–promise interactions that occur numerous times in
daily life are the most common examples.

The action loop started as an expression of a universal pattern of human
coordination—a model of interactions between individuals, personally and
within organizations. The commitments of individual members to fulfill their
roles in action loops create a coordination network, built from interconnected
action loops, to support a common mission. (See Winograd and Flores, 1986;
Denning, 1992; Denning and Medina-Mora, 1995.)

Coordination 423

Fig. 3. The action loop is a fundamental pattern of coordination. It connects two
parties: B fulfills a request from A. The two agree on the conditions of satisfaction,
a clear statement of intention of what is to be accomplished and by when. The four
loop segments are terminated by speech acts—“I request,” “I agree,” “I deliver,”
and “I am satisfied.” The loop can represent a high-level coordination as when A is
a customer and B a merchant; it can represent a low-level coordination as when A
asks an office mate for a report; and it can represent a pair of machines carrying out
a protocol. The fourth segment represents the opportunity for A to give feedback
about B’s performance; it can be direct, as in an acknowledgement, or indirect, as
when B consults data about how many customers (A’s) accepted its offer

When he first described action loops, Fernando Flores noted that some
of the components might be collapsed and not explicit. For example: A says
“Pass the salt.” B passes the salt. A nods. There is only one explicit speech
act; agreement and performance are collapsed into one action; and satisfaction
is expressed with a nod. The important aspect is the closure of the loop. If
any component is missing, the loop will not close, and various breakdowns
will appear, such as a missed coordination, wasted effort, A distrusting B, or
B branding A as ungrateful.

The action loop is also a model of human–computer interactions and of
protocols between machines and software components, all of which rely on
closed interaction loops. The failure of a loop to close produces breakdowns
such as user thinking the computer has hung up, or a protocol between two
computers stalls and freezes the system. In this sense, the action loop is the
fundamental building block of coordinated action at all levels from interacting
machines to interacting people in organizations.

The term workflow has come to mean the management of coordination
among people in an organization. The action loop has added a new dimension
to the study of workflow systems. These systems need to be viewed at two
levels: the level of commitments and the level of information and resource
flow. At the level of commitments we see individuals entering into agreements

424 P.J. Denning and T.W. Malone

and coordinating with one another by action loops to fulfill their commit-
ments. At the level of information and resource flow we see computing agents,
clients, servers, and communication systems that store, retrieve, and trans-
port data and materiel handled by people in the commitment network. Figure
4 illustrates with a university payroll process as an information network that
processes forms. This diagram shows mainly flow dependencies with implicit
sharing and fit dependencies relative to the databases. Figure 5 illustrates
one view of a commitment network that drives the information-flow network.
This view focuses on the action loops that are involved in the different steps
of the processes and some of the connections (interaction points) between the
information network and the coordination network.

Fig. 4. The information network supporting a university pay process consists of
a series of functions (boxes) that convey data (forms) and consult with databases
(cylinders) and clocks. Intentions to pay someone are created during the hiring
process and recorded in databases. They are enacted at set intervals when paychecks
are produced. (PAF = personnel action form, PI = principal investigator)

How general is the action loop? The examples above work for coordination
in business organizations. But what about nonbusiness examples such as base-
ball teams or orchestras, spontaneous teams, and even “flash mobs”? Although
these groups have different purposes, their coordination structures can always
be viewed as having action loops. A baseball team, for example, consists of
nine players promising the manager to play positions, giving nine action loops
with fairly general conditions of satisfaction (e.g., “play third base”); addi-
tional action loops arise spontaneously during plays such as catching the ball
and throwing players out.

There is often a direct correspondence between action loops in the com-
mitment network and flow dependencies in the information-resource network.
The resource that flows from A to B is described by the conditions of satisfac-
tion. The prerequisite aspect of the flow dependency is determined by whether
the loop is an offer (initiated by B, a “push”) or by a request (initiated by A, a

Coordination 425

Fig. 5. The coordination network for the university pay process consists of action
loops that are connected when a person playing a performer role in one loop makes
requests in another. The cylinders represent databases of the information structure
that answer questions needed to complete some action loops. This coordination pro-
cess drives the information network shown in Fig. 4. (I = individual, D = department
hiring agent, SR = sponsored research agent, HR = human resources agent)

“pull”). The accessibility aspect is managed by B’s delivery act. The usability
aspect is managed by the initial agreement on conditions of satisfaction and
the final accept.

6 Synergy of the Two Frameworks

Flow-sharing-fit (FSF) dependency networks and action loop (AL) networks
are interpretations of coordination and interaction. Each is a notation for
presenting, describing, designing, and analyzing coordination. But the two
approaches emphasize different things and are useful in different ways.

The FSF interpretation provides a general framework for coordination that
avoids the detail of many coordination mechanisms. A dependency is an ab-
straction of a family of coordination mechanisms. A system or organizational

426 P.J. Denning and T.W. Malone

design will construct a FSF map and then translate it into specific coordina-
tion mechanisms appropriate for the local conditions in the system or orga-
nization. This framework focuses on the flows of information and resources
among the activities of the system.

The AL interpretation provides a framework for making obvious and track-
ing the various commitments that must be fulfilled to produce the results that
the system or organization has promised. This is particularly helpful in orga-
nizations that want to manage their workflows efficiently while maintaining
a high level of customer satisfaction. Although commitments are seen as hu-
man acts, we often reflect them into the systems that automate work. For
example, a low-level network protocol between two machines reflects a human
commitment to deliver packets and messages reliably.

More to the point, the two formulations expose different kinds of break-
downs. In the action-loop framework an incomplete loop is a breakdown.
An incomplete loop represents a failed commitment, a miscoordination, or
a wasted effort; and it may lead to dissatisfaction by the customer, distrust
of the performer, or displeasure with the customer, all of which impact fu-
ture interactions. Breakdowns in the flow of commitments are obvious in an
action-loop network and can be dealt with.

In the FSF framework the failure to manage a dependency is a breakdown.
An unrecognized or unmanaged dependency might mean information or ma-
terial routed to the wrong place, a queueing strategy that failed, a deadlock,
or an activity waiting for a resource that will never come. Breakdowns in the
management of dependencies, such as loss of synchronization, are obvious in
this framework and can be dealt with.

Another point of differentiation is that the two systems represent different
approaches to hierarchical decomposition. For example, an action-loop net-
work can be replaced by a single, more abstract loop if the network has a
single customer and can be treated as a single, abstract performer. An FSF
approach can analyze coordination recursively at many different levels. For in-
stance, the entire sales and logistics departments of a company can be viewed
as part of the coordination process used to manage the flow dependency of the
company’s products to its customers. But within the sales and logistics depart-
ments there are many detailed activities and resources which can, themselves,
be analyzed in terms of FSF dependencies and the coordination processes
needed to manage them.

Given these differences, an analysis of a system using both perspectives is
likely to detect more breakdowns and surface more possibilities for innovation
than either approach alone. As suggested in Fig. 6, we often achieve a more
complete view of a system by looking at two levels: the network of commit-
ments, and the network of dependencies. The two networks interact; events
in one trigger (or correspond to) events in the other.

Coordination 427

Fig. 6. Action loops are especially useful for visualizing, designing, and managing
commitments toward their completions. Flow-sharing-fit dependencies are especially
useful for managing coordination between activities and resources. Each framework
makes certain kinds of breakdowns obvious; for example, broken loops and unman-
aged dependencies

7 Can There Be Coordination Without Feedback?

Effective coordination implies some sort of feedback that enables actors to
change if behaviors are ineffective. This statement deserves more scrutiny
because it is easy to think of examples where there is coordination without
apparent feedback:

• Scout ants leave enzyme trails that lead worker ants to food.
• Bees’ dances tell other bees where pollen can be found.
• The weather service broadcasts a hurricane warning, asking thousands of

people to take shelter or evacuate.
• Railroads and airlines publish timetables of trains and flights.
• Companies market their products.
• Search for Extra Terrestrial Intelligence, SETI, sends an inscribed plaque

on a deep-space probe, hoping that another intelligence will read and de-
cipher it.

In each of these cases, we find there is some form of indirect feedback that
supports the coordination. Ants and bees have evolved their coordination
practices over many generations; only the successful practices survive. People
are educated or trained in advance of hurricanes to know what actions they
should take in case of a warning; the warning triggers those actions. Railroads,
airlines, and companies watch sales and discontinue unprofitable services and
products. SETI hopes that one day, in a distant future, a response will come
from another race.

The definition of the action loop allows for these indirect forms to complete
the loop in the fourth segment. Action loops always occur in some context
that gives the conditions of satisfaction meaning and purpose. That context is
the result of previous actions, conversations, and declarations. The feedback

428 P.J. Denning and T.W. Malone

needed to complete a loop may come from other actors in the context, not
necessarily the ones who are directly engaged in the loop.

It is a useful exercise to analyze what happens in action loop and FSF
systems without feedback. It seems that eliminating feedback inevitably leads
to some kind of breakdown and unreliability. For example, failure to close
an action loop will lead to customer dissatisfaction at the human level or
a frozen protocol at the machine level. In an FSF system, an activity that
tries to access a shared resource before it has been created will generate an
error. If two activities try to update a common resource, they may encounter
race conditions, conflicts, and scrambled data. There has to be some sort of
feedback to insure that flow, sharing, and fit work correctly.

8 Delegations to Computational Coordination Structures

The two-level structure shown in Figs. 4 and 5 illustrates one of several possi-
ble ways for humans to delegate responsibilities to a computational structure.
In that example, the making and fulfilling of promises was retained by humans
(Fig. 5) and the movement of information on forms and files was delegated
to an information structure (Fig. 4). In general, four levels of delegation are
possible:

• HH: human–human: People coordinate directly in their social and lin-
guistic networks without delegating anything to a computer, except possi-
bly for the transport of signals and data through communication systems.

• HHA: human–human with computer assistance: A coordination
network is represented as a computational structure, and individual in-
teraction events (such as speech acts, clock triggers, and external signals)
trigger state changes in the structure. The structure moves and processes
data, and tracks progress, helping the participants continue to move to-
ward completion of their commitments.

• HC: human–computer: The performer role of a loop is assigned to
a computational process. The language for interacting with the process
organizes the HC interface, HCI.

• CC: computer–computer: Both the requester and performer roles are
delegated to (different) processes. The interactions between them follow
prescribed multiparty algorithms called protocols. All the issues of con-
currency and distributed computation fall under this heading.

The HHA level emerged in the 1980s under the title Computer Supported
Cooperative Work, CSCW. For example, in the 1980s Action Technologies
marketed an email system, The Coordinator, which tracked action loops; and
Lotus Notes offered sophisticated dynamic conversation databases. There are
now numerous other CSCW products, including graphical tools for mapping
and managing coordination networks (like Fig. 5); project time-line sched-
ulers; email filters, chat for unstructured, free form, real-time conversations;

Coordination 429

group brainstorming systems; blackboard systems for collaboration and class-
room management, and decision support systems for managers. Each of these
systems is built around a model of the type of work supported; each helps the
participants track the progress of the work toward completion or some form
of resolution.

Since the first time-sharing systems of the late 1950s, the HC interaction,
HCI, has been recognized as an important area of computing. A partial list
of the HCI areas includes: command languages that evoke actions from the
computer; design of functions such as mouse, window, or direct graphical ma-
nipulation, that make an interface language user-friendly and error resistant;
“ergonomic” designs that minimize movements and steps; systems that help
users navigate (or browse) through large complex spaces of objects; search
engines for the World Wide Web; hypertext, the backbone of the World Wide
Web; virtual reality; and schemas (such as the “desktop”) that organize the
workspace. The desktop metaphor, which has dominated user interfaces for a
generation, has recently come under attack by designers who find it unsuited
to many common HC interactions, for example, finding all one’s documents on
a particular topic. Two prominent examples of alternatives are the Lifestream
model (Carriero-Gelernter, 2001) and the Apple Computer’s Spotlight, which
integrates keyword searches into the computer desktop.

The CC interaction has an even longer historical record. Computer sys-
tems almost always consisted of multiple interacting computers connected
by a network. In the 1950s, operating systems designers worked out struc-
tures for organizing computing systems as sets of interacting, autonomous
computational processes. They created coordination tools such as interrupts,
time-slicing, context switching, semaphore signaling, message transfer, and
scheduling methods such as priority and round-robin. In the 1960s the ba-
sic science of interprocess coordination was articulated under the heading
of concurrency control: race conditions, determinacy, termination, queueing,
congestion, synchronization, serialization, mutual exclusion, deadlock control,
language constructs (such as monitors and cooperating sequential processes,
CSP), correctness proofs for distributed computation, generic coordination
patterns, and remote procedure call. Coordination became one of the funda-
mental responsibilities of an operating system. Since the 1960s, the theory
of concurrency has developed extensively and has reached well beyond the
sphere of operating systems. (See Coffman and Denning, 1973.)

9 Pushing the Limits of Delegation

Much of the progress described above depends on the successful delegation of
human tasks to computers. How far can we push this? What limits our ability
to delegate?

Everyone agrees that any mechanical, repetitive, mindless human process
can be delegated to a computational process. The computational process can

430 P.J. Denning and T.W. Malone

carry out exactly the same steps, with less error and at higher speed, and
produce exactly the same results. Sometimes we can create a computational
process that gives the same results as a human process but with a different
method; for example, recent Bayesian spam filters have been successful even
though no one knows whether humans use Bayesian learning to decide which
emails are important. But there are many things we do not know how to
delegate to a computer such as finding someone in a crowd, designing a new
product, formulating a scientific hypothesis, performing a virtuoso concerto,
composing music, or adjudicating a dispute. Writers Hubert Dreyfus (1992)
and Don Norman (1994) have made long lists of things that humans do easily,
but they doubt computers will ever be able to do them. Thus it appears there
are limits to what can be delegated.

Even if we restrict the question of what can be delegated to pure coor-
dination, there are limits. Can we delegate the fulfillment of a promise to
a computer? This is a central issue in the study of software agents. Let us
distinguish between low commitment and high commitment promises. A low
commitment promise is a statement of intention. For example, if you say to
your spouse, “I’ll quit work early on Christmas Eve and be home for the fam-
ily,” your spouse may know from experience that a last-minute, high-paying
client might demand your services on Christmas Eve. Your spouse knows you
have good intentions but knows better than to trust your promise completely.
In contrast, a high commitment promise is one that you’re willing to go out
of your way to deliver, going outside established processes and norms if need
be. In a famous example, a Fedex plane made an emergency landing in Texas.
The pilot was so concerned about delivering the packages on time, he hired a
helicopter to ferry them to the nearest airport. To that point, no one had ever
contemplated using a helicopter to transport Fedex packages. It appears that
low commitment promises are easily delegated to computers; indeed, many
people treat many automatic processes in this way. It appears that high com-
mitment promises cannot be successfully delegated: the computer can’t read
the larger context, evaluate alternatives hidden there, or evaluate the risk of
departing from established norms. In between these two extremes are many
gradations. The more context can be made explicit, the better the job a com-
puter can do in departing from established norms in finding alternative ways
to fulfill promises.

10 The Role of Math in Understanding Coordination

The history of coordination shows that mathematical understanding has been
very important to the advancement of the principles. Discrete and combinato-
rial math were among the earliest math to be deployed—graphs, trees, count-
ing arguments, generating functions, models for asynchronous computation,
and algorithm analysis. These were augmented by methods from predicate
logic, used to state precise propositions describing the correct function of a

Coordination 431

distributed system, and by temporal logic that added predicates about time
ordering of events. These maths are commonly used in theoretical computer
science.

Coordination, however, frequently takes place in an environment of un-
certainty about the exact timing of events. We don’t know exactly at what
moment a user will make a request of a machine, or exactly when the machine
will respond. We don’t know exactly how many users will overload a system, or
packets will overload a network. To deal with these uncertainties, we routinely
turn to probability theory, queueing theory, and scheduling theory to help. In
the early 1970s, for example, we learned how to use “Markovian queueing net-
works” to predict throughput and response time of real computing systems
quite accurately, and we developed extremely fast algorithms (“mean value
analysis”) to calculate these predictions from a model with many servers and
workloads. We used this math to evaluate response times of web systems that
cache web documents in local servers and to determine the capacity of web
stores. We subsequently used the same math to understanding the perfor-
mance of network protocols such as TCP/IP. We used scheduling theory to
tell us how to organize tasks in real-time systems so that they could be com-
pleted within their deadlines after their triggering events. These maths do not
play a prominent role in theoretical computer science.

This may account for why some theoretical computer scientists look at the
area of coordination and see “practice” rather than “foundations”. The math
is there but it’s not the math they are accustomed to looking for.

11 Personal Perspectives on Coordination History

Denning: My first memories of computers date back to 1951 when as a young
boy I was captivated by the newspaper stories of “electronic brains being de-
ployed in the Census Bureau”. Even then, computers were portrayed as ma-
chines to interact with. Later in the 1950s I built simple computers for science
fairs and discovered that some modes of interaction (clicking, buzzing, spark-
ing, oscilloscopes, graphical output) were more attention-getting than others
(silent vacuum tubes, voltmeters). When I arrived at MIT in 1964 to begin
my formal education as a computer scientist, I joined Project MAC, which
was dedicated to interactive computation. In those days I was primarily con-
cerned with issues of concurrency control (the CC subdomain); but I was also
interested in how interactive computing increased programmer productivity,
reduced programming bugs, gave birth to text editing, and enabled direct
graphical manipulation—the beginnings of HCI. I was fascinated with the in-
vention of hypertext, mouse, and windows by Ted Nelson and Doug Engelbart
in the later 1960s. Interactive computing, and the underlying technical issues
of coordination, has been an integral part of the computing world I lived in
for my entire career.

432 P.J. Denning and T.W. Malone

By 1970, Ed Coffman and I became convinced that the principles of op-
erating systems, especially those bearing on coordination, had advanced suf-
ficiently that operating systems should be considered as a fundamental core
field on its own and not an application of other knowledge. We recorded our
understanding in the book Operating Systems Theory (1973), which became
a classic and remained in print until 1995. We showed fundamental theorems
in concurrency, notably those relating to determinacy, synchronization, and
deadlocks. We drew heavily on the pioneering work of Dick Karp, Ray Miller,
Anatol Holt, and Edsger Dijkstra from the 1960s, which was continued by Jack
Dennis in his computation structures group at Project MAC in the 1960s and
1970s. Three major concurrent computation models emerged from that re-
search: cooperating sequential processes, dataflow, and actors. All continue
to be important today. The computation structures group sponsored confer-
ences on coordination and concurrency as early as 1970. Solutions to synchro-
nization and deadlock problems were extended from operating systems into
database systems (atomic transactions) and communication systems (proto-
cols). All these technologies became the subject of formal verification, which
stimulated the development of verification logics including temporal logics.
Some of this knowledge appears to have been lost. For example, Coffman
and I stated a fundamental theorem about determinacy, well-known in those
days; the theorem is today being rediscovered by security researchers seeking
to prove that various constraints lead to noninterference between concurrent
processes.1

The 1980s, which I witnessed from a ringside seat at NASA-Ames, were a
time of tremendous advancement for coordination, HCI, and concurrency. In
the area of coordination, the field of CSCW was born with studies of email
systems that supported action loops, of systems for facilitating brainstorming
and speculation, of the collaboratory for supporting research, and of human
work and interaction that might be supported by computers (Doug Engle-
bart). The business world discovered and embraced workflow technologies;
Action Technologies started the workflow industry and (in the early 1990s)
IBM bought Lotus Notes to incorporate workflow into its enterprise systems.
HCI became its own field of study with advances in graphics interface, hyper-
text, speech recognition, some aspects of natural language translation, and
design issues such as usability and ergonomics. Concurrency advanced in two
fronts with the development of computational science and high performance
1 Given a set of processes each implementing a fixed but unknown function; a set

of memory cells, each readable by some processes and writeable by others; and a
precedence relation partially ordering the executions of the processes. The output
cells of every process are disjoint from input and output cells of every other process
than can run concurrently with it. Then for every possible execution sequence of
these processes, the final values in the memory cells are uniquely determined by
the initial values. In fact, the sequence of values written in each memory cell
is unique. As a corollary, any system of processes that exchange values through
FIFO queues (rather then memory cells) will be determinate.

Coordination 433

computing applied to the “grand challenges of science.” One front was con-
tinued advancement in graphics, especially visualization of complex data and
graphics accelerators for personal computers—all intended to improve the in-
teraction with humans. Virtual reality, the search for completely immersive
sensory environments, emerged during this time. The other front was in mas-
sively parallel supercomputers, notably the Connection Machine and Hyper-
cube. The standalone massively parallel computers disappeared because the
only customer willing to pay $400M a shot was the US government. However,
other systems for massive computation emerged including Beowulf and grid
computing. New languages (such as Occam, which embedded Hoare’s CSP)
were invented to support them.

The 1990s continued the breathtaking advancements. New forms of co-
ordination were developed for the Internet and Web (the ultimate triumph
of hypertext). These included e-commerce (the on-line store, shopping cart),
the auction (eBay), journalism (the web log), publishing (the digital library),
public key infrastructure, and the search engine (to locate items in the vast
Internet). Security researchers invented protocols to increase trust, and be-
lief logics to verify them. Large-systems researchers examined how massive
groups of autonomous processes might generate unsuspected “emergent” be-
havior. Performance analysts extended their methods to enable prediction of
throughput and response time for task requests in these new systems. Comput-
ers as multimedia centers provided new paradigms for distribution of music
(peer-to-peer) music file sharing, production of CDs and DVDs, editing of
images and movies, and even new approaches for first courses in computer
science.

When I devised the great principles framework for computing (2003), I
included coordination (interaction) as one of the six principal categories. My
own career had provided ample evidence that many fundamental principles
are in this area.

Malone: Like Peter, my imagination was stimulated by early newspaper
accounts of “electronic brains”, I did science fair projects about computers,
and I was deeply inspired by the pioneering visions of Ted Nelson and Doug
Engelbart for interactive computing. I sent my first email message when I ar-
rived as a graduate student at Stanford in 1975. I had the privilege of joining
Xerox PARC in 1979 when it was a science-fiction wonderland of networked
personal computers, display-oriented editors, and laser printers—technologies
that we now take for granted and hardly notice. At PARC, I worked on a
system for sharing tasks among idle, networked personal computers using a
market-like bidding mechanism for task assignment (Malone, Fikes, Grant,
and Howard, 1988). I also participated in one of the first conferences on
Computer–Human Interaction (CHI).

After coming to MIT in 1983, I was among the earliest researchers involved
in developing the field of Computer-Supported Cooperative Work (CSCW).
I led the team at MIT that developed an early system for using “intelli-

434 P.J. Denning and T.W. Malone

gent agents” to filter and route email messages using “if-then” rules (Malone,
Grant, Turbak, Brobst, and Cohen, 1987).]

Based on all these experiences, I developed a growing conviction that there
were deep—and not widely appreciated—commonalities in how the activities
of different actors could be coordinated in many different kinds of systems,
including computer networks, human organizations, and economic markets.
This conviction led me to begin articulating in the late 1980s the possibili-
ties for a field of “coordination theory” or “coordination science” that would
understand, catalog, and analyze the fundamental principles of coordination.

Now, almost two decades later, I believe significant progress has been made
toward this goal: Numerous papers and books have been published on the
topic of coordination. I have co-authored an article and co-edited a book that
attempt to provide an overview for the field (Malone and Crowston, 1994;
Olson, Malone, and Smith, 2001). With my colleagues I created a Center for
Coordination Science at MIT, developed an on-line repository of knowledge
about business processes and coordination (Malone, Crowston, and Herman,
2003), and used this approach to develop tools that help (semi-)automatically
create software systems (Dellarocas, 1996, 1997). In spite of all this progress,
however, I believe much work remains to be done to fulfill the promise of this
approach.

12 The Future

In the foregoing we have emphasized the pervasive, fundamental nature of the
principles of coordination, particularly their influence in HCI, CSCW, work-
flow, and concurrent computing. In truth, coordination principles affect every
core technology of computing: it is hard to imagine a computer or process
that does not interact either with humans or with other processes.

Interaction provides for a synergy between computation and human ca-
pabilities that enhances both and overcomes some limitations. Computers
extend human capabilities by carrying out large computations, without er-
ror, that humans could not hope to complete in their lifetimes. (But not all:
many important problems are computationally intractable.) Humans extend
computing capabilities by providing answers to noncomputable questions at
interaction points in a program. (But not all: many questions are too complex
for a human to answer.) An old computability theorem says the power of a
computer can be extended by an oracle that can answer a noncomputable
question: the oracle-plus-computer is more powerful than computer alone.
(But not without limit: there is always another question that cannot be an-
swered by oracle-plus-computer.) Our experience with interaction confirms
this: in the synergy of the interaction, the human looks like an oracle to the
computer.

What can we expect in the future? Here are some places where we expect
to see continued advancements in the theory and practice of coordination.

Coordination 435

• Computer Supported Cooperative Work, CSCW. Language-action
research will continue to interact with computing to yield new understand-
ings of recurrent patterns of human conversation and work. These will lead
to new systems for manually and automatically mapping networks of com-
mitments in organizations, tracking cooperative work toward completion
of commitments, and understanding the nature of knowledge work. On-
line repositories of business processes will represent common patterns in
how different activities are related. With help from the XML description
languages of the Web, these systems will make explicit more “layers” of
context, thus increasing the computer’s ability to help people do some
tasks and to completely automate other tasks where users have high levels
of trust in the computer’s ability to deal with unforeseen circumstances.

• Trust. Trust has become an important issue in commerce, security, and
safety critical systems. Systems are called “trustworthy” when users see
solid evidence that the computer will perform as expected in all or most
circumstances. Trust itself is a commitment by a user to accept the risk
and rely on the system to perform its duties. Can linguistic studies of
trust as a commitment shed light on how to design systems that people
are willing to trust? How much does trustworthiness depend on the user
believing that the computer can sense context and take appropriate action
in situations not foreseen by the designers? How can tools like on-line
reputation systems help people know when to trust other humans with
whom they have only interacted electronically? (See Resnick, Zeckhauser,
Friedman, and Kuwabara, 2000.)

• Delegations and agents. Coordination exists as a fundamental principle
of computing because people delegate tasks to computational processes.
The processes must interact with each other and with users. The mod-
ern field of “agents” is concerned with how computational processes can
interact to carry out a delegated task. What are limits on delegation?
Many questions about limits rely on philosophy to answer since we need
to understand what humans understand and how they come to understand
before we can design a computational process that replaces a human capa-
bility. Dreyfus, for example, argues that software agents cannot be experts
according to the same criteria as humans judge experts (Dreyfus, 2003).

• Reverse Turing tests. Much has been made of the Turing test to estab-
lish whether a computer is intelligent by measuring how long it might take
a human to determine that the entity on the other side of an interaction is
a computational process rather than another human. Recently, researchers
have turned this upside down. To make sure that the entities logging in
to one’s accounts are humans and not attacking automated systems, re-
searchers at the Carnegie-Mellon Captcha Project have found simple visual
and aural tasks that humans can do easily but no known algorithm can do.
This line of research may eventually help deal with difficult problems such
as spam, worms, and viruses, which are initiated by humans but carried
out on massive scales by automated processes.

436 P.J. Denning and T.W. Malone

• Dealing with uncertainty: Many events in interactive environments
occur at unpredictable times. Two systems of analysis have been developed
for performance prediction of systems of interacting components subject
to random delays: queueing and scheduling theory; and emergent behavior
theory. As other interaction research reveals more about formal structures
of patterns of interaction, we may be able to apply queueing theory to make
performance predictions for these systems. For example, using queueing
methods such as G-networks (Gelenbe 2000) and Petri nets, it may be
possible to analyze a network of action loops configured to implement a
customer request (as in Fig. 5) to predict response time and throughput
and locate bottlenecks. Emergent phenomena are system-wide behaviors
that are not explicitly programmed in to any system component or rules
of interaction. Examples are “Internet packet storms” and the spread of
innovations (Huberman and Lukose, 1997). Statistical methods enable the
detection, explanation, and analysis of such phenomena. With either type
of analysis, networks of human interactions may become more analyzable
and predictable.

• Protocols: Protocols are algorithms that specify how two or more compu-
tational processes can coordinate their actions. Early protocols included IP
and TCP in the Internet. Interaction researchers are examining protocols
to control massive autonomous parallelism in the Internet (also known as
grid supercomputing); deep-space Internet communications; money flows
in e-commerce transactions; certificate flows in public key infrastructure;
belief logics for verifying trust; and security of systems. The range of pro-
tocol research will expand as more patterns of human and machine inter-
action are formalized.

• Cross-organizational systems: Increasingly, one of the biggest chal-
lenges for computer science will be dynamically weaving together complex
cross-organizational systems from components on many different machines,
owned by many different people and organizations, as the needs arise. All
of the research areas listed so far will be needed to do this well, along
with others such as service oriented architectures and the semantic web.
Solving this problem is also likely to benefit from the creation of extensive
on-line libraries of common processes—including coordination processes—
that can be used to help assemble complex applications rapidly and, in
some cases, automatically.

• Real-time systems: Many critical functions such as electric power dis-
tribution, water distribution, network routing tables, air traffic control,
international money transfer depend on complex, distributed systems of
agents that must respond quickly (and within set time limits) to specified
events. Many of these systems are known to be vulnerable to cascading fail-
ures. Interaction research can team with systems and control engineering
to yield solutions to these problems.

• Human–computer interaction, HCI: HCI research has been taking
up fascinating new questions in recent years. Usability of systems is a

Coordination 437

prominent example. We are learning to make assessments of usability and
connect them to reliability and safety of systems during heavy human–
computer interaction. We are learning to design systems for customer sat-
isfaction (e.g., on-line shopping) and customer support. We are learning
how to build virtual reality simulators that train people to be effective
actors in selected domains. We are learning to measure the effectiveness of
training by examining the human–computer interaction that occurs in a
VR simulation. This research area is a marriage between computer science
and the entertainment industry.

• Interface metaphor. There are many complaints about the “death of the
desktop metaphor”. This is the convention of using windows, icons, menus,
mouse, pointer, folders, and trash. Many people are finding it inadequate
for the way they are using computers today: storing every email, every
document, every photo, every sound track in a computer. They do not
think of these things as parts of a desktop. There has been a great debate
going on for several years on what should replace the desktop metaphor.
Research and experiments with such alternatives will be a continuing part
of interaction research.

• Systems with delayed feedback. Systems in which the parties receive
direct feedback in the context of an action loop are the ones most familiar
to us. However, we note that there are many modes of indirect feedback, for
example, adjustments in train schedules based on the history of customer
purchases of seats. We can grade systems by the time delay from the
stimulating events, such as posting of a train schedule, to the feedback,
such as the determination that a train should be discontinued. What are
the limits of these systems as a function of the feedback delay? In what
ways do they become unstable when feedback is slowed? What categories
of interaction cannot be handled when feedback is slow?

• Inventing new organizations. The history of computing so far has
focused on innovations at various layers of the “technology stack,” such as
hardware, operating systems, applications, and user interfaces. But some
of the most important innovations ahead of us may be at the next layer up:
the human organizations that use these technologies. With dramatically
cheaper communication, for instance, it is now possible for huge numbers
of people, even in very large organizations, to have enough information
to make sensible decisions for themselves, instead of just following orders
from someone above them in a hierarchy (Malone, 2004). We are only
just now beginning to explore the vast design space of these decentralized
organizations that computer technology is making possible.

These questions are pervaded by a qualitative difference from early re-
search in interaction systems. This is the inclusion of human behaviors in the
systems studied. We are no longer studying only interactions between ma-
chines, which are predictable and formalizable, we are studying interactions
between humans mediated by machines, between humans and machines, and

438 P.J. Denning and T.W. Malone

between machines in networks to which humans have delegated tasks. The ad-
dition of a human dimension has opened many new possibilities for design and
uses of systems. We are turning increasingly to statistical and queueing meth-
ods in analyzing these systems; the purely formal methods rooted in discrete
mathematics are insufficient for the questions we now ask, especially those
dealing with uncertainty. We are extending the range of networked systems
to which many of our familiar analytic methods can be applied.

We welcome these developments. They are good for computer science.
They immerse us with the human dimension to computing and the attendant
difficulties of design; they will make us better designers. Many of the new
research areas are partnerships between other areas that have not interacted
much in the past; for example between linguistic philosophers and designers
of workflow systems, or between video entertainers and builders of virtual re-
ality training systems, or between computing engineers and control engineers.
Interaction research is encouraging interaction among researchers! This can
only enrich our field.

References

1. Action Technologies. “Overview of Business Process Management”
<http://www.actiontech.com/bpm/>.

2. G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, 1987.

3. F. Arbab. “What Do You Mean, Coordination?” Bulletin of Dutch
Association for Theoretical Computer Science (NVTI), March 1998.
<http://www.cwi.nl/ farhad/NVTIpaper.ps>

4. F. Arbab. “Coordination of interacting concurrent computations.” Interactive
Computation: The New Paradigm (D. Goldin and P. Wegner, eds). Springer-
Verlag, 2006.

5. N. Carriero, and D. Gelernter. “A computational model of everything.” Comm.
ACM 44, 11, Nov 2001, pp. 77-81.

6. Captcha Project. Tests that humans can pass but not current computer pro-
grams. <http://www.captcha.net>.

7. E. Coffman and P. Denning. Operating Systems Theory. Prentice-Hall, 1973.
8. F. Commoner, H. Anatol, E. Shimon, and A. Pnueli. “Marked directed graphs.”

J. Computers and Systems Science 5, October 1971.
9. C. Dellarocas. A coordination Perspective on Software Architecture: Towards a

Design Handbook for Integrating Software Components. Ph.D. thesis, Dept. of
Electrical Engineering and Computer Science, Massachusetts Institute of Tech-
nology, February 1996 (Excerpts of Chapter 4 reprinted in Malone, Crowston,
& Herman, 2003).

10. C. Dellarocas. “Towards a design handbook for integrating software compo-
nents.” Proc. 5th Int’l Symp. on Assessment of Software Tools (SAST ’97),
Pittsburgh, PA, June 2-5, 1997, pp. 3-13.

11. P. Denning. Work is a closed loop process. American Scientist 80, July-August
1992, pp. 314-317.

Coordination 439

12. P. Denning. Great Principles of Computing. Comm. ACM 46, 10, Nov 2003,pp.
15-20.

13. P. Denning and R. Medina-Mora. Completing the loops. ORSA/TIMS Interfaces
25, May-June 1995, pp. 42-57.

14. E. Dijkstra. Selected Writings on Computing: A Personal Perspective. Springer-
Verlag, 1982.

15. H. Dreyfus. What Computers Still Can’t Do. MIT Press, 1992.
16. H. Dreyfus. On the Internet. Routledge, 2001.
17. F. Flores. The Leaders of the Future. In Beyond Calculation (P. Denning and

R. Metcalfe, eds). Copernicus, 1997, pp. 175-192.
18. E. Gelenbe. “The first decade of G-networks.” European J. Operational Research

126, October 2000, pp. 231–232.
19. B. Huberman and R. Lukose. Social Dilemmas and Internet Congestion. Science

277, July 1997,pp. 535-537.
20. R. Karp and R. Miller. “Properties of a model for parallel computations: de-

terminacy, termination, and queueing.” SIAM J. of Appl. Math 14, November
1966, pp. 1390-1411.

21. R. Karp and R. Miller. “Parallel program schemata.” J. Computers and Systems
Science 3, May 1969, pp. 147-195.

22. M. Klein, G. A. Herman, J. Lee, E. O’Donnell, and T. W. Malone. “Inventing
new business processes using a process repository.” In Malone, T. W., Crowston,
K. G., & Herman, G. (Eds.) Organizing Business Knowledge: The MIT Process
Handbook. Cambridge, MA: MIT Press, 2003.

23. T. W. Malone. The Future of Work: How the New Order of Business Will Shape
Your Organization, Your Management Style, and Your Life. Boston, MA: Har-
vard Business School Press, 2004.

24. T. W. Malone and K. Crowston. The interdisciplinary study of coordination.
ACM Computing Surveys, 26 (1), March 1994, pp. 87-119.

25. T. W. Malone, K. G. Crowston, J. Lee, B. Pentland, C. Dellarocas, G. Wyner, J.
Quimby, C. S. Osborn, A. Bernstein, G. Herman, M. Klein, and E. O’Donnell.
Tools for inventing organizations: Toward a handbook of organizational pro-
cesses. Management Science, 45, March 1999, pp. 425-443.

26. T. W. Malone, K. G. Crowston, and G. Herman (Eds.) Organizing Business
Knowledge: The MIT Process Handbook. Cambridge, MA: MIT Press, 2003.

27. T. W. Malone, R. E. Fikes, K. R. Grant, and M. T. Howard. Enterprise: A
market-like task scheduler for distributed computing environments. In B. A.
Huberman (Ed.), The Ecology of Computation, Amsterdam: North Holland,
1988.

28. T. W. Malone, K. R. Grant, F. A. Turbak, S. A. Brobst, and M. D. Cohen.
Intelligent information sharing systems, Comm. ACM, 30, 1987, pp. 390-402.

29. D. Norman, Things That Make Us Smart. Perseus Books, 1994.
30. What is Lotus Notes? See <http://www-10.lotus.com/ldd/whatisnotes>
31. G. M. Olson, T. W. Malone, and J. B. Smith, (Eds.) Coordination Theory and

Collaboration Technology. Mahwah, NJ: Erlbaum, 2001.
32. P. Resnick, R. Zeckhauser, E . Friedman, and K. Kuwabara, “Reputation Sys-

tems,” Comm. ACM 43, no. 12, Dec. 2000, pp. 45-48.
33. T. Winograd and F. Flores. Understanding computers and cognition: A new

foundation for design. Norwood, NJ: Ablex, 1986.

Social Interaction, Knowledge, and Social
Software

Eric Pacuit1 and Rohit Parikh2

1 ILLC, Amsterdam, The Netherlands
2 Brooklyn College and CUNY Graduate Center, New York, NY, USA

1 Introduction

In [31] a theory of human computation, analogous to Turing’s theory of ma-
chine computation, is discussed. The issue there is whether there might be
an analogue to Church’s thesis in this human domain. Examples of human
algorithms discussed include the making of scrambled eggs. By comparison,
Lynn Stein in this volume discusses the making of a peanut butter and jelly
sandwich. Neither she nor us in this volume have any concern with Church’s
thesis as such, although that might prove to be a fascinating topic for a fu-
ture paper. Rather the issue here is interaction, which occurs most naturally in
multiagent algorithms, unlike the making of scrambled eggs or peanut butter
sandwiches where one agent normally suffices.1 Such multiagent algorithms,
examples of which are building a house, or playing bridge, are examples of
what we shall call social software after [32]. In that paper, one of us asked
“Is it possible to create a theory of how social procedures work with a view
to creating better ones and ensuring the correctness of the ones we do have?”
The present chapter will survey some of the logical and mathematical tools
that have been developed over the years that may help address this question.

Social procedures occur at two levels. One is the purely personal level
where an individual is able to perform some complex action because social
structures have been set up to enable such an action. Taking a train (which
requires a system) or even a bath (where the city must supply not only the
water but also a system of pipes to carry it) are examples of such situations
where an individual is doing something simple or complex which is enabled by
existing social structures. Procedures which are truly social are those which
require more than one individual even in their execution. A piano duet is a sim-
ple example, but holding an election or passing a bill through the Senate are
more complex ones. Computer programs, whether sequential or distributed,
have logical and algorithmic properties which can be analyzed by means of

1 However, as the adage goes, it does take many cooks to spoil the broth!.

442 E. Pacuit and R. Parikh

appropriate logics of programs. Similarly, these social procedures also have
logical properties which can be analyzed by means of the appropriate logical
tools, augmented by tools from game theory, perhaps even from psychology.

There are several ways to compare social software with distributed com-
puting. In both cases the issue of knowledge arises. When several processes,
whether human or computer, are taking part in a common procedure, then
they need to know enough of what others are doing so as to be able to do their
part when the time comes. Indeed, Halpern and Moses’ fundamental paper
on common knowledge was written in the context of distributed computing,
although other authors like Aumann (game theory, see [2, 3]) and Lewis (so-
cial agreement, see [17]) had a different setting. Thus knowledge matters and
we shall give a quick survey of current formal theories of knowledge.

However, unless the agents have the same goal, or at least compatible
goals, there may be some element of strategizing where each agent tries to
maximize its own benefit (sometimes represented as utility) while keeping in
mind what other agents are apt to do. This makes game theory relevant.

In the context of social programming where an overarching social agent
(say, a government) is trying to make agents act in a socially beneficial way,
the social agent will still need to take into account the fact that while its
own goal is social welfare, the goal of the individual agent is his own personal
welfare. Thus agents have to be guided to act in beneficial ways. A simple
example of this is the system of library fines to ensure that borrowers do not
keep books too long and prevent other borrowers from having access to them.

Finally, agents may sometimes act in concert with other agents, i.e., form
coalitions. There is an extensive theory of co-operative games but our primary
purpose here will be to give a brief account of the logical theory of coalitions
due to Marc Pauly.

Thus what we hope to do in this chapter is to survey some of these logical
and analytical tools and indicate a few applications.

These tools are:

1. Logic of knowledge
2. Logic of games
3. Game theory and economic design

In the following sections we shall give brief descriptions of these three
tools and then indicate some applications. We assume that the reader has
some mild acquaintance with game theory (although we shall not actually
use very much), and [16] is a good reference for that field. Moore [18] gives a
survey of economic design. The sections are reasonably independent and the
applications depend mainly on reasoning about knowledge.

Social Interaction, Knowledge, and Social Software 443

2 Models of Knowledge and Belief

Formal models of knowledge and beliefs have been discussed by a diverse list of
communities, including computer scientists ([7, 42, 27]), economists ([5, 2, 4])
and philosophers ([21, 11]). In this section we provide a brief overview of some
of the models found in the computer science and game theory literature.

2.1 Epistemic Logic

Starting with Hintikka’s Knowledge and Belief [21] there has been a lot of
research on the use of logic to formalize the uncertainty faced by a group of
agents. A detailed discussion of epistemic and modal logic and its applications
in computer science can be found in the textbooks [7, 27].

The main idea of epistemic logic is to extend the language of propositional
logic with symbols (Ki) that are used to formalize the statement “agent i
knows φ” where φ is any formula. For example, the formula Kiφ → φ repre-
sents the widely accepted principle that agents can only know true proposi-
tions, i.e., if i knows φ, then φ must be true.

Formally, if At is a set of atomic propositions, then the language of multi-
agent epistemic logic LK

n (At) (or LK if At, n are understood from the context)
has the following syntactic form:

φ := A | ¬φ | φ ∧ ψ | Kiφ

where A ∈ At. We assume that the boolean connectives ∨,→,↔ are defined as
usual. The formula Liφ, defined as ¬Ki¬φ, is the dual of Kiφ. Given that the
intended meaning of the formula Kiφ is “agent i knows φ”, Liφ can be read
as “φ is epistemically possible for agent i”. There are a number of principles
about knowledge—listed below—expressible in the language of epistemic logic
that have been widely discussed by many different communities. Since our
focus is on social software and not on epistemic or modal logic, we shall
simply assume those schemes which correspond to the most widely prevalent
understanding of the formal properties of knowledge. When more restricted
properties of knowledge are entertained, negative introspection is the first
axiom to be dropped. Let φ, ψ ∈ LK be arbitrary formulas.

K Ki(φ→ ψ)→ (Kiφ→ Kiψ) Kripke’s axiom
T Kiφ→ φ Truth
4 Kiφ→ KiKiφ Positive introspection
5 ¬Kiφ→ Ki¬Kiφ Negative introspection
D ¬Ki⊥ Consistency

Note that D is a consequence of T .
We now turn to the semantics of epistemic logic. The main idea is that a

formula Kiφ is true provided that φ is true in all situations that i considers
possible. This definition was first put forward by Leibniz and is discussed
in detail by Hintikka [21]. This intuition can be formalized using a Kripke
structure.

444 E. Pacuit and R. Parikh

Definition 1. A Kripke model is a triple 〈W, {Ri}i∈A, V 〉 where W is a
nonempty set, for each i ∈ A, Ri ⊆W ×W , and V : At→ 2W is a valuation
function.

In order to make sure that the axiom schemes K,T, 4, 5, D hold, the rela-
tions Ri must all be equivalence relations. Elements w ∈W are called states,
or worlds. We write wRiv if (w, v) ∈ Ri. The relation Ri represents the uncer-
tainty that agent i has about the “actual situation”. In other words, if wRiv
and the actual situation is w, then for all agent i knows, the situation may be
v. Notice that Ri represents the uncertainty each agent has about the actual
situation and the agents’ uncertainty about how the other agents view the
situation, but it does not settle which basic facts are true at which states. For
this, we need the valuation function V , where w ∈ V (A) is interpreted as A is
true at state w. We write M, w |= φ to mean that φ is true at state w in M.
Truth is defined recursively as follows. Let M = 〈W, {Ri}i∈A, V 〉 be a model
and w ∈ W any state.

1. M, w |= A if A ∈ V (s)
2. M, w |= φ ∧ ψ if M, w |= φ and M, w |= ψ
3. M, w |= ¬φ if M, w �|= φ
4. M, w |= Kiφ if for each v ∈W , if wRiv, then M, w |= φ.

If the model M is understood we may write w |= φ. If M, w |= φ for all
states w ∈ W , then we say that φ is valid in M and write M |= φ. Note
that principle 4 is justified by the fact that i can only know φ if φ is true in
every state where, for all i knows, he might be.

Common knowledge can be defined via the “everyone knows” operator.
Let Eφ = K1φ ∧ K2φ... ∧ Knφ, where A = {1, ..., n} is the set of agents.
Thus Eφ says that all n agents know φ. Then φ is “common knowledge” is
expressed by the infinite conjunction φ ∧ Eφ ∧ E2φ ∧ ... For a more detailed
discussion about reasoning about common knowledge see [15, 7]. See [17, 6]
for a philosophical discussion of common knowledge.

2.2 Aumann Structures

One of the first attempts to formalize knowledge in economic situations is
by Aumann [2]. As in the previous section, let W be a set of worlds, or
states. In this section we reason semantically. Let S be the set of all states of
nature. A state of nature is a complete description of the exogenous parame-
ters (i.e., facts about the physical world) that do not depend on the agents’
uncertainties.

In the previous section we defined an object language that could express
statements of the form “agent i knows φ”, and interpreted these formulas in
a Kripke model. In this section we have no such object language. Reasoning
about agents is done purely semantically. Thus we are making essential use of

Social Interaction, Knowledge, and Social Software 445

the fact that we can identify a proposition with the set of worlds in which it
is true. Intuitively, we say that a set E ⊆W , called an event, is true at state
w if w ∈ E.

In [2], Aumann represents the uncertainty of each agent about the actual
state of affairs by a partition over the set of states. Formally, for each agent
i ∈ A, there is a partition Pi over the set W . (A partition of W is a pairwise
disjoint collection of subsets of W whose union is all of W .) Elements of Pi

are called cells, and for w ∈ W , let Pi(w) denote the cell of Pi containing w.
Putting everything together,

Definition 2. An Aumann model based on S is a triple 〈W, {Pi}i∈A, σ〉,
where W is a nonempty set, each Pi is a partition over W and σ : W → S.

So, σ is analogous to a valuation function, it assigns to each world a state
of nature in which every ground fact (any fact not about the uncertainty of the
agents) is either true or false. If σ(w) = σ(w′) then the two worlds w,w′ will
agree on all the facts, but the agents may have different knowledge in them.
Elements of W are richer in information than the elements of S.

The event that agent i knows event E, denoted KiE, is defined to be

KiE = {w | Pi(w) ⊆ E}

In other words, for each agent i ∈ A, we define a set valued function Ki : 2W →
2W using the above definition. It is not hard to show, given this definition and
the fact that the Pi s are patitions, that for each i ∈ A and each E ⊆W ,

E ⊆ F ⇒ Ki(E) ⊆ Ki(F) Monotonicity
Ki(E ∩ F) = Ki(E) ∩ Ki(F) Closure under intersection
KiE ⊆ E Truth
Ki(E) ⊆ Ki(Ki(E)) Positive introspection
Ki(E) ⊆ Ki(Ki(E)) Negative introspection
Ki(∅) = ∅ Consistency.

These are the analogues of the K,T, 4, 5 and D axiom schemes from the
previous section. In fact, there is an obvious translation between Aumann
structures and Kripke structures. In [14], Halpern formally compares the two
frameworks pointing out similarities and important differences.

There is a more fine-grained model of uncertainty discussed in the game
theory literature, usually called a Bayesian model. In a Bayesian model, the
uncertainty of each agent is represented by probability functions over the set
of worlds, and so we can express exactly how uncertain each agent is about the
given situation. A detailed discussion and pointers to the relevant literature
can be found in [5, 3].

Finally, a set E is a common knowledge set if Ki(E) = E for all i.2 Event
F is common knowledge at state w if there is a set E such that E is a
2 Note that this definition makes heavy use of the richer state space W . Within E,

agent i is not only aware of certain objective facts, she is also aware of some of
the knowledge of other agents.

446 E. Pacuit and R. Parikh

common knowledge set, and w ∈ E ⊆ F . Note that this definition of common
knowledge is very transparent compared to the more syntactic one from the
previous section.

2.3 History-Based Models

History based structures, also called interpreted systems, have been exten-
sively discussed in the distributed computing literature (see [7] Chap. 4, 5
and 8 for a thorough discussion). This section will present the framework
of Parikh and Ramanjam found in [35, 36]. In [36], Parikh and Ramanajam
argue that this framework very naturally formalizes many social situations
by providing a semantics of messages in which sophisticated notions such as
Gricean implicature can be represented.

We begin by assuming the existence of a global discrete clock (whether the
agents have access to this clock is another issue that will be discussed shortly).
At each moment, some event takes place. Let E be a fixed set of events. As
discussed in the previous section, it is natural to allow that different agents
are aware of different events. To that end, assume for each agent i ∈ A, a set
Ei ⊆ E of events “seen” by agent i. Before defining a history we need some
notation: Given any set X (of events), X∗ is the set of finite strings over X
and Xω the set of infinite strings over X . A global history is any sequence,
or string, of events, i.e., an element of E∗ ∪ Eω. Let h, h′, . . . range over E∗

and H,H ′, . . . range over E∗∪Eω. A local history for agent i is any element
h ∈ E∗

i . Notice that local histories are always assumed to be finite.
Given two histories H and H ′, write H & H ′ to mean H is a finite

prefix of H ′. Let hH denote the concatenation of finite history h with pos-
sibly infinite history H . Let Hk denote the finite prefix of H of length k
(given that H is infinite or of length ≥ k). Given a set H of histories, define
FinPre(H) = {h | h ∈ E∗, h & H, and H ∈ H}. So FinPre(H) is the set of
finite prefixes of elements of H. A set H ⊆ E∗ ∪ Eω is called a protocol.
Intuitively, the protocol is simply the set of possible histories that could arise
in a particular situation. Following [36], little structure is placed on the set
H. I.e., the protocol can be any nonempty set of histories, provided only that
if a history H is in the protocol H, then so is any prefix of H . Notice that this
notion of a protocol differs from standard usage of the term protocol which
is taken to mean a procedure executed by a group of agents. Certainly any
procedure will generate a set of histories, but not every set of histories can be
generated by some procedure. Therefore, this definition of protocol is more
general than the standard definition. It is useful as [36] use it to interpret
even notions like Gricean implicature.

Given a particular finite global history H and an agent i, i will only “see”
the events in H that are from Ei. This leads to a natural definition of agent
uncertainty.

Definition 3. For each i ∈ A define λi : FinPre(Eω) → E∗
i to be the local

view function of agent i.

Social Interaction, Knowledge, and Social Software 447

In systems in which agents cannot access a global clock. λi(H) is obtained
by mapping each event in Ei to itself and all other events to the empty string.
Thus if λi(H) = h for some finite history H , and event e ∈ Ei, which is visible
to i, takes place next, then λi(He) = he, otherwise λi(He) = h. Let H and H ′

be two global histories in some protocol H. We write H ∼i,t H
′ if according

to agent i, H is “equivalent” to H ′ at time t, i.e., λi(Ht) = λi(H ′
t). It is easy

to see that for each time t ∈ N, ∼i,t is an equivalence relation.

Definition 4. Given a history based multiagent frame for a set of agents A
and events E, FH = 〈H, E1, . . . , En〉, a history based model is a tuple
〈H, λ1, . . . , λn, V 〉, where each λi is a local view function and V : FinPre(H) →
2Φ0 is a valuation function.

Finally, a few comments about whether agents have access to the global clock.
We say that a history based frame FH is synchronous if all agents have
access to the global clock. Formally this is achieved by assuming a special
event c ∈ E with c ∈ Ei for each i ∈ A. This event represents a clock tick. In
synchronous history based models, the local view function maps each event
seen by agent i in some finite history H to itself, and all other events to the
clock tick c. Notice that in such a case, for any finite global history H and
local view function λi, the length of λi(H) and the length of H are always
equal.

Given these tree-like structures, it is natural to define a language in which
we can express both knowledge-theoretic and temporal facts. Formally, we add
a unary modal operator © and a binary modal operator U to the language
LK. Denote this language by LKT

n . ©φ is intended to mean that φ is true
after the next event and φUψ is intended to mean that φ is true until ψ
becomes true. Other well known temporal operators can be defined. Details
can be found in [36] and [13, 7].

Truth is defined at finite histories. Thus, for H ∈ H, H, t |= φ is intended
to mean that in history H at time t, φ is true. Boolean connectives and atomic
propositions are obvious.

1. H, t |= ©φ iff H, t+ 1 |= φ
2. H, t |= φUψ iff there exists m ≥ t such that H,m |= ψ and for all l such

that t < l < m, H, l |= φ
3. H, t |= Kiφ iff for all H ′ ∈ H such that H ∼i,t H

′, H ′, t |= φ.

In the above definition of truth of Ki formulas (item 3 above), it is assumed
that the agents all share a global clock. This assumption is made in order to
simplify the presentation. A sound and complete axiomatization for knowledge
and time under various assumptions can be found in [13], using a slightly
different framework.

448 E. Pacuit and R. Parikh

3 Logic of Games

The logic of games [33] is an offshoot of propositional dynamic logic or PDL.
PDL was invented by Fischer and Ladner [8] following Pratt’s work on first
order dynamic logic.

In dynamic logic a program is thought of as running in a state space, and
a program α is thought of as starting in some state s and arriving at some
state t if and when it finishes. The program need not be deterministic so that
starting with the same s it might instead arrive at some t′. This allows us to
see α as a binary relation Rα = {(s, t)|α can go from s to t}. This converts α
into a modality and allows us to define the constructs [α] and 〈α〉, which are
the program theoretic versions of the modal operators box and diamond. The
formula 〈α〉A holds at state s if there is some run of the program α starting at
s which results in a state t which satisfies A. [α]A holds if every terminating
run does so.

However, our interest here is in games which can no longer be represented
as binary relations, instead the semantics is more like the Scott–Montague
semantics for modal logic in which Kripke’s axiom K is no longer valid. The
reason roughly is this. If α is a program and 〈α〉(A ∨ B) holds then 〈α〉A or
〈α〉B must hold. For if there is an α-computation which results in A∨B then
there must be one which results in A or one which results in B. (〈α〉(A∨B) →
〈α〉(A) ∨ 〈α〉(B) is an axiom equivalent to Kripke’s K). But this need not
hold with a game. It may well be that one player, say I, has a winning strategy
to achieve A∨B in the game α without having a winning strategy to achieve
either A reliably or B reliably. For instance a game of chess may reach a point
where Black can ensure a checkmate in three moves, but it is White’s moves
which decide whether that checkmate is by queen or by rook—Black cannot
ensure a checkmate by queen nor a checkmate by rook. Thus game logic is a
non-normal (non-K) logic corresponding to PDL.

3.1 Syntax and Semantics

We have a finite supply g1, . . . , gn of atomic games and a finite supply
P1, . . . , Pm of atomic formulae. Then we define games α and formulae A by
induction.

1. Each Pi is a formula.
2. If A and B are formulae, then so are A ∨B, ¬A.
3. If A is a formula and α is a game, then (α)A is a formula.
4. Each gi is a game.
5. If α and β are games, then so are α;β (or simply αβ), α ∨ β, 〈α∗〉, and

αd. Here αd is the dual of α.
6. If A is a formula then 〈A〉 is a game.

We shall write α∧β, [α∗] and [A] respectively for the duals of α∨β, 〈α∗〉 and
〈A〉. If confusion will not result then we shall write αA for (α)A. For example,
〈g∗i 〉A instead of (〈g∗i 〉)A.

Social Interaction, Knowledge, and Social Software 449

Intuitively, the games can be explained as follows. α;β is the game: play α
and then β. The game α∨β is: player I has the first move, she decides whether
α or β is to be played, and then the chosen game is played. The game α∧β is
similar except that player II makes the decision. In 〈α∗〉, the game α is played
repeatedly (perhaps zero times) until player I decides to stop. She need not
declare in advance how many times is α to be played, but she is required to
eventually stop, and player II may use this fact as part of his strategy. Player
I may not stop in the middle of some play of α. Similarly with [α∗] and player
II. In αd, the two players interchange roles. Finally, with 〈A〉, the formula A
is evaluated. If A is false, then I loses, otherwise we go on. (Thus 〈A〉B is
equivalent to A∧B.) Similarly with [A] and II. The formula (α)A means that
player I has a winning strategy to play game α in such a way that formula A
is true if and when the game ends (or if the game does not end, the fault for
that lies with II).

Formally, a model of game logic consists of a set W of worlds; for each
atomic P a subset π(P) of W ; and for each primitive game g a subset ρ(g)
of W × P (W), where P (W) is the power set of W . ρ(g) must satisfy the
monotonicity condition: if (s,X) ∈ ρ(g) and X ⊆ Y , then (s, Y) ∈ ρ(g). For
clearly if an agent can play the game so as to be sure to be in X at the
end, then the agent can also ensure Y by simply ensuring X . We shall find it
convenient to think of ρ(g) as an operator from P (W) to itself, given by the
formula

ρ(g)(X) = {s|(s,X) ∈ ρ(g)}
It is then monotonic in X . We define π(A) and ρ(α) for more complex formulae
and games as follows:

1. π(A ∨B) = π(A) ∪ π(B)
2. π(¬A) = W − π(A)
3. π((α)A) = {s|(s, π(A)) ∈ ρ(α)} = ρ(α)(π(A))
4. ρ(α;β)(X) = ρ(α)(ρ(β)(X))
5. ρ(α ∨ β)(X) = ρ(α)(X) ∪ ρ(β)(X)
6. ρ(〈α∗〉)(X) = µY (X ⊆ Y ∧ ρ(α)(Y) ⊆ Y)
7. ρ(αd)(X) = W − ρ(α)(W −X)
8. ρ(〈A〉)(X) = π(A) ∩X .

It is easily checked that ρ(α ∧ β)(X) = ρ(α)(X) ∩ ρ(β)(X), ρ([A])(X) =
(W − π(A)) ∪ X , and ρ([α∗])(X) = νY ((Y ⊆ X) ∧ (Y ⊆ ρ(α)(Y)) where
νY means “the largest Y such that”. This is easily seen by noticing that
ρ([α∗])(X) = W − ρ(〈α∗〉)(W − X) = W – the smallest Z such that
(W −X) ⊆ Z and ρ(α)(Z) ⊆ Z.

We shall have occasion to use both ways of thinking of ρ, as a map from
P (W) to itself, also as a subset of W ×P (W). In particular we shall need the
(easily checked) fact that (s,X) ∈ ρ(β; γ) iff there is a Y such that (s, Y) ∈

450 E. Pacuit and R. Parikh

ρ(β) and for all t ∈ Y , (t,X) ∈ ρ(γ). Similarly, (s,X) ∈ ρ(β ∨ γ) iff (s,X) ∈
ρ(β) or (s,X) ∈ ρ(γ).

So far we have made no connection with PDL. However, given a language
of PDL we can associate with it a game logic where to each program ai of PDL
we associate two games 〈ai〉 and [ai]. We take ρ(〈a〉)(X) = {s : ∃t(s, t) ∈ Ra

and t ∈ X} and ρ([a])(X) = {s : ∀t(s, t) ∈ Ra implies t ∈ X} and the
formulae of PDL can be translated easily into those of game logic. Note that
if the program a is to be run and player I wants to have A true after, then if
she runs a, only 〈a〉A needs to be true. However, if player II is going to run
the program a then [a]A needs to be true for I to win in any case. Note that if
there are no a-computations beginning at the state s, then player II is unable
to move, [a]A is true and player I wins. In other words, unlike the situation
in chess, a situation where a player is unable to move is regarded as a loss for
that player in both PDL and game logic.

However, game logic is more expressive than PDL. The formula 〈[b∗]〉false
of game logic says that there is no infinite computation of the program b, a
notion that cannot be expressed in PDL.

Finally, let us show how well-foundedness can be defined in game logic.
Given a linear ordering R over a set W , consider the model of game logic
where g denotes [a] and Ra is the inverse relation of R. Then R is well-
founded over W iff the formula 〈g∗〉false is true. Player I cannot terminate
the game without losing, but she is required to terminate the game sometime.
The only way she can win is to keep saying to player II, keep playing!, and
hope that player II will sooner or later be deadlocked. (The subgame [a] of
〈[a]∗〉 is a game where player II moves, and in the main game 〈[a]∗〉, player I
is responsible for deciding how many times is [a] played.) Thus I wins iff there
are no infinite descending sequences of R on W .

However, despite its power, game logic can be translated into µ-calculus of
[19] and by the decision procedure of [20], is decidable. An elementary decision
procedure for dual-free game logic exists as does a completeness result, whose
axiomatization is given below.

3.2 Completeness

The following axioms and rules are complete for the “dual-free” part of game
logic.

The axioms of game logic

1. All tautologies
2. (α;β)A⇔ (α)(β)A
3. (α ∨ β)A⇔ (α)A ∨ (β)A
4. (〈α∗〉)A⇔ A ∨ (α)(〈α∗〉)A
5. (〈A〉)B ⇔ A ∧B

Social Interaction, Knowledge, and Social Software 451

Rules of inference

1. Modus ponens
A A⇒ B

B
2. Monotonicity

A⇒ B

(α)A⇒ (α)B
3. Bar induction

(α)A⇒ A

(〈α∗〉)A⇒ A

The soundness of these axioms and rules is quite straightforward. The com-
pleteness proof given in [33].

The completeness problem for game logic with dual has now been open
for about 20 years.

4 Coalitional Logic

In his dissertation [40], Marc Pauly extended game logic to a logic for rea-
soning about coalitional powers in games. This section will describe his basic
framework. The interested reader is referred to [40, 39] for a more detailed
discussion.

In game logic, the formula [α]φ is intended to mean that player II has
winning strategy in the determined, zero-sum game α. The intuition driving
the semantics for game logic is that when wραX holds, player I (alone) can
force the outcome of the game α to end in one of the states in X . Pauly
drops the assumption of determinacy of the games, weakening the power of
the individual players. In Pauly’s semantics, typically a coalition of agents is
needed for the outcome to end in some state in a set X .

The first step is the introduce a language that can express facts about
coalitions of players. Given a finite set of agents A, the language of coalitional
logic has the following syntactic form

φ := A | ¬φ | φ ∨ ψ | [C]φ

where A ∈ At is an atomic proposition and C ⊆ A. The other boolean con-
nectives are defined as usual. The intended interpretation of [C]φ is that the
group of agents in C have a joint strategy to ensure that φ is true.

The semantics is essentially a Scott–Montague neighborhood model with
a neighborhood function for each subset of agents. Let W be a set of states.
An effectivity function is a map

E : (2A ×W)→ 22W

We write wECX if X ∈ E(C,w). The intended interpretation of wECX is
that in state w, the agents in C have a joint strategy to bring about one of
the states in X . An effectivity function is playable iff for all w ∈ W ,

452 E. Pacuit and R. Parikh

1. For all C ⊆ A, ∅ �∈ E(C,w)
2. For all C ⊆ A W ∈ E(C,w)
3. E is A-maximal, i.e., for all X ⊆W , if X ∈ E(A, w) then X �∈ E(∅, w)
4. E is outcome-monotonic, i.e., for all X ⊆ X ′ ⊆W , w ∈W , and C ⊆ A,

if X ∈ E(C,w) then X ′ ∈ E(C,w)
5. E is superadditive, i.e., for all subsets X1, X2 of W and sets of agents

C1, C2 such that C1 ∩C2 = ∅ and X1 ∈ E(C1, w) and X2 ∈ E(C2, w), we
have X1 ∩X2 ∈ E(C1 ∪ C2).

Pauly [40] shows that these conditions are exactly the conditions needed
to formalize the intuitive interpretation of the effectivity functions. Given
any strategic game G, we can define an effectivity function generated by G.
Essentially, we say that a set X is in EG(C) for some set C ⊆ A iff there is a
strategy that the agents in C can play such that for any strategy that the other
players follow, the outcome will be some element of X . Pauly showed that the
above conditions charactize all effectivity functions generated by some game.

Theorem 1 (Pauly [40]). An effectivity function E is playable iff it is the
effectivity function EG of some strategic game G.

We can now formally define a coalitional model.

Definition 5. A coalitional model is a tuple 〈W,E, V 〉 where W is a
nonempty set of states, E is a playable effectivity function, and V : At→ P(S)
is a valuation function.

Given such a model, truth is defined as follows

M, w |= A iff A ∈ At and w ∈ V (A)
M, w |= ¬φ iff M, s �|= φ
M, w |= φ ∨ ψ iff M, s |= φ or M, w |= ψ
M, w |= [C]φ iff wECφ

M

where φM = {w ∈W | M, w |= φ}. Pauly shows [40] that the following axiom
system is sound and complete for the class of coalitional models.

(⊥) ¬[C]⊥
(") [C]"
(N) ¬[∅]¬φ→ [N]φ
(M) [C](φ ∧ ψ) → [C]ψ
(S) ([C1]φ1 ∧ [C2]φ2) → [C1 ∪ C2](φ1 ∧ φ2)

provided C1 ∩ C2 = ∅. We also assume modus ponens and that from φ↔ ψ,
we can infer [C]φ↔ [C]ψ.

Social Interaction, Knowledge, and Social Software 453

5 Some Applications

Our primary purpose in this survey has been to give a survey of tools used in
studying social software. However, we now proceed to give some examples of
applications. The first two examples are light.

5.1 A Knowledge Interaction

Suppose that Bob is giving a seminar and would like Ann to attend his talk;
however, he only wants Ann to attend if she is interested in the subject of his
talk, not because she is just being polite.

Why can’t Bob just tell Ann about his talk?
We suggest that Bob would like to satisfy three conditions.

1. Ka(S) (Ann knows S, where S stands for the proposition that Bob is
giving the seminar.)

2. KbKa(S) (Bob knows that Ann knows S.)
3. ¬KaKbKa(S) (Ann does not know that Bob knows that she knows S.)

Let us examine the three conditions. Clearly the first is necessary, for if
Ann does not know about the seminar she cannot go, even if she wants to.
The second, while not crucial, gives Bob peace of mind.

It is the last one which is interesting. Ann could have two reasons for going.
She could go because she is interested in the talk. Or she could go to please
Bob or out of fear that he will be offended if she does not go. If she knows
that Bob knows that she knows, she will have to allow for an expectation on
his part that she should go.

If Bob just tells her about the seminar, then common knowledge of S will
be created, including the dreaded formula KaKbKa(S). So Bob cannot just
tell her.

But he can ask a friend discreetly to tell her. Then he will be more con-
fident that she will not feel pressured to come. This solves his problem of
achieving the three conditions 1–3.

A similar example arises with a joke about a butler in a hotel who enters
a room to clean it, and surprises a woman guest coming out of the bath.
“Excuse me, sir, and he withdraws.”

Why “sir ”? Because she can reason that if he is mistaken about the gender,
then he could not have seen her clearly, and there is no reason for her to be
embarrassed—or to complain to the hotel. The butler very intelligently saves
her from embarrassment by deliberately creating a false belief in her. (In other
words ¬KgKb(F) and even Bg¬Kb(F) where F stands for the fact that the
guest is female, and B is the belief operator.)

Such issues will arise again in the section on knowledge based obligation.
It is generally accepted that what people do depends on what they believe,

what they prefer, and what their options are. Their beliefs tell them what the
options are and how they should be weighed. Thus if Bob has the option of

454 E. Pacuit and R. Parikh

meeting Jane for dinner or not, but does not know if she is pretty or ugly,
then in a sense he knows what his options are, to meet her or not. But there
is also a sense in which he does not know how to weigh the options. Now if he
knows that Jane is ugly, he can safely have dinner with her without worrying
that his own wife will be suspicious.

In the same way, in our earlier example, Ann does have the option of
going to the seminar or not—once she knows about it. But how she weighs
that option will depend on whether she knows that Bob knows that she knows.

5.2 The Two Horsemen and Letters of Recommendation

Suppose we want to find out which of two horses is faster. This is easy, we
race them against each other. The horse which reaches the goal first is the
faster horse. And surely this method should also tell us which horse is slower,
it is the other one. However, there is a complication which will be instructive.

Two horsemen are on a forest path chatting about something. A passerby
Mary, the mischief maker, comes along and having plenty of time and a desire
for amusement, suggests that they race against each other to a tree a short
distance away and she will give a prize of $100. However, there is an interesting
twist. She will give the $100 to the owner of the slower horse. Let us call the
two horsemen Bill and Joe. Joe’s horse can go at 35 miles per hour, whereas
Bill’s horse can only go 30 miles per hour. Since Bill has the slower horse, he
should get the $100.

The two horsemen start, but soon realize that there is a problem. Each
one is trying to go slower than the other and it is obvious that the race is
not going to finish. There is a broad smile on Mary’s face as she sees that she
is having some amusement at no cost. Each horseman can make his horse go
at any speed upto its maximum. But he has no reason to use the maximum.
They try to go as slow as they can and so they end up in a stalemate with
both horses going at 0 miles per hour. Let x, y be the speeds respetively at
which Bill’s horse and Joe’s horse are going. Then [0,0] is a Nash equilibrium
here.

However, along comes another passerby, let us call her Pam, the problem
solver, and the situation is explained to her. She turns out to have a clever
solution. She advises the two men to switch horses. Now each man has an
incentive to go fast, because by making his competitor’s horse go faster, he is
helping his own horse to win! Joe’s horse, ridden by Bill, comes first and Bill
gets the $100 as he should. The Nash equilibrium has shifted to [35,30].

For a practical analogue of the two horses example, consider the issue of
grades and letters of recommendation. Suppose that Prof. Meyer is writing a
letter of recommendation for his student Maria and Prof. Shankar is writing
one for his student Peter. Both believe that their respective students are good,
but only good. Not very good, not excellent, just good. Both also know that
only one student can get the job or scholarship. Under this circumstance,
it is clear that both of the advisers are best off writing letters saying that

Social Interaction, Knowledge, and Social Software 455

their respective student is excellent. This is strategic behaviour in a domain
familiar to all of us. Some employers will try to counter this by appealing to
third parties for an evaluation, but the close knowledge that the two advisers
have of their advisees cannot be discovered very easily. And unfortunately, we
know no obvious analogue to the strategem of exchanging horses. Certainly,
if someone were to find such an analogue, it would revolutionize the whole
process of writing letters of recommendation.

5.3 Banach–Knaster Cake Cutting Procedure

The following problem has often been mentioned in the literature. Some n
people have to share a cake and do not have access to any measuring device.
Moreover, they do not trust each other. Can they still divide the cake in a
way which seems fair to all? The Banach–Knaster last diminisher procedure
goes as follows.

Player 1 cuts out a piece p which she claims is a fair share for her. After
that p is inspected by the other n−1 people. Anyone who thinks the piece too
big may put something back into the main cake. After all n− 1 have looked
at it, one of two things must have happened. Either no one diminished p, in
which case player 1 takes p and leaves to eat it. Or else one or more people did
diminish p in which case the last diminisher takes the reduced p and leaves.
In any case, the game is now down to n− 1 people and can be repeated.

It is proved in [33] that this procedure is correct in the sense that each
of the n players has a winning strategy to make sure that he gets his fair
share. The technique used uses an n person (rather than two-person) version
of game logic of Sect. 3.

5.4 Consensus

In 1979 Robert Aumann proved a spectacular result [1]. Suppose that two
people A,B with the same prior probability distibution receive different in-
formation about some event E. It is then likely that their probabilities for E
will diverge and that p = pA(E) could be different from q = pB(E). What
Aumann showed was that if the values p and q are common knowledge then
they must be equal. This result (somewhat extended) has the following cu-
rious consequence: suppose that A is planning to sell B a stock at a selling
price s and B is plannning to buy. Assuming that they are both motivated
by money and not, say by love or hate for the stock, the future price which A
expects the stock to have is less than s and the future price which B expects
the stock to have is more than s. But this fact is common knowledge as it is
of course common knowledge that the sale is taking place. But this violates
the theorem, the future prices cannot be different and the sale cannot take
place! This is indeed a paradoxical result.

Aumann’s result was extended by Bacharach, Cave, and Geanakoplos and
Polmarchakis [10]. The last two showed that in Aumann’s framework, if p, q

456 E. Pacuit and R. Parikh

were not common knowledge they could be different, but that if the values
pA(E) and pB(E) were repeatedly exchanged by A,B, and repeatedly revised,
then the process of revision would eventually make them equal. A result by
Parikh and Krasucki [34] extends the same phenomenon to n agents who
communicate pairwise in a strongly connected graph. It is shown that personal
values of probabilities and other strongly convex functions eventually become
equal when people communicate in pairs, provided that no one is left out of
the chain.

5.5 Logic of Communication Graphs

In [29], Pacuit and Parikh introduce a multimodal epistemic logic for reasoning
about knowledge and communication. The language is a multiagent modal
language with a communication modality. The formula Kiφ is interpreted as
“according to i’s current information, i knows φ”, and ♦φ will be interpreted
as “after some communications among the agents, φ becomes true”. Thus for
example, the formula

Kjφ→ ♦Kiφ

expresses that if agent j (currently) knows φ, then after some communication
agent i can come to know φ. The following example illustrates the type of
situations that the logic of communicationg graphs is intended to capture.

Consider the current situation with Bush and Porter Goss, the director
of the CIA. If Bush wants some information from a particular CIA opera-
tive, say Bob, he must get this information through Goss. Suppose that φ is
a formula representing the exact whereabouts of Bin Laden and that Bob,
the CIA operative in charge of maintaining this information knows φ. In par-
ticular, KBobφ, but suppose that at the moment, Bush does not know the
exact whereabouts of Bin Laden (¬KBushφ). Presumably Bush can find out
the exact whereabouts of Bin Laden (♦KBushφ) by going through Goss, but
of course, we cannot find out such information (¬♦Keφ ∧ ¬♦Krφ) since we
do not have the appropriate security clearance. Clearly, then, as a prerequisite
for Bush learning φ, Goss will also have come to know φ. We can represent
this situation by the following formula:

¬KBushφ ∧�(KBushφ→ KGossφ)

where � is the dual of diamond. And this is because there is no direct link
between Bush and Bob, only a chain going through Goss.

It is assumed that a set At of propositional variables are understood by
(in the language of) all the agents, but only specific agents know their actual
values at the start. Thus initially, each agent has some private information
which can be shared through communication with the other agents. Now, if
agents are restricted in whom they can communicate with, then this fact will
restrict the knowledge they can acquire.

Social Interaction, Knowledge, and Social Software 457

Let A be a set of agents. A communication graph is a directed graph
GA = (A, E) where E ⊆ A × A. Intuitively (i, j) ∈ E means that i can di-
rectly receive information from agent j, but without j knowing this fact. Thus
an edge between i and j in the communication graph represents a one-sided
relationship between i and j. Agent i has access to any piece of information
that agent j knows. We have introduced this “one sidedness” restriction in
order to simplify our semantics, but also because such situations of one sided
learning occur naturally. A common situation that is helpful to keep in mind
is accessing a website. We can think of agent j as creating a website in which
everything he currently knows is available, and then if there is an edge be-
tween i and j then agent i can access this website without j being aware that
the site is being accessed. Another important application of course is spy-
ing, where one person accesses another’s information without the latter being
aware that information is being leaked. Naturally j may have been able to
access some other agent k’s website and had updated some of her own infor-
mation. Therefore, it is important to stress that when i accesses j’s website,
he is accessing j’s current information which may include what another agent
k knew initially.

The semantics combines ideas both from the subset models of [28] and the
history based models of Parikh and Ramanajum (see [35, 36] and Sect. 2.3).
The reader is refered to [29] for the details of the semantics. The satisfiability
problem for the logic of communication graphs is shown to be decidable.
Furthermore, as one may suspect, there is a connection between the structure
of the communication graph and the set of valid formulas in a model (based
on the communication graph). The following formula

∧
l

Kjφ ∧ ¬Klφ→ ♦(Kiφ ∧ ¬Klφ)

where i, j are distinct agents, l ranges over agents distinct from these two and
φ is a ground formula, states that it is possible for i to learn φ from j without
any other l learning φ. Intuitively, this should be true if i has access to j’s
website without interference from anyone. It is shown in [29] that if there is
an edge from i to j in a graph G then the above formula scheme is valid in
the model based on G.

5.6 Knowledge-Based Obligation

We start with the intuition that agents cannot be expected to perform ac-
tions, the need for which they are not aware of. In [30], Parikh, Pacuit and
Cogan present a multiagent logic of knowledge, action and obligation. The
semantics extends the history based models described in Sect. 2.3. In [30],
various deontic dilemmas are described that illustrate the dependency of an
agent’s obligation on knowledge. For instance a doctor cannot be expected to
treat a patient unless she is aware of the fact that he is sick, and this creates
a secondary obligation on the patient or someone else to inform the doctor of

458 E. Pacuit and R. Parikh

his situation. In other words, many obligations are situation dependent, and
are only relevant in the presence of the relevant information. This creates the
notion of knowledge-based obligation.

Both the case of an absolute obligation (although dependent on informa-
tion) as well as the notion of an obligation which may be over-ridden by more
relevant information are considered. For instance a physician who is about to
inject a patient with drug d may find out that the patient is allergic to d and
that she should use d′ instead. Dealing with the second kind of case requires
a resort to nonmonotonic reasoning and the notion of weak knowledge which
is stronger than plain belief, but weaker than absolute knowledge in that it
can be over-ridden. Consider the following examples:

(a) Uma is a physician whose neighbor is ill. Uma does not know and has not
been informed. Uma has no obligation (as yet) to treat the neighbor.

(b) Uma is a physician whose neighbor Sam is ill. The neighbor’s daughter
Ann comes to Uma’s house and tells her. Now Uma does have an obligation
to treat Sam, or perhaps call in an ambulance or a specialist.

(c) Mary is a patient in St. Gibson’s hospital. Mary is having a heart attack.
The caveat which applied in case (a) does not apply here. The hospital has
an obligation to be aware of Mary’s condition at all times and to provide
emergency treatment as appropriate. When there is a knowledge based
obligation, but also the obligation to have the knowledge, then we have
an obligation simpliciter.

(d) Uma has a patient with a certain condition C who is in the St. Gibson
hospital mentioned above. There are two drugs d and d′ which can be
used for C, but d has a better track record. Uma is about to inject the
patient with d, but unknown to Uma, the patient is allergic to d and for
this patient d′ should be used. Nurse Rebecca is aware of the patient’s
allergy and also that Uma is about to administer d. It is then Rebecca’s
obligation to inform Uma and to suggest that drug d′ be used in this case.

In all the cases we mentioned above, the issue of an obligation arises. This
obligation is circumstantial in the sense that in other circumstances, the obli-
gation might not apply. Moreover, the circumstances may not be fully known.
In such a situation, there may still be enough information about the circum-
stances to decide on the proper course of action. If Sam is ill, Uma needs to
know that he is ill, and the nature of his symptoms, but not where Sam went
to school.

Suppose that you want to formalize Uma’s reasoning in the above exam-
ples, and formally prove that she is obliged to treat Sam in example (b). This
has in fact been one of the goals of standard deontic logic. See [23, 22] and
references therein for an uptodate discussion of deontic logic. Getting back to
formalizing Uma’s reasoning, one of the main points discussed above is that
Uma’s obligation arises only after she learns of her neighbor’s illness. In other
words, her obligation depends on her having the appropriate knowledge. In
much of the deontic logic literature, an agent’s knowledge is only informally

Social Interaction, Knowledge, and Social Software 459

represented or the discussion is focused on representing epistemic obligations,
i.e., what an agent “ought to know”, see [26] for a recent discussion. The
logic in [30] is intended to capture the dependency of individual obligation
on knowledge. The semantics extends the history based models described in
Sect. 2.3 with PDL-style action modalities and a deontic operator. Refer to
[30] for a detailed discussion of the semantics.

6 Conclusion

We end this paper with an amusing story about Mark Twain.

‘There was a mystery,’ said I. ‘We were twins, and one day when we
were two weeks old—that is, he was one week old and I was one week
old—we got mixed up in the bathtub, and one of us drowned. We
never could tell which. One of us had a strawberry birthmark on the
back of his hand. There it is on my hand. This is the one that was
drowned. There’s no doubt about it.’

‘Where’s the mystery?’ he said.
‘Why, don’t you see how stupid it was to bury the wrong twin?’

I answered.
(Mark Twain in a 1906 interview reported by the New York Times)

The New York Times reporter was not fast enough on his feet to hoist
Twain on his own petard and ask what difference it made which twin was
buried if people could not tell them apart (even after the drowning). But
Twain’s joke, like other deep jokes (by Groucho Marx or by the Sufi Mullah
Nasruddin) leads into important issues like why we need names for people, why
the government needs social security numbers, why identity theft is possible.

Who am I? is normally a question which typically a Zen Buddhist asks.
But Who are you? is a question which others ask quite often. And this is
because societal algorithms depend very much on identity. The bank does not
want to allow others to withdraw funds from our accounts, or to allow us to
withdraw funds from the accounts of others. Questions can be raised here at
two levels. One level is why algorithms work only when identity is established.
But a deeper level is what game theoretic reasons lie behind such algorithms in
the first place. For instance in the play Romeo and Juliet when a Montressor
has killed a Capulet, it is fine to kill another Montressor to revenge oneself.
So the identity which matters here is not personal, but based on clan. There
is a game between the two clans, where a threat to kill one member of a
clan may be a deterrent on another. This is perhaps a foolish “algorithm”,
where one Montressor is killed instead of another, but favours are also often
dealt out for similar reasons. These issues of the importance of (personal or
tribal) identity to the correctness and relevance of games are deep and belong
to another (future) paper. But we hasten to point out that they are urgent.
When Sunni Arabs explode a bomb at a Shia mosque in Iraq, they may have

460 E. Pacuit and R. Parikh

nothing against the individual Shias praying at the mosque. They are sending
a message to the group. If we want to solve such problems, we will surely need
to go into the question of interactions where what matters is group identity
and not personal identity.

References

1. R. Aumann. Agreeing to Disagree, Annals of Statistics, 4:1236 – 1239.
2. R. Aumann. Interactive Epistemology I: Knowledge, International Journal of

Game Theory, 28:263–300, 1999.
3. R. Aumann. Interactive Epistemology II: Probability, International Journal of

Game Theory, 28:301–314, 1999.
4. A. Brandenburger, Knowledge and Equilibrium in Games, Journal of Economic

Perspectives, Vol. 6, 1992, pp. 83–101.
5. G. Bonanno, and P. Battigalli. Recent results on belief, knowledge and the

epistemic foundations of game theory, Research in Economics 53, 2 (June
1999), 149–225.

6. M. Chwe, Rational Ritual : Culture, Coordination, and Common Knowledge,
Princeton University Press, 2001.

7. R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge,
The MIT Press, 1995.

8. M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs
J. Comput. Syst. Sci., 18(2), pp. 194–211.

9. R. W. Floyd. Assigning meanings to programs, Proc. Symp. Appl. Math.,
Volume 19, pp. 19–31.

10. J. Geanakoplos and H. Polemarchakis. We Can’t Disagree Forever, Journal of
Economic Theory, 28(1), 1982.

11. P. Gochet and P. Gribomont. Epistemic logic, In The Handbook of History and
Philosophy of Logic, D. Gabbay and J. Woods, Eds., vol. 4. Elsevier, forthcom-
ing.

12. D. Harel, D. Kozen and J. Tiuryn. Dynamic Logic, MIT Press, 2000.
13. J. Halpern, R. van der Meyden and M. Vardi. Complete Axiomatizations for

Reasoning about Knowledge and Time, SIAM Journal on Computing, Vol 33,
No. 3, 2004, pp. 674–703.

14. J. Halpern. Set-theoretic completeness for epistemic and conditional logic,
Annals of Mathematics and Artificial Intelligence 26 1999, pp. 1–27.

15. J. Halpern and Y. Moses, Knowledge and common knowledge in a distributed
environment, Journal of the ACM, 37:3, 1990, pp. 549-587.

16. M. Osborne and A. Rubinstein. A Course in Game Theory, MIT Press, 1994.
17. D. Lewis, Convention: A Philosophical Study, Harvard University Press, 1969.
18. J. Moore. Implementation in Environments with Complete Information, In

J.J. Laffont, Advances in Economic Theory: Proceedings of the Congress of
the Economiteric Society, Cambridge University Press, 1992.

19. D. Kozen. Results on the propositional µ-calculus, Proc 9th ICALP, Springer
LNCS #140, 1982, pp. 348–359.

20. D. Kozen and R. Parikh, A decision procedure for the propositional µ-calculus,
Proc. CMU Conf. on the Logic of Programs, Springer LNCS #164, pp. 313–325.

Social Interaction, Knowledge, and Social Software 461

21. J. Hintikka. Knowledge and Belief: An Introduction to the Logic of the Two
Notions, Cornell University Press, 1962.

22. R. Hilpinen. Deontic Logic, in Blackwell Guide to Philosophical Logic, Ed. Lou
Goble, Blackwell, 2001, pp. 159–182.

23. J. Horty. Agency and Deontic Logic, Oxford 2001.
24. C. A. R. Hoare. An axiomatic basis for computer programming, Comm. ACM

12, pp. 576–580, 583.
25. B. Kooi. Knowledge, chance and change Ph.D. thesis, 2003.
26. A. Lomuscio and M. Sergot. Deontic interpreted systems, Studia Logica, 75,

2003, pp. 63–92.
27. J.J. Meyer and W. van der Hoek. Epistemic Logic for Computer Science and

Artificial Intelligence Cambridge Tracts in Theoretical Computer Science 41,
Cambridge University Press, 1995.

28. L. Moss and R. Parikh. Topological Reasoning and the Logic of Knowledge,
TARK IV, Ed. Y. Moses, Morgan Kaufmann, 1992.

29. E. Pacuit and R. Parikh. The Logic of Communication Graphs, Proc. DALT
2004, Joao Alexandre Leite, Andrea Omicini, Paolo Torroni, Pinar Yolum
(Eds.), Revised Selected Papers, Springer LNCS #3476, 2005, pp. 256–269.

30. E. Pacuit, R. Parikh, and E. Cogan. The Logic of Knowledge Based Obligations,
Presented at DALT 2004, forthcoming in Knowledge, Rationality and Action
2005.

31. R. Parikh Effectiveness, the Philosophical Forum XII, 1980, pp. 68–81.
32. R. Parikh. Social software, Synthese, pp. 187–211, September 2002.
33. R. Parikh. The Logic of Games and its Applications, Annals of Discrete Math.,

24, 1985, pp. 111–140.
34. R. Parikh and P. Krasucki. Communication, Consensus and Knowledge, J. Eco-

nomic Theory, 52, 1990, pp. 178–189.
35. R. Parikh and R. Ramanujam. Distributed Processing and the Logic of Knowl-

edge, in Logic of Programs, Springer LNCS #193, June 1985, pp. 256–268.
36. R. Parikh and R. Ramanujam. A Knowledge based Semantics of Messages, J.

Logic, Language and Information, 12, 2003, pp. 453–467.
37. R. Parikh. Levels of Knowledge, Games, and Group Action, Research in Eco-

nomics, vol 57, 2003, pp. 267–281.
38. R. Parikh. Logical omniscience, in Logic and Computational Complexity Ed.

Leivant, Springer LNCS #960, 1995, pp. 22–29.
39. M. Pauly. A Logical Framework for Coalitional Effectivity in Dynamic Proce-

dures, in Bulletin of Economic Research, 53(4), pp. 305–324.
40. M. Pauly. Logic for Social Software, Ph.D. Thesis, University of Amsterdam.

ILLC Dissertation Series 2001-10, ISBN: 90-6196-510-1.
41. V. Pratt. Semantical considerations on Floyd-Hoare logic, In Proc. 17th Symp.

Found. Comput. Sci. pp. 109–121. IEEE.
42. A. M. Zanaboni. Reasoning about knowledge: Notes of Rohit Parikh’s lectures.

Published in Italy: Cassa di Risparmio di Padova e Rovigo, June 1991. Based on
lectures given at the 3rd International School for Computer Science Researchers,
Acireale, June 1991.

Interaction, Computation, and Education

Lynn Andrea Stein

Franklin W. Olin College of Engineering, Needham, MA, USA

It seems to me that education has a two-fold function to perform in the life of
man and in society: the one is utility and the other is culture.

Martin Luther King, Jr.

The purpose of education has always been to every one, in essence, the same—
to give the young the things they need in order to develop in an orderly,
sequential way into members of society.

John Dewey

1 Introduction

This chapter is not quite like any of the other chapters in this volume.
Education is, at its essence, about the transmission of culture. This volume

as a whole documents a fundamental shift in the culture of computation: from
a focus on algorithmic problem solving to a perspective in which interaction
plays a central role. Many of the papers in this volume provide formal founda-
tions for the interactive approach to computation or explore the systems that
are a part of this conceptualization of the field. They speak in the language of
computer science and use that language to describe a variant vision, one more
responsive to the artifacts and theories at the center of much computational
progress today. They are intended for current practitioners and they expand
existing models to embrace this new paradigm.

In contrast, this chapter focuses on fundamental stories. The story is
the ultimate cultural transmission, proto-education that speaks in a visceral
language to directly address our understanding of phenomena. Most com-
puter science work is done in programming languages or in mathematical
formulae or architectural diagrams, building theories or systems that demon-
strate the author’s point. But before any of this work—informing the common
understanding—is a shared story that carries the culture of computation, our

464 L.A. Stein

touchstone, our common premises. This is a story first told by the likes of
Babbage and Turing and von Neumann, a story that allowed the separation
of the computational from worlds of mathematics and science and engineer-
ing, a story that enabled many of the technological revolutions of the last
half-century. It is also a story that has remained essentially unchanged even
in the face of the cultural shift documented by the remainder of this volume.
The purpose of this chapter is to examine that story explicitly—to bring it to
light and analyze how and why it has served us so far—and to introduce an
alternative narrative that better fits the world this volume describes.1

Education is cultural transmission. In the computer science classroom,
we don’t often tell stories explicitly. Nonetheless, we all carry a basic shared
understanding of computation on which all the rest of our work is built. By
casting this common understanding in the language of a story, we are able
to reify it, to make it directly manipulable, and to examine its contributions
and its limitations. By introducing an alternate narrative better suited to
the world of interactive computation, we can replace the core of the cultural
transmission on which computer science education relies.

This begins by describing the traditional computational story in the form
of a parable often used in introductory computer science classes. These are the
venues in which we indoctrinate new members of the computational society.
The stories we tell there are the stories on which our field is built, and we
expect these stories to serve our students well as they mature into compu-
tational professionals. The next section of this chapter describes the central
computational story as it is told to newcomers, but it also relates that story
to the practice of computing over the last half century.

Section 3 raises the specter of several computational artifacts that do not
fit well into the conventional computational story. While the oldest of these
dates back almost as far as the computational narrative itself, problematic
systems have been playing roles of increasing prominence in the past decade.
These systems have provoked the sea change documented by this volume, and
Sect. 4 of this chapter provides an alternative narrative in terms of which
these systems and developments can be more easily understood.

If we have a better narrative for computation—the interactive narrative,
rather than the traditional one—then it stands to reason that this should be
taught in our introductory courses. The second half of this chapter explores
just this theme, describing two pedagogic examples from a new curriculum
based on this story of interaction and exploring their implications. The cur-
ricular examples here are extracted from [Stein, CS101], a dynamic body of
work rethinking the introductory computer science curriculum. After all, the
role of stories in the conduct of science is to guide and inform our practices.
1 In fact, many of the changes documented by these papers have deep roots, because

interaction is as old as computation (or older); it has simply been forgotten,
ignored, or overlooked because of the enormous power of computation’s central
narrative.

Interaction, Computation, and Education 465

If we are training new generations of scientists, we have an obligation to train
them in science informed by stories that are authentic—true to the phenomena
we study and build—and useful.

It may seem strange to include a paper about stories in a volume about
computer science. Or, perhaps, computer scientists—whose stories are more
commonly writ in languages the computer can execute—should know better
than others the importance of getting those stories right.

2 A Parable of Programming

Consider the following problem: presented with a jar of peanut butter, a jar of
jelly, two slices of bread, and some knives, construct a peanut-butter and jelly
sandwich.2 This is like the functional specification of a traditional sequential
program.

In the early days of computation, this kind of problem would have been
solved very explicitly in terms of steps: First, open the jar. Pick up a knife. Now
load some peanut butter onto the knife, then store the peanut butter on the
bread. Go back and load some more peanut butter; store it. And so on. A slight
augmentation was the idea of an explicit looping construct, which allowed the
loading and storing to be repeated until some boundary condition was met,
e.g., until the bread was covered.3 This program—suitably extended to achieve
the desired result—in many ways reflects the first activities recognizable as
computer programming.

In the 1960s and 1970s, computing moved from the explicit sequencing of
steps to what is now called “high level programming”. This approach allows
the programmer to collect a sequence of steps and to encapsulate it so that
it can be regarded as a single step. (This is often called “procedural abstrac-
tion”.) For example, we might want to repeat the peanut-butter spreading
procedure on the other piece of bread. In fact, we’d really like to repeat it
with the jelly in place of the peanut butter; this is easily accomplished with
a parameterized procedure, i.e., one that allows the spreadable substance to
be supplied at the time that the procedure is to be executed.

The idea of encapsulating sequences of steps into larger—higher level, more
abstract—steps allowed for very significant advances in computation. It meant
that software designers could increasingly think in terms of these very high-
level steps, and that implementors could build systems by recursively decom-
2 The trick, missed by several Europeans in random trials, is that the peanut butter

goes on one slice of bread and the jelly on the other. Otherwise, the poor-quality
white bread required for an authentic PBJ disintegrates as the second substance
is applied. But this is beside the point.

3 This idea had been present in certain prior procedural formats, including Eu-
clid’s algorithm for finding the greatest common denominator, El Kowarizmi’s
algorithm for the addition of numbers with many digits, or more prosaic forms
such as recipes (“beat until stiff”) or mechanical processes (“sand until smooth”).

466 L.A. Stein

 Lynn Andrea Stein

Fig. 1. Sequential computation is like making a peanut butter and jelly sandwich

Fig. 2. Sequential computation: Beginning with some input, execute a sequence of
steps that terminates, producing a result

posing these steps into sequences of simpler steps, over and over, until finally
the simplest steps were machine-performable. Much of the history of comput-
ing in the 1970s consists of building better tools to support the automating of
machine performance of increasingly higher-level steps and the concomitant
raising of the level at which software designers could operate.

A further transition in programming practice surrounds the adoption of
object oriented programming. This technique centers around the idea that
that there is benefit to encapsulating data and performable behavior within
a single reusable program constituent. For example, the jelly (and its spread-
ability) might be useful not only for my sandwich today but also on my muffin
tomorrow morning. With the original descriptions of object-oriented program-
ming came a vision of self-activating (autonomous) objects. These are objects
containing (or controlling) their own threads of control: An alarm clock, a
garbage collector, etc.

Alan Kay has always insisted that the idea of active objects was a part of
his vision of object oriented programming from the beginning, but by the late
1980s, it was clear that “concurrent” was a subspecies of object-oriented pro-
gramming, at best (for example, [Kay, 1997] vs. [Yonezawa and Tokoro, 1987]).
Other attempts to activate objects, [Agha and Hewitt, 1987], for example,
were similarly sidelined, and this notion was largely lost in the translation of

Interaction, Computation, and Education 467

object-oriented philosophies into practice. Object-oriented programming lan-
guages and techniques may lead to a more flexible program organization, but
object-oriented programming per se still largely fits the sequentialist, result-
oriented, calculate-the-answer paradigm.

In each of these versions, the success of our program is measured by the
peanut butter and jelly sandwich that is produced. We can ask questions about
it: Is it an optimal peanut butter and jelly sandwich? We can also measure the
process that led to its creation: How many knives were dirtied in the process?
This model of computation, based on Turing’s machine and the mathematical
calculations of the original human computers of the early twentieth century,
has informed our thinking for more than half a century. It is what might be
called the calculation model of computation—sequencing steps to produce a
result—and its hallmarks are algorithm and functional specification.

No matter how we build our programs, there have been some very signifi-
cant advances enabled by this sequentialist, result-oriented story of computa-
tion (both within and outside of computer science). It is quite clear that some
of these advances would have been unlikely without certain of the clarifying
abstractions embodied by this paradigm. (For example, control of hardware
was greatly facilitated by the digital abstraction and von Neumann architec-
ture.) However, these abstractions hide as much as they reveal. In today’s
changing computational climate, this calculate-the-answer kind of computa-
tion has moved from empowering to limiting our vision.

3 Computations and Interactions

The structures contributed by the calculation model of computation were
tremendously empowering in the first half of this century. Turing’s and von
Neumann’s abstractions enabled computer science to focus on the organiza-
tion of sequences of steps into larger functional units without worrying about
transient voltage levels or multiple simultaneous transitions within the hard-
ware. This way of thinking about computation also let us ignore the occasional
power fault, the mechanical misfire, delays in operator feedback, or other hu-
man activities.

The power of the step-by-step construction metaphor made much of mod-
ern computation possible. Although some early computers were used in ac-
tual physically coupled control systems—realtime guidance of mechanical
operations—more frequently they were used to assist humans in decision-
making—calculating the answers to mathematical questions, such as the tra-
jectories of ballistic missiles—in a manner well modeled by the peanut butter
and jelly story of sequential computation.4 Perhaps if more emphasis had
4 For an elaboration of this argument, see [Stein, 1999a, Metaphor]. For a discussion

of early computing and control systems, see [Mindell, 2002] and for an early
history of computing, see [Campbell-Kelly and Aspray, 1997]

468 L.A. Stein

been placed earlier on embedded computation and control systems—systems
for which interaction was a more significant factor—the sequential calculation
model would not have become computation’s dominant metaphor for decades.
But it is equally possible, given some of the difficulties encountered by those
using digital computers for control or attempting to build embedded cyber-
netic systems, that without the sequential calculation model of computing we
would not have had much computing at all.

At the same time, the peanut butter and jelly story encourages us to ig-
nore the fact that computers are actually built out of analog components.
It obscures the fact that each component is fallible. It hides the ways in
which the computer is physically coupled into the world, and largely ignores
any systems—human or mechanical or otherwise—within which the compu-
tation is embedded. In short, it hides the reality that computational systems
are interactive communities—communities of interacting entities—themselves
embedded in still larger communities of interaction.

With the advent of timesharing systems, of increasingly networked com-
puters, of computational boxes containing more than one central processing
unit, it became less and less true that these other things “don’t matter”.
The activity of another user on the same timesharing system does impact
my computation, though the virtual machine model goes to great lengths to
minimize this interaction. Similarly, computations that necessarily take place
across multiple computers—the web is only the most visible example—are
poorly explained in terms of the traditional computational story.

One example of a computation that is ill-explained in traditional terms is
the operating system.5 Its basic structure is an interactive control loop that
continually processes whatever command you type at it (or whatever requests
are made by various software and hardware systems). If you look inside the
operating system, you will find what are in essence multiple interactive con-
trol loops—ongoing interacting subsystems—constituting a community that is
the operating system. For example, an operating system has a virtual mem-
ory subsystem that keeps track of what is in memory and also allows the
use of some disk space as though it were additional memory. Another piece
of the operating system processes keystrokes as they are typed and passes
that information on to the appropriate constituent or application. Perhaps
the computer in question is networked; in this case, the operating system may
well supply services for communicating over that network. There are of course
5 Goldin asserts that the operating system is the first system in which the lim-

itations of the Turing machine model were noted: “They do not ever stop
computing—and thus diverge and are useless according to TM theory.” She calls
this the “OS conundrum” (personal communication). Others apparently came to
this realization through different pathways: I imagine that those who work in the
areas of networks and controls have always had their suspicions regarding the
inadequacy of the conventional computational story, and I learned early on in
my own work with robots that I wasn’t particularly interested in the answer the
robot produced when it finally stopped.

Interaction, Computation, and Education 469

Fig. 3. Computation as interaction: Many persistent entities communicate and
coordinate over time

many other pieces of the operating system. In some operating systems, these
pieces are all executed within a single thread of control, and this decompo-
sition into simultaneous autonomous systems is more metaphoric. In other
systems, these pieces are more literally co-occurrent (or at least interwoven).
In almost all systems, there is an asynchronous interrupt system; also, periph-
eral devices with their own processors managing the services that they supply
are increasingly common.

This suggests that there must be an alternate story of computation, one
that takes ongoing interaction as primary. Such a story of computation-as-
interaction must also support thinking about levels of abstraction and recur-
sive decomposition. For example, if we look inside one of the pieces of an
operating system, we see that the virtual memory subsystem is composed
of a community of interacting entities (including, for example, different lev-
els of cache). From the outside—from the perspective of network services or
keyboard I/O—the virtual memory system is a single entity resolving page
references. In fact, significant negotiation among constituent entities occurs
whenever a page is referenced. From inside the virtual memory system, we can
more clearly see this recursive decomposition into subcommunities. Similarly,
though the operating system is itself built out of many interacting entities,
it looks like a single monolithic system from the perspective of those outside
the operating system (like the user or an application program). The operating
system provides the illusion of a single interactive entity.6

But an operating system is an unusual program, and perhaps we do not
need to reconsider computation’s central narrative for its sake alone. Consider,
then, a more traditional application: word processing. When I first learned to
6 If this final image—the illusion of a single interactive entity—seems reminiscent of

Minsky’s Society of Mind [1986], this is not coincidental. The interactive story is
equally applicable to what we know of cognitive architectures and neuroscience;
indeed, it may be a more currently useful bridge to these disciplines than the
more orthodox computationally based cognitive science revolution of the 1970s.
For a further discussion of these ideas, see [Stein, 1999a, Metaphor].

470 L.A. Stein

word-process, I wrote my text using an editor. This produced a file with some
text in it. Next, I gave that file to a spell-checker. This produced a file with
(hopefully) better text in it. Then, I handed that file off to a text formatter
(such as nroff or latex), producing yet another file. (This one is much harder for
a human to read, but presumably better for the computer.) Nowadays, this file
needs to be handed to a conversion program such as dvips. I can then see my
paper (using a previewer) and print it out. This is fundamentally a sequence-
of-steps calculation story. It starts at the beginning with the information I
produce, and at the end results in a stack of paper.

This is no longer how I word-process. As I type this paper, the word
processor I’m using dynamically reformats my page so that it looks at all times
the way that it would if I were previewing or printing it. At the same time,
if I type “hte”, the word processor reverses the “h” and the “t”, producing
“the”. It also underlines misspelled words and what it views as questionable
grammar. One could imagine that it simultaneously went off and searched
the web, suggesting references I might want to add to my paper. All of these
things are happening concurrently and asynchronously with the work that I
am doing. It is reasonable to imagine that this word processor is built out
of components that are themselves concurrent interacting entities; if we went
inside each one, we might find it to be a community of communities. Stepping
back, the word processor is itself a member of a community consisting of me,
my computer’s operating system and perhaps those papers out on the web.
None of these things is particularly well-explained by the sequenced steps of
the calculation metaphor of computation.

In the peanut butter and jelly model of computation, all inputs are present
at the beginning. Output is what you produce at the end. A computation is
described this functional—one shot input/output relationship—specification.
The interesting questions concern time-to-completion and resource utilization.
Classic computational systems are built by sequential, functional composition.

In contrast, in interactive systems input is continually arriving; output
is continually being produced. Behavioral specifications include the services
provided—what kind of responses can you expect on an ongoing basis?—and
the invariants maintained—what is guaranteed to stay the same over time?
Questions include latency and throughput. Interactive systems are built by
spatial or conceptual coupling, i.e., by concurrent co-operation.

In a conventional computation, the end is the moment of success. When
an interactive system—an operating system, a network, a robot—stops, it is
usually because something has gone wrong. What, after all, is the end result
that the World-Wide Web is trying to produce? The old story simply doesn’t
fit our artifacts.

What is needed, then, is a new story of computation that can explain
these systems. This new story should be as simple as the peanut butter and
jelly parable, because it is about the key ideas in computing. But it should be
powerful enough to explain how systems work even when those systems are
based fundamentally on interactions, as our networks and operating systems

Interaction, Computation, and Education 471

and robots and even desktop applications clearly are. We explore one such
narrative in the next section.

4 Expanding the Parable

We—all of us, every day—live in a concurrent world. Things happen when
our backs are turned, and many of us do more than one thing at a time. The
calculation model of computation is really quite different from many of our
everyday experience. In the calculation metaphor, the outside world doesn’t
really have a role to play in the sequence of steps that constitutes our com-
putation. The buzz and hum of everyday life is irrelevant to the unrelenting
progress of computation-as-calculation.

This kind of computation is not like following a recipe; it is like organizing
the operation of a café or restaurant. The problem confronting the system
designer is to figure out how to serve customers food on an ongoing basis.
Similarly, the web, the modern word processor, and the operating system
provide services on an ongoing basis. In the restaurant (and in these other
systems), these services must be provided simultaneously. It wouldn’t do to
wait for the first customer to finish before taking the second’s order. Input
doesn’t arrive all at the beginning; instead, customers are continually walking
in the door. Output isn’t what you do just before you close; it’s a steady
production. (Input is what you monitor; output is what you do.)

Programming is constituting a community of interacting entities. Populat-
ing the restaurant requires asking: Who are the members of the community?
How do they interact? What is each one made of? These are the central ques-
tions of the new computational metaphor.

To populate our restaurant, we need to identify the members of our com-
munity. One possible organization involves a division of labor into the wait
staff, the kitchen staff, and the business staff. These correspond roughly to
such canonical pieces as a user interface, a computational engine, and a man-
ager of an external resource such as a database or network services.

The second question is: How do they interact? The key notions here are
ideas such as interface and protocol. An interface is the interactive equivalent
of a functional description, specifying what an entity requires and what it
produces, what behavioral contracts the entity can be expected to subscribe
to. A protocol describes the precise choreography of an interaction, including
what each party does in what temporal sequence and how information moves
back and forth. For example, we might design a data-structure based protocol
(depicted in Fig. 4) for the waiter to communicate orders to the kitchen by
writing the customer’s order on a piece of paper, then hanging the paper in the
kitchen staff’s window. The state of that paper (often including its physical
location) serves as a cue to the kitchen staff as to what food preparation
remains on the order. When the food is delivered to the waiter, the scrap of
paper is thrown away (garbage collected).

472 L.A. Stein

Fig. 4. The orders written by the waiter are the foundation for a data-structure-
based protocol between the kitchen and the wait staff. As each order is processed
and picked up, the corresponding piece of paper is discarded

Fig. 5. Bin sorting: Sort the balls from the input bucket into a fixed set of output
baskets

Of course, computational protocols come in many different varieties; the
important point is that the protocol determines how these two entities in-
teract. Similarly, we might design protocols for other interactions within
the system—the waiter and the business manager, for example—so that the
restaurant maintains a sufficient supply of peanut butter.

Once we design the community and its interactions, we need to apply the
traditional technique of recursive decomposition. Of each entity, we ask how it
is made. For example, the wait staff might really consist of the mâıtre d’hôtel,
one or more waiters, someone to clear the table, etc.7 Among them, each has a
distinct set of responsibilities and certain protocols for interaction. From the
kitchen’s perspective, the wait staff may be approximated as a single entity
that periodically delivers order request and retrieves platters of food; from
among the wait staff, the reality of a community is visible. Similarly, from
the customer’s perspective, the entire restaurant might be seen as a single
entity. It might be a one-man shop, with a single person literally playing each
of these roles. Or it might be a large, well-staffed restaurant, but one whose
complex interactions are largely invisible to the customers.
7 Such an extensive wait staff would be quite unusual in a café or luncheonette, but

might be appropriate in a more elaborate restaurant.

Interaction, Computation, and Education 473

Stepping outside of the restaurant, we see that it is itself embedded in a
community. That community involves the customers who come to eat. It also
involves the restaurant’s suppliers, the tax collector, the landlord, and many
others. The same model and questions—Who are the members? How do they
interact? What’s inside each?—apply.

The restaurant model of computation involves sequences of steps; you can’t
run a restaurant without cooking some recipes. But the recipes are not the
heart of the restaurant. Instead, the pieces of this model are ongoing persis-
tent autonomously active entities: the staff. They are coupled together using
various interaction protocols. The entire system is evaluated based on ongoing
behavior, rather than any end result. (A restaurant ends when it closes down;
at that point, it is no longer functioning properly.) Computation today is like
running a restaurant.

5 Educational Implications

Introductory computer science education is the place where we as a commu-
nity articulate the principles that underlie our field. It is in this course that
we lay out the foundations of computation and teach students to think in
computational terms. The peanut butter and jelly model has—literally and
figuratively—been a central part of this course. If computation today is more
appropriately construed as a restaurant, we must rethink the story that we
tell our community’s newest members.

5.1 A Traditionally Sequential Example

In this section, I will describe an example that begins as a traditionally sequen-
tial story. By recasting this example in interactive terms—reconstituting it as
an interactive community rather than a sequence of steps—I will demonstrate
how the shift in metaphor leads to a transformation of traditional curricu-
lar materials. Transferring the problem from the traditional calculation-based
metaphor into this new interactive framework turns it into a very different
kind of problem. What begins as a very simple sequential program winds up
as an equally accessible description of a problem usually viewed as too complex
for first-semester college students. The moral of this story is that concurrency
is not inherently more difficult than sequential programming; it is, however,
a radically different way of approaching problems.

Bin Sorting

The traditional sequential problem on which this example is based is bin sort:
Given a collection of items associated with a fixed finite set of keys, sort
them according to these keys. In simpler terms, imagine a bucket of balls of

474 L.A. Stein

different colors; the programmer’s task is to sort these balls into baskets, one
corresponding to each color represented. A traditional approach would use a
program with the following structure:8

SEQUENTIAL BINSORT

1. Pick up a ball from the input bucket.
2. Consider the first basket.
3. If the color of the ball matches the color of the current basket, put the

ball into the basket and go to step 1.
4. Otherwise (the color does not match, so) consider the next basket.
5. Go to step 3.

This program can be executed by a single thread of computation. It will
eventually wind up placing each ball in the appropriately colored basket. That
is, its functional specification matches the requirements of the problem. All
input is available at the beginning of the problem; the computation’s result is
its final state. In short, this is a conventional algorithmic computation lifted
directly from the standard—peanut butter and jelly paradigm—literature.

The analysis performed in a traditional sophomore-level algorithms class
further assures us that this task will be completed on average in nk/2 iter-
ations (where n is the number of balls and k the number of baskets) and
at worst will require nk iterations. These are the kinds of questions that we
would expect the traditional computational metaphor to evoke.

A community of sorters

Contrast the bin sort algorithm with a more communal decomposition of the
same problem. Instead of breaking the problem into steps, we break it into
entities—one for each basket (or color). Next, we arrange these entities in a
line, with buffers between them, as in Fig. 6. Each entity follows the interactive
rule:

COMMUNITY BINSORT

1. Pick up a ball from your input buffer.
2. If the color of the ball matches the color of your basket, put the ball into

your basket.
3. Otherwise (it is not your color), put it into your output buffer .

8 This program outline leaves out the termination condition. In fact, termination
represents an asymmetry between the traditional (calculation) model of compu-
tation and the interactive one. As will be seen below, if the read is blocking, no
explicit termination condition is needed in the interactive program; therefore, I
have omitted it here as well.

Interaction, Computation, and Education 475

Fig. 6. A community-of-interacting-entities solution to the bin sorting problem

This is very close to being a subset of the SEQUENTIAL BINSORT rule;
new text has been highlighted in this pseudocode. In addition, the control flow
in this rule is a simple go back to line 1 implicit at the end of this code. That
control flow is not made explicit because the default behavior for an interactive
entity is to keep processing—often to keep looping over its inputs—forever. A
conventional algorithmic computation runs through its steps until completion
and only hands off control to any other piece of code when it completes its task.
In contrast, an interactive entity continually processes input and continually
produces output. It can be coupled with other entities not through temporal
sequencing but through spatial interaction (in this case, shared buffers).

By making the original bucket of balls the input buffer for one of the
entities and stringing the others along, we have a parallel program that is in
many respects strikingly similar to the traditional sequential decomposition
described above. It differs by containing multiple active entities—multiple
threads of control—and simultaneous activity. It requires essentially the same
number of total steps as the original bin sort, though the activity is distributed
across the community of active entities, or agents.

Importantly, this new framing of the problem lends itself to a somewhat
different set of questions: comparisons of the relative workloads of the first
vs. last of these agents, or even the question of workload itself; discussion of
how long it takes each ball to stop moving down the line of entities; etc. Of
course, these questions are precisely the kinds of questions that one begins to
ask about parallel and concurrent programs.

Significantly, this new program decomposition is not too complex for be-
ginning computational students, bringing these questions into reach of our
disciplines newest members. However, this is only the beginning of what the
new computational metaphor can do.

Expanding the community

In the interactive decomposition of the bin sorting problem, one of the entities
has privileged access to the original bucket of balls. There is no particular
reason why this should be so. Instead, we can change the program so that
each entity uses the original bucket as its input buffer and as its output buffer.
The rule for this is a minor variation on the COMMUNITY BINSORT rule:

476 L.A. Stein

COMMUNITY BINSORT 2

1. Pick up a ball from your input buffer.
2. If it is your color, put it into your basket.
3. Otherwise (it is not your color), put it back into your input buffer .

In addition to the change highlighted in the BINSORT rule, this modifica-
tion requires a change in the topology of the community, i.e., its interconnec-
tions. The new topology is shown in Fig. 7(a) and involves only one shared
bucket. In this configuration, each entity picks up a ball from the (single)
shared central bucket, keeps it if it matches, and otherwise returns it to that
bucket.

Fig. 7. Variants on the interactive bin-sorting community. (a) A randomized version.
(b) A hierarchical version. (c) An on-line hierarchical version: network routing!

This is a parallel randomized bin sort. The algorithm is not one usually
presented to undergraduates (at any level). The reason why randomized algo-
rithms are usually deferred until graduate9 courses is that concurrency itself is
not considered an undergraduate topic. However, decomposed in this fashion,
it is completely accessible. For example, most school children would have no
trouble understanding that the blue-basket entity might continually pick up
and put down a green ball, preventing it from ever reaching the green basket.
That is, randomized sort is not guaranteed to complete.
9 What in the US is called a graduate course is in many other parts of the world

referred to as a postgraduate course.

Interaction, Computation, and Education 477

Nor does this example end here. We can take the output baskets of each of
these entities and use them as input buffers for other sets of entities. (Again,
the entities each use the COMMUNITY BINSORT 2 rule; the network topol-
ogy is shown in Fig. 7(b).) This results in a hierarchical sort: The first level
of entities sorts by major color family, the second by shading within that
color family, etc. Given its homogeneously parallel decomposition, this prob-
lem scales easily, meshing coarse-grained with increasingly fine-grained sorts.
At this point, we are moving beyond what the traditional sequential decom-
position can easily accommodate.

One final twist shifts this problem firmly from the purely sequential world
to the on-line, interactive model. In previous versions of the problem, we have
used a fixed bucket of balls as input. In the interactive model of computation,
where input is a continual process, there is no reason for this.

Imagine instead that the balls in this problem were supplied over a con-
veyer belt. Again, the computational entities are arranged in the topology of
Fig. 7(b) and run the code for COMMUNITY BINSORT 2. Now, however,
there is no end to the supply and therefore no final state by which to judge
the performance of our computational community. Instead, we ask questions
about more engineering terms: latency and throughput, correctness and com-
pleteness. How long does each ball spend travelling through the system? Is it
guaranteed to eventually find its home? Are ordering constraints preserved?

If these questions sound vaguely familiar, this is no coincidence. From a
traditionally sequential bin-sorting problem, we have moved to the world of
network routing. The final version of this program is a simplified form of the
programs that run our worldwide communication networks.

5.2 Morals

This problem started out as a very traditional von Neumann sequence-of-
steps kind of problem. By shifting the metaphor—by thinking of the problem
as the interaction of a community of agents—we teach our students the basics
of network routing. They can explore many of the issues that arise in real-
life computational networks. Shifting the metaphor makes things that were
very inaccessible to beginning students much more accessible. In courses that
I and others have taught using this approach [Stein, CS101], first semester
students with no prior programming experience learn in a single term to build
client-server chat programs and networked video games. These are not things
that first-semester students typically do. The reason that they are able to
accomplish this is that the basic language to think about these things is not
very difficult once you realize that a computation is built out of a community
of interacting entities.

Another major point of this example is that concurrency is not a topic to
be afraid of. We all live in a concurrent world. In teaching computer science,
we tell our students to ignore their instinctual understanding of concurrency.

478 L.A. Stein

“Forget how the world works; this is computer science,” we say. Ignore turn-
taking and sign-up sheets, ganging up or cooperating to solve problems. In
essence, we put blinders on our students. Then, sometime around their third
year of university training, we start to remove those blinders as we introduce
them to topics like operating systems or user interfaces or embedded systems.
At that point, our students have generally absorbed our lessons and become
good sequentialist computer scientists. For many of them, there is only a single
thread of control, one thing happening at a time, in a vacuum.

Instead, we ought to teach our students—from the beginning—to marshal
their intuitions about interacting communities. They come to computation
with instincts about managing the world’s complexities, about surviving in a
world full of simultaneous interactions, about organizing cooperation so that
interactions solve problems. We can teach our students how to translate that
tremendous body of intuition into computational practice.

5.3 Echo to Internet Chat: Syllabus in a Nutshell

The bin sorting/network routing example illustrates the way in which a tra-
ditionally sequential problem can be completely transformed by recasting it
in an interactive framework. In courses that I have taught, students typically
see only the interactive (routing) version. In this section, I describe a dif-
ferent example, one that is woven through the course and explains students’
progression from a simple infinite echo loop to networked video games.

The simplest program

This example begins with the simplest interactive program:
while (true) echo

This program replaces the quintessential first program of the historical
paradigm,

print “Hello, world!”
The echoer is an “atomic unit” of computation that continually reads its input
and reproduces that signal on its output. It goes on forever; beginning and
ending are relatively unimportant special cases. It interacts; it can be coupled
to other entities, such as the user (by way of keyboard and screen). Embedded
in such a context, it takes on the appearance of a traditional “standalone”
program.

Looking inside this program, we may choose to divide it into two separate
entities, one responsible for user input (the “source”) and the other for output
(the “sink”). For example, if echo is decomposed into read and write, the
“source” entity is the reader and the “sink” entity is the writer. In the same
kind of pseudocode used in the last section, this might look like:

Interaction, Computation, and Education 479

ECHOER

1. read something from the user’s input
2. write that something to the user’s screen

which can be decomposed into SOURCE and SINK as follows:

SOURCE
1. read something from the user’s input and hand it to SINK

SINK

1. on receipt of something from SOURCE, write it to the user’s screen

These entities form a simple community, communicating with one another,
but also with the user. Like other entities, humans are members of the com-
munity who interact with program components. Unlike other entities, human
users represent a special class of community members with decidedly different
bandwidth, latency, and other computational properties. Accounting for these
differences and accommodating them is the foundation of the underappreci-
ated field of user interface design.

This illustrates the ways in which a single apparent entity (ECHOER)
may in fact be constructed out of several entities cooperating. Each of these
entities interacts with the other according to some predetermined protocol
(“hand it to SINK”/“on receipt. . . ”). There are actually many ways to imple-
ment this handoff, and exploration of the tradeoffs between a supplier-driven
and recipient-driven versions are well within the understanding of introduc-
tory students. For example, the supplier-driven version is like the Fruit-of-
the-Month Club, with automated deliveries and occasional piles of rotted
fruit when the recipient is on vacation. The recipient-driven version avoids
oversupply at the doorstep, but can lead to long waits in line at the fruit sup-
plier. These are exactly the kinds of questions that designers of such protocols
address, and they are easily accessible to the beginning undergraduate.

Variations on a theme

Once our protocol is chosen, we can design alternate entities that conform to
either side of it, making it possible, e.g., to read from a stored file or to write
to a printer.

FILE SOURCE

1. read something from the file and hand it to a SINK

PRINTER SINK

1. on receipt of something from a SOURCE, write it to the printer

480 L.A. Stein

These constituent entities may be mixed and matched as long as their
interface protocol is adhered to.

Indeed, we can extend this idea further. If we create an entity that sub-
scribes to both the source (producer) and sink (consumer) side of the protocol,
we can insert a transformer entity into the community:

TRANSFORMER

1. on receipt of something from a SOURCE
2. transform it
3. hand the transformed something to a SINK

For example, the transformation entity might modify any strings it receives
by converting them to upper case or translating them into pig latin.10

UPPER-CASER TRANSFORMER

1. on receipt of something from a SOURCE
2. focus on the first letter
3. turn the current letter into its upper case equivalent
4. if this is not the last letter, focus on the next letter and go back

to step 3
5. hand the transformed something to a SINK

PIG-LATIN TRANSFORMER 11

1. on receipt of something from a SOURCE
2. remove the first letter
3. append a hyphen to the end of the word
4. append the removed first letter to the end of the word, after the

hyphen
5. add “ay” at the end
6. hand the transformed something to a SINK

10 Pig latin is an English language children’s game in which words are transformed
by moving the initial consonant to the end and adding “ay”. For example, “igpay
atinlay” is pig latin for “pig latin”. Most languages and cultures have similar
word-transformation games.

11 The astute reader will observe that this transformer doesn’t really give good
rules for pig latin. For example, it doesn’t properly handle words beginning with
a vowel or a multiletter consonant formation: “order” translates as “rder-oay”,
which is certainly wrong, as is “ruitcake-fay” for “fruitcake”. In addition, both
the pig latin transformer and the upper caser transformer make undocumented
assumptions about the form of their input, etc. Remedying these issues in the
pseudocode would add nothing to the presentation of ideas here and so is left as
an exercise for the reader. Complete code is included in [Stein, CS101].

Interaction, Computation, and Education 481

If the transformation component is suitably designed, multiple transfor-
mations can be coupled together in sequence—capitalization and pig-latin
translation together, for example—or in some kind of alternation.

Further broadening the program, we can create an augmented transforma-
tion entity that includes transmission of the string over the network.

NETWORK TRANSFORMER (FIRST HALF)12

1. on receipt of something from a SOURCE
2. send the something over the network (to the other half of this

TRANSFORMER)

NETWORK TRANSFORMER (SECOND HALF)

1. when the something is received over the network (from the other
half of this transformer)

2. hand the transformed something to a SINK

Note that, from the outside, the FIRST HALF looks like any other SINK
while the SECOND HALF looks like a conventional SOURCE. By connecting
this to a user-interface SOURCE on one computer and a user-interace SINK
on another, we can construct a program that reads input from one user and
writes the same (or, if we want to add transformers, a transformed) signal as
output to another user. This is still basically the same program, except that
the input and output computers are now separated. Conceptually, it is still a
single interactive entity. And yet, this is also Internet chat.

Telling the larger story

Progressing from echo to chat, as we do during the course of the semester,
introduces many topics that are not traditionally part of introductory com-
puter science. The structure of these programs opens the opportunity for an
exploration of issues of information transfer (including push and pull), ex-
plicit dispatch vs. event-driven programming, concurrency, user interfaces,
networking, component architectures, and a whole host of other issues not
usually considered accessible to the introductory student.

This approach also explains the role of users in computational systems.
In the traditional world, where computation is concerned with “what do I
do next?” it is hard to explain how people fit in. But if computation is a
community of interacting entities, people are easily explained as members of
the community in which the computation is embedded. The boundary between
12 The intricacies of network communication are omitted here, but once we are

writing code in a sufficiently high level language, there’s actually not that much
hidden under that particular rug. Working versions of these transformers are
included in [Stein, CS101]

482 L.A. Stein

what happens inside the computer and the world into which it is coupled is
blurred; we can shift that line in either direction, allocating more or less
of the problem to the mechanical computer. In other words, this approach
makes the issue of user interfaces a study of the special case in which one of
the computational entities is human.

Part of the reason for this transformation of the curriculum is that the
community-based approach to program design slices the traditional curricu-
lum along entirely different lines from the traditional, calculation-oriented cur-
riculum. Shifting the metaphor shifts the fundamentals of the field. It changes
the ways in which we approach questions and even which questions we con-
sider important. If computation is a community, we care less about how to
get from here to there and more about how to interact with other entities. We
design fewer algorithms and more protocols. We worry less about functions
and more about constraints or invariants, i.e., what stays the same through
time. We ask about throughput and latency rather than time-to-completion.
And yet, we maintain the fundamental ideas of computational design in terms
of abstraction and recursive decomposition.

6 Summary

Computation is not a sequence of steps to produce a result at the end. Compu-
tation is embodied in ongoing interactive entities. It is composed of a commu-
nity of such entities; their interactions are what make computation happen.
Input is what you observe; output is what you do. Computations are evaluated
based on ongoing behavior, commitments kept, services provided, invariants
maintained.

A significant fraction of this paper discusses rethinking introductory com-
puter programming. This is because the introductory course is where we make
our metaphors explicit, where we lay out what computation is all about. By
recasting the course in terms of a new metaphor for computation, I was able
to teach beginning students about ideas traditionally considered too complex
and inaccessible for that level. Curricularly, this changes every subsequent
course, without actually changing the course sequence. Everything that we
teach our students takes on new meaning. This approach makes it easier to
contextualize traditionally hard-to-fit-in topics such as user interfaces. It facil-
itates the teaching of operating systems and networking, because they are not
simultaneously learning about concurrency and about the mechanisms to im-
plement concurrency on a sequential processor. Rethinking the computational
metaphor turns the discipline on its side, giving us new ways to understand
a wide range of phenomena.

But this chapter is not about how to teach the introductory course, even
though this metaphoric shift has profound implications there. This chapter
is about changing the ways in which computer scientists think about compu-
tation. Many subdisciplines have their own language for describing this way

Interaction, Computation, and Education 483

of thinking about computation. In artificial intelligence, the recent attention
to embodiment, to agents, to behaviors, is indicative of this shift. The com-
puter systems community uses terms like server, transaction, thread. Other
research communities that rely on similar notions—by still other names—
are those that study networking, distributed systems, information manage-
ment, human–computer interaction and computer-supported collaboration,
web computing, and embedded. Each of these research communities has its
own terminology for describing the interactive community metaphor, imped-
ing the opportunities for cross-field discourse and collaborative problem solv-
ing.

By recasting all of computational science in terms of the interactive com-
munity, we have shifted the center of the field. Efforts to make multiple CPUs
look like a single processor—as in automatic program parallelization—now
seem peripheral. Research on user interfaces, or on component architectures
such as CORBA or COM, take on new centrality given their focus on cou-
pling subsystems together. The heart of current computational thinking is in
agents, servers, services, and distributed systems.

This way of approaching computation also has profound implications for
the kinds of thinking we do. For our students, it means that we harness their
native intuition about how to survive in an inherently concurrent and asyn-
chronous world. We never put on the blinders of calculational sequentialism.
We never assume that our programs operate in a world unto themselves; in-
stead, our programs are constructed to function in a dynamic, concurrent
world with which they continually interact.

In other disciplines, we find that the new metaphors we are using are
more appropriate for bidirectional cross-disciplinary communication. Just as
computation is a reference model for understanding cognitive and biological
science, so what we learn about the robustness of biological systems inspires
us in the construction of “survivable” computational systems. Both natural
and artificial computations produce behavior by virtue of the interactions of
a community.

Many disciplines study systems of interaction. The cognitive sciences look
at how natural intelligence works. Organizational science analyze the ways in
which corporations and other large administrative entities function. Several
of the social sciences study the ways in which human communities work.
Each of these fields has the potential to contribute to, and to benefit from, a
computational science of interaction.

References

1. Gul Agha and Carl Hewitt. “Actors: A Conceptual Foundation for Concurrent
Object-Oriented Programming.” In Research Directions in Object-Oriented
Programming, Bruce Shriver and Peter Wegner, eds., MIT Press, Cambridge,
MA, 1987, pp. 49 - 74

484 L.A. Stein

2. Martin Campbell-Kelly and William Aspray. Computer: A History of the In-
formation Machine, HarperCollins, 1997.

3. John Dewey. “Individual Psychology and Education.” The Philosopher 12, 1934.
4. Alan Kay. “The Computer Revolution Hasn’t Happened Yet.” Keynote address

at the ACM SIGPLAN Conference on Object Oriented Systems, Languages,
and Applications. Atlanta, Georgia. 1997.

5. Martin Luther King, Jr. “The Purpose of Education.” Maroon Tiger, January-
February 1941.

6. L. F. Menabrea. Sketch of the Analytical Engine Invented by Charles Babbage,
Bibliothèque Universelle de Genève, October, 1842, No. 82. Translated with
notes by Ada Augusta, Countess of Lovelace.

7. David A. Mindell. Between Human and Machine: Feedback, Control, and Com-
puting before Cybernetics, Baltimore: Johns Hopkins University Press, 2002.

8. Marvin Minsky. The Society of Mind, New York: Simon & Schuster, 1985.
9. Lynn Andrea Stein. “Challenging the Computational Metaphor: Implications

for How We Think,” Cybernetics and Systems 30 (6):473-507, 1999 (a).
10. Lynn Andrea Stein. “What We Swept Under the Rug: Radically Rethinking

CS1,” Computer Science Education 8 (2):118-129, 1999 (b).
11. Lynn Andrea Stein. Rethinking CS101. Web site at http://www.cs101.org in-

cludes textbook, syllabi, problem sets, teaching materials, as well as publica-
tions.

12. Lynn Andrea Stein. Introduction to Interactive Programming, to appear. Cur-
rently at http://www.cs101.org/ipij.

13. Alan Turing. “On Computable Numbers, with an application to the Ent-
scheidungsproblem”, Proc. Lond. Math. Soc. (2) 42 pp 230-265, 1936; correction
ibid. 43, pp 544-546, 1937.

14. John von Neumann. First Draft of a Report on the EDVAC, Contract No.W-
670-ORD-4926 between the United States Army Ordnance Department and the
University of Pennsylvania. Moore School of Electrical Engineering, University
of Pennsylvania, June 30, 1945.

15. Akinori Yonezawa and Mario Tokoro. Object-oriented concurrent programming,
MIT Press, Cambridge, MA, 1987.

List of Contributors

Susanne Albers
Department of Computer Science
University of Freiburg
Georges-Köhler-Allee 79
79110 Freiburg, Germany
salbers@informatik.uni-
freiburg.de

Farhad Arbab
CWI
Kruislaan 413
1098 SJ Amsterdam
The Netherlands
farhad@cwi.nl
&
LIACS
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands
farhad@liacs.nl

Chris Barrett
Virginia Bio-Informatics Institute &
Computer Science Dept.
Virginia Polytechnic Institute and
State University
1880 Pratt Drive, Building XV
Blacksburg, VA 24061-0497, USA
cbarrett@vbi.vt.edu

Michel Beaudouin-Lafon
Université Paris-Sud
LRI - Bât 490
91405 Orsay, France
mbl@lri.fr

Manfred Broy
Institut für Informatik
Technische Universität München
D-80290 München, Germany
broy@in.tum.de

Peter Denning
Computer Science, Code CS
Naval Postgraduate School
Monterey, CA 93943, USA
pjd@nps.edu

Stephen Eubank
Virginia Bio-Informatics Institute &
Physics Dept.
Virginia Polytechnic Institute and
State University
1880 Pratt Drive, Building XV
Blacksburg, VA 24061-0497, USA
seubank@vbi.vt.edu

Matthias Felleisen
College of Computer Science
308B, West Village H
Northeastern University
Boston, MA 02115, USA
matthias@ccs.neu.edu

486 List of Contributors

Robert Bruce Findler
Department of Computer Science
University of Chicago
1100 E. 58th Street
Chicago, IL 60637, USA
robby@cs.uchicago.edu

Dina Goldin
Computer Science Department
Box 1910
Brown University
Providence, RI 02912, USA
dqg@cs.brown.edu

Paul Graunke
College of Computer Science
Northeastern University
Boston, MA 02115, USA
ptg@ccs.neu.edu

Yuri Gurevich
Microsoft Research
One Microsoft Way
Redmond, WA 98052, USA
gurevich@microsoft.com

Ramesh Jain
Donald Bren School of Information
and Computer Sciences
University of California, Irvine
Irvine, CA 92697, USA
jain@ics.uci.edu

Giorgi Japaridze
Computing Sciences Dept.
Villanova University
800 Lancaster Ave.
Villanova, PA 19085, USA
giorgi.japaridze@villanova.edu

Shriram Krishnamurthi
Computer Science Department
Box 1910
Brown University
Providence, RI 02912-1910, USA
sk@cs.brown.edu

Orna Kupferman
School of Computer Science & Engr.
Hebrew University
Jerusalem 91904, Israel
orna@cs.huji.ac.il

Thomas Malone
Sloan School of Management
30 Wadsworth Street
MIT
Cambridge, MA 02142, USA
malone@mit.edu

Madhav V. Marathe
Virginia Bio-Informatics Institute &
Computer Science Dept.
Virginia Polytechnic Institute and
State University,
1880 Pratt Drive, Building XV
Blacksburg, VA 24061-0497, USA
mmarathe@vbi.vt.edu

Robin Milner
The Computer Laboratory
University of Cambridge
J J Thomson Avenue
Cambridge CB3 0FD, UK
Robin.Milner@cl.cam.ac.uk

Andrea Omicini
DEIS
Alma Mater Studiorum
Università di Bologna
via Venezia 52
47023 Cesena, Italy
andrea.omicini@unibo.it

Eric Pacuit
ILLC
University of Amsterdam
Plantage Muidergracht 14
Amsterdam, The Netherlands
epacuit@science.uva.nl

List of Contributors 487

Rohit Parikh
Brooklyn College and CUNY
Graduate Center
365 Fifth Avenue
New York, NY 10016-4309, USA
rparikh@gc.cuny.edu

Alessandro Ricci
DEIS
Alma Mater Studiorum
Università di Bologna
via Venezia 52
47023 Cesena, Italy
a.ricci@unibo.it

Rahul Singh
Department of Computer Science
San Francisco State University
San Francisco, CA 94132, USA
rsingh@cs.sfsu.edu

Scott Smolka
Dept. of Computer Science
SUNY at Stony Brook
Stony Brook, NY 11794-4400, USA
sas@cs.sunysb.edu

Lynn Andrea Stein
Franklin W. Olin College of Engr.
1000 Olin Way
Needham, MA 02492, USA
las@olin.edu

Jan van Leeuwen
Department of Information and
Computing Sciences
Utrecht University
Padualaan 14
3584 CH Utrecht, The Netherlands
j.vanleeuwen@cs.uu.nl

Moshe Y. Vardi
Department of Computer Science
Rice University
Houston, TX 77251-1892, USA
vardi@cs.rice.edu

Mirko Viroli
DEIS
Alma Mater Studiorum
Università di Bologna
via Venezia 52
47023 Cesena, Italy
mirko.viroli@unibo.it

Peter Wegner
Computer Science Department
Box 1910
Brown University
Providence, RI 02912, USA
pw@cs.brown.edu

Jiř́ı Wiedermann
Institute of Computer Science
Academy of Sciences of the Czech
Republic
Pod Vodárenskou věž́ı 2
182 07 Prague 8, Czech Republic
Jiri.Wiedermann@cs.cas.cz

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

